metal-organic compounds
catena-Poly[[(1,10-phenanthroline)cobalt(II)]-di-μ-azido]
aSchool of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
*Correspondence e-mail: fuchenliutj@yahoo.com
In the 3)2(C12H8N2)]n, each CoII cation is coordinated by two N atoms from one chelating 1,10-phenanthroline ligand and four azide ligands in a slightly distorted octahedral coordination. The two CoII cations of the binuclear complex are related by an inversion centre and are bridged by two symmetry-related azide ligands in both μ1,1 and μ1,3 modes. The μ1,3 bridging mode gives rise to an infinite one-dimensional chain along the a axis, whereas the μ1,1 bridging mode is responsible for the formation of the binuclear CoII complex.
of the binuclear title complex, [Co(NRelated literature
For general background to metal–azide complexes, see: Zhao et al. (2009). For a closely related Ni–azide structure, see: Li et al. (2000).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536812006435/vn2030sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812006435/vn2030Isup2.hkl
The complex was hydrothermally synthesized under auto-generated pressure. A mixture of cobalt formate (1 mmol), NaN3 (1 mmol) and 1,10-phenanthroline (1 mmol) in methanol was sealed in a Teflon-lined stainless-steel Parr bomb that was heated at 413 K for 48 h. Red crystals of the title complex were collected after the bomb was allowed to cool to room temperature. Yield 20% based on metal salt.
H atoms were included in calculated positions and treated as riding on their parent C atoms with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Co(N3)2(C12H8N2)] | Z = 2 |
Mr = 323.19 | F(000) = 326 |
Triclinic, P1 | Dx = 1.723 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.0018 (14) Å | Cell parameters from 5775 reflections |
b = 10.049 (2) Å | θ = 3.2–27.5° |
c = 10.491 (2) Å | µ = 1.38 mm−1 |
α = 109.83 (3)° | T = 293 K |
β = 103.63 (3)° | Block, red |
γ = 105.78 (3)° | 0.2 × 0.18 × 0.18 mm |
V = 622.8 (2) Å3 |
Rigaku SCXmini diffractometer | 2822 independent reflections |
Radiation source: fine-focus sealed tube | 2087 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
ω scans | θmax = 27.5°, θmin = 3.2° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −9→9 |
Tmin = 0.720, Tmax = 1 | k = −13→13 |
6534 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0411P)2 + 0.0273P] where P = (Fo2 + 2Fc2)/3 |
2822 reflections | (Δ/σ)max = 0.001 |
190 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
[Co(N3)2(C12H8N2)] | γ = 105.78 (3)° |
Mr = 323.19 | V = 622.8 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.0018 (14) Å | Mo Kα radiation |
b = 10.049 (2) Å | µ = 1.38 mm−1 |
c = 10.491 (2) Å | T = 293 K |
α = 109.83 (3)° | 0.2 × 0.18 × 0.18 mm |
β = 103.63 (3)° |
Rigaku SCXmini diffractometer | 2822 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2087 reflections with I > 2σ(I) |
Tmin = 0.720, Tmax = 1 | Rint = 0.053 |
6534 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.36 e Å−3 |
2822 reflections | Δρmin = −0.42 e Å−3 |
190 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 1.08955 (7) | 0.88775 (5) | 0.39668 (4) | 0.02424 (16) | |
N1 | 0.8499 (4) | 0.9870 (3) | 0.3808 (3) | 0.0290 (6) | |
N2 | 0.7988 (4) | 1.0243 (3) | 0.2840 (3) | 0.0321 (7) | |
N3 | 0.7510 (6) | 1.0590 (4) | 0.1905 (4) | 0.0599 (11) | |
N4 | 1.3416 (5) | 0.7993 (3) | 0.4387 (3) | 0.0357 (7) | |
N5 | 1.5146 (5) | 0.8649 (3) | 0.5268 (3) | 0.0264 (6) | |
N6 | 1.6882 (5) | 0.9262 (3) | 0.6149 (3) | 0.0362 (7) | |
N7 | 0.9662 (4) | 0.7562 (3) | 0.1657 (3) | 0.0249 (6) | |
N8 | 0.8808 (4) | 0.6720 (3) | 0.3697 (3) | 0.0249 (6) | |
C1 | 1.0005 (6) | 0.8017 (4) | 0.0652 (4) | 0.0338 (8) | |
H1A | 1.0859 | 0.9035 | 0.0945 | 0.041* | |
C2 | 0.9122 (6) | 0.7015 (5) | −0.0844 (4) | 0.0410 (9) | |
H2A | 0.9373 | 0.7376 | −0.1521 | 0.049* | |
C3 | 0.7906 (6) | 0.5522 (4) | −0.1286 (4) | 0.0395 (9) | |
H3A | 0.7343 | 0.4850 | −0.2269 | 0.047* | |
C4 | 0.6230 (5) | 0.3430 (4) | −0.0625 (4) | 0.0375 (9) | |
H4A | 0.5630 | 0.2713 | −0.1593 | 0.045* | |
C5 | 0.5901 (5) | 0.2991 (4) | 0.0411 (4) | 0.0374 (9) | |
H5A | 0.5115 | 0.1968 | 0.0150 | 0.045* | |
C6 | 0.6387 (5) | 0.3701 (4) | 0.3039 (4) | 0.0363 (9) | |
H6A | 0.5605 | 0.2695 | 0.2834 | 0.044* | |
C7 | 0.7191 (6) | 0.4816 (4) | 0.4423 (4) | 0.0371 (9) | |
H7A | 0.6937 | 0.4580 | 0.5167 | 0.045* | |
C8 | 0.8392 (5) | 0.6306 (4) | 0.4720 (4) | 0.0324 (8) | |
H8A | 0.8933 | 0.7053 | 0.5673 | 0.039* | |
C9 | 0.7490 (5) | 0.4984 (4) | −0.0256 (3) | 0.0289 (8) | |
C10 | 0.6746 (5) | 0.4079 (4) | 0.1915 (4) | 0.0285 (7) | |
C11 | 0.8398 (5) | 0.6068 (3) | 0.1210 (3) | 0.0235 (7) | |
C12 | 0.7988 (5) | 0.5611 (3) | 0.2306 (3) | 0.0230 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0244 (3) | 0.0210 (2) | 0.0226 (3) | 0.00471 (18) | 0.00743 (18) | 0.00793 (19) |
N1 | 0.0317 (16) | 0.0289 (15) | 0.0245 (15) | 0.0127 (13) | 0.0077 (13) | 0.0103 (13) |
N2 | 0.0352 (18) | 0.0192 (14) | 0.0265 (16) | 0.0055 (13) | 0.0027 (14) | 0.0020 (13) |
N3 | 0.089 (3) | 0.039 (2) | 0.038 (2) | 0.021 (2) | 0.0026 (19) | 0.0190 (17) |
N4 | 0.0317 (18) | 0.0273 (16) | 0.0434 (18) | 0.0082 (14) | 0.0105 (15) | 0.0146 (14) |
N5 | 0.0326 (18) | 0.0191 (14) | 0.0332 (17) | 0.0100 (13) | 0.0167 (15) | 0.0145 (13) |
N6 | 0.0289 (17) | 0.0355 (17) | 0.0396 (18) | 0.0050 (14) | 0.0083 (15) | 0.0195 (15) |
N7 | 0.0248 (15) | 0.0268 (15) | 0.0252 (14) | 0.0098 (12) | 0.0112 (12) | 0.0124 (12) |
N8 | 0.0276 (15) | 0.0216 (14) | 0.0210 (14) | 0.0072 (12) | 0.0060 (12) | 0.0081 (12) |
C1 | 0.035 (2) | 0.042 (2) | 0.033 (2) | 0.0161 (17) | 0.0165 (17) | 0.0215 (18) |
C2 | 0.044 (2) | 0.063 (3) | 0.033 (2) | 0.029 (2) | 0.0211 (18) | 0.027 (2) |
C3 | 0.038 (2) | 0.049 (2) | 0.0268 (19) | 0.0207 (19) | 0.0093 (17) | 0.0091 (18) |
C4 | 0.033 (2) | 0.033 (2) | 0.030 (2) | 0.0162 (17) | 0.0035 (17) | −0.0019 (17) |
C5 | 0.032 (2) | 0.0247 (18) | 0.042 (2) | 0.0091 (16) | 0.0064 (17) | 0.0047 (17) |
C6 | 0.032 (2) | 0.0249 (18) | 0.049 (2) | 0.0061 (16) | 0.0136 (18) | 0.0165 (18) |
C7 | 0.044 (2) | 0.035 (2) | 0.040 (2) | 0.0110 (17) | 0.0211 (18) | 0.0239 (18) |
C8 | 0.035 (2) | 0.0322 (19) | 0.0281 (18) | 0.0114 (16) | 0.0095 (16) | 0.0130 (16) |
C9 | 0.0287 (19) | 0.0333 (19) | 0.0232 (17) | 0.0181 (16) | 0.0068 (15) | 0.0075 (15) |
C10 | 0.0244 (18) | 0.0258 (17) | 0.0332 (19) | 0.0127 (14) | 0.0080 (15) | 0.0096 (15) |
C11 | 0.0223 (17) | 0.0235 (17) | 0.0224 (17) | 0.0092 (14) | 0.0071 (14) | 0.0078 (14) |
C12 | 0.0179 (16) | 0.0211 (16) | 0.0265 (17) | 0.0074 (13) | 0.0059 (14) | 0.0080 (14) |
Co1—N1i | 2.113 (3) | C2—C3 | 1.356 (5) |
Co1—N1 | 2.175 (3) | C2—H2A | 0.9300 |
Co1—N4 | 2.202 (3) | C3—C9 | 1.416 (5) |
Co1—N6ii | 2.144 (3) | C3—H3A | 0.9300 |
Co1—N7 | 2.141 (3) | C4—C5 | 1.347 (5) |
Co1—N8 | 2.141 (3) | C4—C9 | 1.431 (5) |
N1—N2 | 1.209 (4) | C4—H4A | 0.9300 |
N1—Co1i | 2.113 (3) | C5—C10 | 1.440 (5) |
N2—N3 | 1.155 (4) | C5—H5A | 0.9300 |
N4—N5 | 1.175 (4) | C6—C7 | 1.359 (5) |
N5—N6 | 1.178 (4) | C6—C10 | 1.411 (5) |
N6—Co1ii | 2.144 (3) | C6—H6A | 0.9300 |
N7—C1 | 1.329 (4) | C7—C8 | 1.386 (5) |
N7—C11 | 1.364 (4) | C7—H7A | 0.9300 |
N8—C8 | 1.339 (4) | C8—H8A | 0.9300 |
N8—C12 | 1.362 (4) | C9—C11 | 1.408 (4) |
C1—C2 | 1.411 (5) | C10—C12 | 1.403 (4) |
C1—H1A | 0.9300 | C11—C12 | 1.434 (4) |
N1i—Co1—N8 | 97.49 (11) | C3—C2—H2A | 120.3 |
N1i—Co1—N6ii | 93.69 (12) | C1—C2—H2A | 120.3 |
N8—Co1—N6ii | 167.62 (10) | C2—C3—C9 | 120.1 (3) |
N1i—Co1—N7 | 168.99 (10) | C2—C3—H3A | 119.9 |
N8—Co1—N7 | 77.67 (10) | C9—C3—H3A | 119.9 |
N6ii—Co1—N7 | 92.20 (11) | C5—C4—C9 | 120.9 (3) |
N1i—Co1—N1 | 79.52 (11) | C5—C4—H4A | 119.5 |
N8—Co1—N1 | 95.55 (10) | C9—C4—H4A | 119.5 |
N6ii—Co1—N1 | 91.67 (11) | C4—C5—C10 | 121.1 (3) |
N7—Co1—N1 | 91.02 (10) | C4—C5—H5A | 119.5 |
N1i—Co1—N4 | 94.21 (11) | C10—C5—H5A | 119.5 |
N8—Co1—N4 | 84.91 (10) | C7—C6—C10 | 119.7 (3) |
N6ii—Co1—N4 | 89.00 (11) | C7—C6—H6A | 120.2 |
N7—Co1—N4 | 95.19 (11) | C10—C6—H6A | 120.2 |
N1—Co1—N4 | 173.73 (10) | C6—C7—C8 | 119.7 (3) |
N2—N1—Co1i | 127.0 (2) | C6—C7—H7A | 120.2 |
N2—N1—Co1 | 121.2 (2) | C8—C7—H7A | 120.2 |
Co1i—N1—Co1 | 100.48 (11) | N8—C8—C7 | 123.0 (3) |
N3—N2—N1 | 179.2 (4) | N8—C8—H8A | 118.5 |
N5—N4—Co1 | 128.3 (2) | C7—C8—H8A | 118.5 |
N4—N5—N6 | 177.8 (3) | C11—C9—C3 | 116.7 (3) |
N5—N6—Co1ii | 118.0 (2) | C11—C9—C4 | 119.5 (3) |
C1—N7—C11 | 118.1 (3) | C3—C9—C4 | 123.9 (3) |
C1—N7—Co1 | 128.3 (2) | C12—C10—C6 | 117.2 (3) |
C11—N7—Co1 | 113.60 (19) | C12—C10—C5 | 119.1 (3) |
C8—N8—C12 | 117.6 (3) | C6—C10—C5 | 123.7 (3) |
C8—N8—Co1 | 128.5 (2) | N7—C11—C9 | 123.1 (3) |
C12—N8—Co1 | 113.6 (2) | N7—C11—C12 | 117.3 (3) |
N7—C1—C2 | 122.5 (3) | C9—C11—C12 | 119.6 (3) |
N7—C1—H1A | 118.8 | N8—C12—C10 | 122.9 (3) |
C2—C1—H1A | 118.8 | N8—C12—C11 | 117.3 (3) |
C3—C2—C1 | 119.4 (3) | C10—C12—C11 | 119.8 (3) |
N1i—Co1—N1—N2 | 145.8 (3) | C1—C2—C3—C9 | 1.4 (5) |
N8—Co1—N1—N2 | −117.6 (2) | C9—C4—C5—C10 | 2.1 (5) |
N6ii—Co1—N1—N2 | 52.4 (3) | C10—C6—C7—C8 | −1.3 (5) |
N7—Co1—N1—N2 | −39.9 (3) | C12—N8—C8—C7 | 0.4 (5) |
N1i—Co1—N1—Co1i | 0.0 | Co1—N8—C8—C7 | −172.4 (2) |
N8—Co1—N1—Co1i | 96.62 (12) | C6—C7—C8—N8 | 0.2 (5) |
N6ii—Co1—N1—Co1i | −93.45 (12) | C2—C3—C9—C11 | −0.1 (5) |
N7—Co1—N1—Co1i | 174.32 (11) | C2—C3—C9—C4 | −179.9 (3) |
N1i—Co1—N4—N5 | −41.8 (3) | C5—C4—C9—C11 | 0.0 (5) |
N8—Co1—N4—N5 | −139.0 (3) | C5—C4—C9—C3 | 179.8 (3) |
N6ii—Co1—N4—N5 | 51.8 (3) | C7—C6—C10—C12 | 1.7 (5) |
N7—Co1—N4—N5 | 143.9 (3) | C7—C6—C10—C5 | −177.8 (3) |
N1i—Co1—N7—C1 | 111.0 (5) | C4—C5—C10—C12 | −2.1 (5) |
N8—Co1—N7—C1 | 175.8 (3) | C4—C5—C10—C6 | 177.5 (3) |
N6ii—Co1—N7—C1 | −11.4 (3) | C1—N7—C11—C9 | 1.7 (5) |
N1—Co1—N7—C1 | 80.4 (3) | Co1—N7—C11—C9 | −177.4 (2) |
N4—Co1—N7—C1 | −100.5 (3) | C1—N7—C11—C12 | −177.9 (3) |
N1i—Co1—N7—C11 | −70.1 (6) | Co1—N7—C11—C12 | 3.0 (3) |
N8—Co1—N7—C11 | −5.2 (2) | C3—C9—C11—N7 | −1.5 (5) |
N6ii—Co1—N7—C11 | 167.6 (2) | C4—C9—C11—N7 | 178.3 (3) |
N1—Co1—N7—C11 | −100.7 (2) | C3—C9—C11—C12 | 178.1 (3) |
N4—Co1—N7—C11 | 78.4 (2) | C4—C9—C11—C12 | −2.1 (5) |
N1i—Co1—N8—C8 | −10.2 (3) | C8—N8—C12—C10 | 0.0 (4) |
N6ii—Co1—N8—C8 | 144.2 (5) | Co1—N8—C12—C10 | 173.9 (2) |
N7—Co1—N8—C8 | 179.9 (3) | C8—N8—C12—C11 | 178.6 (3) |
N1—Co1—N8—C8 | −90.3 (3) | Co1—N8—C12—C11 | −7.6 (3) |
N4—Co1—N8—C8 | 83.4 (3) | C6—C10—C12—N8 | −1.1 (5) |
N1i—Co1—N8—C12 | 176.8 (2) | C5—C10—C12—N8 | 178.5 (3) |
N6ii—Co1—N8—C12 | −28.8 (6) | C6—C10—C12—C11 | −179.6 (3) |
N7—Co1—N8—C12 | 6.8 (2) | C5—C10—C12—C11 | 0.0 (5) |
N1—Co1—N8—C12 | 96.6 (2) | N7—C11—C12—N8 | 3.1 (4) |
N4—Co1—N8—C12 | −89.6 (2) | C9—C11—C12—N8 | −176.5 (3) |
C11—N7—C1—C2 | −0.3 (5) | N7—C11—C12—C10 | −178.3 (3) |
Co1—N7—C1—C2 | 178.6 (2) | C9—C11—C12—C10 | 2.1 (5) |
N7—C1—C2—C3 | −1.2 (5) |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+3, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Co(N3)2(C12H8N2)] |
Mr | 323.19 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.0018 (14), 10.049 (2), 10.491 (2) |
α, β, γ (°) | 109.83 (3), 103.63 (3), 105.78 (3) |
V (Å3) | 622.8 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.38 |
Crystal size (mm) | 0.2 × 0.18 × 0.18 |
Data collection | |
Diffractometer | Rigaku SCXmini diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.720, 1 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6534, 2822, 2087 |
Rint | 0.053 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.101, 1.07 |
No. of reflections | 2822 |
No. of parameters | 190 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.42 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).
Co1—N1i | 2.113 (3) | Co1—N6ii | 2.144 (3) |
Co1—N1 | 2.175 (3) | Co1—N7 | 2.141 (3) |
Co1—N4 | 2.202 (3) | Co1—N8 | 2.141 (3) |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+3, −y+2, −z+1. |
Acknowledgements
The authors acknowledge financial support from Tianjin Municipal Education Commission (grant No. 20100502).
References
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Li, L.-C., Liao, D.-Z., Jiang, Z.-H. & Yan, S.-P. (2000). Polyhedron, 19 1575–1578. CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Americas Corporation, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhao, J.-P., Hu, B.-W., Sanudo, E. C., Yang, Q., Zeng, Y.-F. & Bu, X.-H. (2009). Inorg. Chem. 48 2482–2489. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Some metal-azido complexes with unique structural features have been reported in the past (Zhao et al., 2009). Co-ligands are often encountered in metal azido complex, e.g. the 1,10-phenanthroline ligand which are used frequently in assembling metal azido complexes. One 1D nickel-azido complex with 1,10-phenanthroline as co-ligand was reported in 2000 (Li et al., 2000). However, its isomorphic CoII compound was not reported until this work. That may be due to the fact that CoII cations are easy oxidated to CoIII with 1,10-phenanthroline as co-ligand. In the title complex the CoII ion is coordinated by one chelating 1,10-phenanthroline and four azido anions forming a distorted CoN6 octahedral environment (Fig. 1). The azido anions take two different coordinated types, in which one bridges two CoII ions in µ1,1 mode while the other one bridges two CoII ions in µ1,3 mode. The two µ1,1 azido anions link two CoII ions forming a binuclear dimer whereas the dimers linked by the two µ1,3 azido anions yield a 1D chain of bunuclear CoII complexes (Fig. 2). π–π stacking of the phenanthroline aromatic rings between adjacent chains assists in the forming of a 3D supermolecular structure (Fig. 3). The smallest centroid to centroid distances between the aromatic rings of phenanthroline aromatic rings between adjacent chains are 3.589 (2) Å and 3.605 (2) Å, respectively. A weak CH···N interaction is present between the aromatic H5 proton and the terminal N3 azide nitrogen (2.54 Å), reinforcing slightly the packing of adjacent chains.