inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Didysprosium hepta­nickel

aDepartment of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla & Mefodiya street 6, 79005 Lviv, Ukraine, and b344 Spedding Hall, Ames Laboratory, Ames, IA 50011-3020, USA
*Correspondence e-mail: v.levyckyy@gmail.com

(Received 13 February 2012; accepted 20 February 2012; online 24 February 2012)

The title compound, Dy2Ni7, adopts the β-Gd2Co7-type structure type. The asymmetric unit contains two Dy sites (both site symmetry 3m) and five Ni sites (site symmetries .m, .2/m and -3m, and two 3m). The four different Ni coordination polyhedra are Frank–Kasper icosa­hedra formed by five Dy and seven Ni atoms, four Dy and eight Ni, three Dy and nine Ni, and six Dy and six Ni atoms, respectively. The two different Dy coordination polyhedra are either pseudo Frank–Kasper icosa­hedra formed by two Dy and 18 Ni atoms or normal Frank–Kasper icosa­hedra formed by four Dy and 12 Ni atoms.

Related literature

For the β-Gd2Co7 structure type, see: Bertaut et al. (1965[Bertaut, E. F., Lemaire, R. & Schweizer, J. (1965). Bull. Soc. Fr. Mineral. Cristallogr. 88, 580-585.]). For previous powder diffraction studies of the title compound, see: Lemaire et al. (1967[Lemaire, R., Paccard, D. & Pauthenet, R. (1967). C. R. Acad. Sci. Ser. B, 265, 1280-1282.]); Lemaire & Paccard (1969[Lemaire, R. & Paccard, D. (1969). Bull. Soc. Fr. Mineral. Cristallogr. 92, 9-16.]). For related compounds, see: Buschow & van der Goot (1970[Buschow, K. H. J. & van der Goot, A. S. (1970). J. Less Common Met. 22, 419-428.]). For inter­growth structures, see: Parthé et al. (1985[Parthé, E., Chabot, B. A. & Censual, K. (1985). Chimia, 39, 164-174.]); Grin (1992[Grin, Yu. (1992). Modern Perspectives in Inorganic Crystal Chemistry, edited by E. Parthé, pp. 77-95. Dordrecht: Kluwer Academic Publishers.]).

Experimental

Crystal data
  • Dy2Ni7

  • Mr = 735.97

  • Trigonal, [R \overline 3m ]

  • a = 4.9460 (9) Å

  • c = 36.191 (9) Å

  • V = 766.7 (3) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 53.83 mm−1

  • T = 293 K

  • 0.14 × 0.09 × 0.06 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-RED; Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.067, Tmax = 0.135

  • 372 measured reflections

  • 253 independent reflections

  • 208 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.115

  • S = 1.07

  • 253 reflections

  • 25 parameters

  • Δρmax = 5.07 e Å−3

  • Δρmin = −2.37 e Å−3

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. In the press.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The existence of the Dy2Ni7 structure isotypic with the rhombohedral β-Gd2Co7 structure was reported by Lemaire et al. (1967) and Lemaire & Paccard (1969). The lattice parameters were determined from X-ray powder diffraction data without specifying atomic coordinates. Buschow & van der Goot (1970) prepared a series of isotypic compounds with a composition close to R2Ni7 (R = Y, La–Nd, Sm, Gd–Er) and from the X-ray powder diffraction data confirmed the lattice parameters for Dy2Ni7.

In this work we carried out a single-crystal investigation of the Dy2Ni7 inter-metallic compound. A view of the crystal structure of Dy2Ni7 is shown in Fig. 1. The structure belongs to the β-Gd2Co7 structure type (Bertaut et al., 1965) and consists of stacks of RX5 blocks corresponding to the CaCu5-type structure and R2X4 blocks corresponding to the MgCu2-type structure. The presence of the same Kagome net in the structure types of CaCu5 and the Laves phase MgCu2 allows a combination of both structural motifs along the 3-fold inversion axis giving an inter-growth structure: 2RX5 + R2X4 = 2R2X7. The Kagome net serves as the common interface in the structure (Parthé et al., 1985; Grin, 1992).

In Fig. 2 the ab projection of the unit cell and the coordination polyhedra for all atom types are shown. The coordination number for all Ni atoms is 12, but the Wyckoff site occupation is different. The coordination polyhedra are Frank–Kasper icosahedra (coordination number 12). The Ni1 atom (Wyckoff site 18h, site symmetry .m) is surrounded by 5 Dy atoms and 7 Ni atoms. The Ni2 atom (Wyckoff site 9e, site symmetry .2/m) is surrounded by 4 Dy atoms and 8 Ni atoms. The Ni3 and Ni4 atoms (both Wyckoff site 6c, site symmetry 3m) are surrounded by 3 Dy and 9 Ni atoms and by 3 Dy atoms and 9 Ni atoms respectively. The Ni5 atom (Wyckoff site 3b, site symmetry 3m) is surrounded by 6 Dy atoms and 6 Ni atoms. The coordination polyhedra for Dy1 and Dy2 atoms (both in Wyckoff site 6c, site symmetry 3m) are pseudo Frank–Kasper polyhedra (coordination number 20) and Frank–Kasper polyhedra (coordination number 16), respectively. The Dy1 atom is surrounded by 2 Dy atoms and 18 Ni atoms. The Dy2 atom is surrounded by 4 Dy atoms and 12 Ni atoms.

Related literature top

For the β-Gd2Co7 structure type, see: Bertaut et al. (1965). For previous powder diffraction studies of the title compound, see: Lemaire et al. (1967); Lemaire & Paccard (1969). For related compounds, see: Buschow & van der Goot (1970). For intergrowth structures, see: Parthé et al. (1985); Grin (1992).

Experimental top

The sample was prepared from the commercially available pure elements: sublimed bulk pieces of dysprosium metal with a claimed purity of 99.99 at.% (Alfa Aesar, Johnson Matthey) and electrolytic nickel (99.99% pure) piece (Aldrich). A mixture of the powders was compacted in stainless steel dies. The pellet was arc-melted under an argon atmosphere on a water-cooled copper hearth. The alloy button (~1 g) was turned over and remelted three times to improve homogeneity. Subsequently, the sample was annealed in evacuated silica tube under an argon atmosphere for four weeks at 1070 K. Shiny metallic gray plate-like single crystals were isolated mechanically by crushing the sample.

Refinement top

The atomic positions found from the ab initio structure solution were in good agreement with those from the β-Gd2Co7 structure type and were used as starting point for the structure refinement. The highest Fourier difference peak of 5.07 e Å-3 is at (1/3 2/3 0.0305) and 0.89 Å away from the Ni4 atom. The deepest hole (-2.37 e Å-3) is at (1/3 2/3 0.0984) and 1.49 Å away from the Ni1 atom.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-AREA (Stoe & Cie, 2009); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Perspective view of the crystal structure of Dy2Ni7. The unit cell and the blocks of RX5 and R2X4 are emphasized. Atoms are represented by their anisotropic displacement ellipsoids at the 99% probability level
[Figure 2] Fig. 2. The ab projection of the unit cell and coordination polyhedra for all types of atoms in the Dy2Ni7 structure
Didysprosium heptanickel top
Crystal data top
Dy2Ni7Dx = 9.564 Mg m3
Mr = 735.97Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3mCell parameters from 1802 reflections
Hall symbol: -R 3 2"θ = 1.6–27.2°
a = 4.9460 (9) ŵ = 53.83 mm1
c = 36.191 (9) ÅT = 293 K
V = 766.7 (3) Å3Plate-like, grey
Z = 60.14 × 0.09 × 0.06 mm
F(000) = 1968
Data collection top
Stoe IPDS II
diffractometer
253 independent reflections
Radiation source: fine-focus sealed tube208 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 26.7°, θmin = 1.7°
Absorption correction: numerical
(X-RED; Stoe & Cie, 2009)
h = 63
Tmin = 0.067, Tmax = 0.135k = 06
372 measured reflectionsl = 045
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.047Secondary atom site location: difference Fourier map
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.075P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
253 reflectionsΔρmax = 5.07 e Å3
25 parametersΔρmin = 2.37 e Å3
Crystal data top
Dy2Ni7Z = 6
Mr = 735.97Mo Kα radiation
Trigonal, R3mµ = 53.83 mm1
a = 4.9460 (9) ÅT = 293 K
c = 36.191 (9) Å0.14 × 0.09 × 0.06 mm
V = 766.7 (3) Å3
Data collection top
Stoe IPDS II
diffractometer
253 independent reflections
Absorption correction: numerical
(X-RED; Stoe & Cie, 2009)
208 reflections with I > 2σ(I)
Tmin = 0.067, Tmax = 0.135Rint = 0.027
372 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04725 parameters
wR(F2) = 0.1150 restraints
S = 1.07Δρmax = 5.07 e Å3
253 reflectionsΔρmin = 2.37 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Dy10.00000.00000.05083 (5)0.0143 (5)
Dy20.00000.00000.14764 (5)0.0152 (5)
Ni10.5005 (3)0.4995 (3)0.10972 (7)0.0124 (7)
Ni20.50000.00000.00000.0096 (8)
Ni30.00000.00000.27796 (13)0.0158 (11)
Ni40.00000.00000.38831 (12)0.0133 (10)
Ni50.00000.00000.50000.0097 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy10.0103 (6)0.0103 (6)0.0222 (9)0.0052 (3)0.0000.000
Dy20.0129 (7)0.0129 (7)0.0199 (9)0.0065 (3)0.0000.000
Ni10.0128 (10)0.0128 (10)0.0137 (11)0.0080 (11)0.0007 (5)0.0007 (5)
Ni20.0102 (12)0.0080 (18)0.0099 (14)0.0040 (9)0.0001 (6)0.0003 (12)
Ni30.0167 (16)0.0167 (16)0.014 (2)0.0083 (8)0.0000.000
Ni40.0158 (15)0.0158 (15)0.0083 (19)0.0079 (7)0.0000.000
Ni50.0102 (19)0.0102 (19)0.009 (3)0.0051 (10)0.0000.000
Geometric parameters (Å, º) top
Dy1—Ni4i2.8595 (6)Ni2—Ni2xix2.4730 (4)
Dy1—Ni4ii2.8595 (6)Ni2—Dy1xx3.0821 (11)
Dy1—Ni4iii2.8595 (6)Ni2—Dy1xxi3.0821 (11)
Dy1—Ni3iv2.8603 (6)Ni2—Dy1xxii3.0821 (11)
Dy1—Ni3v2.8603 (6)Ni3—Ni1iv2.428 (4)
Dy1—Ni3vi2.8603 (6)Ni3—Ni1xvi2.428 (4)
Dy1—Ni2vii3.0821 (11)Ni3—Ni1xv2.428 (4)
Dy1—Ni2viii3.0821 (11)Ni3—Ni2xxiii2.461 (4)
Dy1—Ni2ix3.0821 (11)Ni3—Ni2xxiv2.461 (4)
Dy1—Ni2x3.0821 (11)Ni3—Ni2xxv2.461 (4)
Dy1—Ni23.0821 (11)Ni3—Ni4xxvi2.8556 (5)
Dy1—Ni2xi3.0821 (11)Ni3—Ni4xxvii2.8556 (5)
Dy2—Ni1xii2.8283 (14)Ni3—Ni4xxviii2.8556 (5)
Dy2—Ni1xi2.8283 (14)Ni3—Dy1iv2.8603 (6)
Dy2—Ni1vii2.8283 (14)Ni3—Dy1v2.8603 (6)
Dy2—Ni12.8283 (14)Ni3—Dy1vi2.8603 (6)
Dy2—Ni1xiii2.8283 (14)Ni4—Ni1xxix2.445 (4)
Dy2—Ni1xiv2.8283 (14)Ni4—Ni1xxx2.445 (4)
Dy2—Ni5i2.9374 (7)Ni4—Ni1xxxi2.445 (4)
Dy2—Ni5ii2.9374 (7)Ni4—Ni2xxiii2.449 (3)
Dy2—Ni5iii2.9374 (7)Ni4—Ni2xxv2.449 (3)
Dy2—Ni1iv3.096 (3)Ni4—Ni2xxiv2.449 (3)
Dy2—Ni1xv3.096 (3)Ni4—Ni3xxvi2.8556 (5)
Dy2—Ni1xvi3.096 (3)Ni4—Ni3xxvii2.8556 (5)
Ni1—Ni3iv2.428 (4)Ni4—Ni3xxviii2.8556 (5)
Ni1—Ni4i2.445 (4)Ni4—Dy1xxix2.8595 (6)
Ni1—Ni1x2.465 (5)Ni4—Dy1xxxii2.8595 (6)
Ni1—Ni1xiv2.465 (5)Ni4—Dy1xxiv2.8595 (6)
Ni1—Ni1xiii2.481 (5)Ni5—Ni1xxvi2.510 (3)
Ni1—Ni1xvii2.481 (5)Ni5—Ni1xxix2.510 (3)
Ni1—Ni5i2.510 (3)Ni5—Ni1xxxiii2.510 (3)
Ni1—Dy2xviii2.8283 (14)Ni5—Ni1xxxi2.510 (3)
Ni1—Dy2iv3.096 (3)Ni5—Ni1xxxiv2.510 (3)
Ni1—Dy1xviii3.265 (2)Ni5—Ni1xxx2.510 (3)
Ni2—Ni4iv2.449 (3)Ni5—Dy2xxvi2.9374 (7)
Ni2—Ni4iii2.449 (3)Ni5—Dy2xxix2.9374 (7)
Ni2—Ni3iv2.461 (4)Ni5—Dy2xxvii2.9374 (7)
Ni2—Ni3iii2.461 (4)Ni5—Dy2xxxii2.9374 (7)
Ni2—Ni2xiv2.4730 (5)Ni5—Dy2xxviii2.9374 (7)
Ni2—Ni2viii2.4730 (5)Ni5—Dy2xxiv2.9374 (7)
Ni2—Ni2x2.4730 (5)
Ni4i—Dy1—Ni4ii119.729 (16)Ni2viii—Ni2—Dy1xx113.652 (8)
Ni4i—Dy1—Ni4iii119.727 (16)Ni2x—Ni2—Dy1xx113.652 (8)
Ni4ii—Dy1—Ni4iii119.727 (16)Ni2xix—Ni2—Dy1xx66.348 (8)
Ni4i—Dy1—Ni3iv59.900 (4)Ni4iv—Ni2—Dy1xxi61.00 (3)
Ni4ii—Dy1—Ni3iv173.70 (14)Ni4iii—Ni2—Dy1xxi119.00 (3)
Ni4iii—Dy1—Ni3iv59.901 (4)Ni3iv—Ni2—Dy1xxi119.08 (3)
Ni4i—Dy1—Ni3v173.70 (14)Ni3iii—Ni2—Dy1xxi60.92 (3)
Ni4ii—Dy1—Ni3v59.900 (4)Ni2xiv—Ni2—Dy1xxi113.652 (8)
Ni4iii—Dy1—Ni3v59.901 (4)Ni2viii—Ni2—Dy1xxi66.348 (8)
Ni3iv—Dy1—Ni3v119.67 (2)Ni2x—Ni2—Dy1xxi66.348 (8)
Ni4i—Dy1—Ni3vi59.901 (4)Ni2xix—Ni2—Dy1xxi113.652 (8)
Ni4ii—Dy1—Ni3vi59.901 (4)Dy1xx—Ni2—Dy1xxi180.00 (5)
Ni4iii—Dy1—Ni3vi173.70 (14)Ni4iv—Ni2—Dy1119.00 (3)
Ni3iv—Dy1—Ni3vi119.67 (2)Ni4iii—Ni2—Dy161.00 (3)
Ni3v—Dy1—Ni3vi119.67 (2)Ni3iv—Ni2—Dy160.92 (3)
Ni4i—Dy1—Ni2vii136.49 (8)Ni3iii—Ni2—Dy1119.08 (3)
Ni4ii—Dy1—Ni2vii48.50 (7)Ni2xiv—Ni2—Dy1113.652 (8)
Ni4iii—Dy1—Ni2vii91.79 (5)Ni2viii—Ni2—Dy166.348 (8)
Ni3iv—Dy1—Ni2vii136.72 (9)Ni2x—Ni2—Dy166.348 (8)
Ni3v—Dy1—Ni2vii48.75 (8)Ni2xix—Ni2—Dy1113.652 (8)
Ni3vi—Dy1—Ni2vii91.97 (6)Dy1xx—Ni2—Dy1106.71 (5)
Ni4i—Dy1—Ni2viii136.49 (8)Dy1xxi—Ni2—Dy173.29 (5)
Ni4ii—Dy1—Ni2viii91.79 (5)Ni4iv—Ni2—Dy1xxii61.00 (3)
Ni4iii—Dy1—Ni2viii48.50 (7)Ni4iii—Ni2—Dy1xxii119.00 (3)
Ni3iv—Dy1—Ni2viii91.97 (6)Ni3iv—Ni2—Dy1xxii119.08 (3)
Ni3v—Dy1—Ni2viii48.75 (8)Ni3iii—Ni2—Dy1xxii60.92 (3)
Ni3vi—Dy1—Ni2viii136.72 (9)Ni2xiv—Ni2—Dy1xxii66.348 (8)
Ni2vii—Dy1—Ni2viii47.304 (17)Ni2viii—Ni2—Dy1xxii113.652 (8)
Ni4i—Dy1—Ni2ix91.79 (5)Ni2x—Ni2—Dy1xxii113.652 (8)
Ni4ii—Dy1—Ni2ix48.50 (7)Ni2xix—Ni2—Dy1xxii66.348 (8)
Ni4iii—Dy1—Ni2ix136.49 (8)Dy1xx—Ni2—Dy1xxii73.29 (5)
Ni3iv—Dy1—Ni2ix136.72 (9)Dy1xxi—Ni2—Dy1xxii106.71 (5)
Ni3v—Dy1—Ni2ix91.97 (6)Dy1—Ni2—Dy1xxii180.00 (5)
Ni3vi—Dy1—Ni2ix48.75 (8)Ni1iv—Ni3—Ni1xvi61.02 (15)
Ni2vii—Dy1—Ni2ix47.304 (17)Ni1iv—Ni3—Ni1xv61.02 (15)
Ni2viii—Dy1—Ni2ix88.03 (4)Ni1xvi—Ni3—Ni1xv61.02 (15)
Ni4i—Dy1—Ni2x48.50 (7)Ni1iv—Ni3—Ni2xxiii108.64 (7)
Ni4ii—Dy1—Ni2x136.49 (8)Ni1xvi—Ni3—Ni2xxiii146.09 (3)
Ni4iii—Dy1—Ni2x91.79 (5)Ni1xv—Ni3—Ni2xxiii146.09 (3)
Ni3iv—Dy1—Ni2x48.75 (8)Ni1iv—Ni3—Ni2xxiv146.09 (3)
Ni3v—Dy1—Ni2x136.72 (9)Ni1xvi—Ni3—Ni2xxiv146.09 (3)
Ni3vi—Dy1—Ni2x91.97 (6)Ni1xv—Ni3—Ni2xxiv108.64 (7)
Ni2vii—Dy1—Ni2x106.71 (5)Ni2xxiii—Ni3—Ni2xxiv60.33 (11)
Ni2viii—Dy1—Ni2x88.03 (4)Ni1iv—Ni3—Ni2xxv146.09 (3)
Ni2ix—Dy1—Ni2x88.03 (4)Ni1xvi—Ni3—Ni2xxv108.64 (7)
Ni4i—Dy1—Ni291.79 (5)Ni1xv—Ni3—Ni2xxv146.09 (3)
Ni4ii—Dy1—Ni2136.49 (8)Ni2xxiii—Ni3—Ni2xxv60.33 (11)
Ni4iii—Dy1—Ni248.50 (7)Ni2xxiv—Ni3—Ni2xxv60.33 (11)
Ni3iv—Dy1—Ni248.75 (8)Ni1iv—Ni3—Ni4xxvi107.29 (14)
Ni3v—Dy1—Ni291.97 (6)Ni1xvi—Ni3—Ni4xxvi107.29 (14)
Ni3vi—Dy1—Ni2136.72 (9)Ni1xv—Ni3—Ni4xxvi54.40 (11)
Ni2vii—Dy1—Ni288.03 (4)Ni2xxiii—Ni3—Ni4xxvi106.62 (14)
Ni2viii—Dy1—Ni247.304 (17)Ni2xxiv—Ni3—Ni4xxvi54.24 (9)
Ni2ix—Dy1—Ni2106.71 (5)Ni2xxv—Ni3—Ni4xxvi106.62 (14)
Ni2x—Dy1—Ni247.304 (17)Ni1iv—Ni3—Ni4xxvii107.29 (14)
Ni4i—Dy1—Ni2xi48.50 (7)Ni1xvi—Ni3—Ni4xxvii54.40 (11)
Ni4ii—Dy1—Ni2xi91.79 (5)Ni1xv—Ni3—Ni4xxvii107.29 (14)
Ni4iii—Dy1—Ni2xi136.49 (8)Ni2xxiii—Ni3—Ni4xxvii106.62 (14)
Ni3iv—Dy1—Ni2xi91.97 (6)Ni2xxiv—Ni3—Ni4xxvii106.62 (14)
Ni3v—Dy1—Ni2xi136.72 (9)Ni2xxv—Ni3—Ni4xxvii54.24 (9)
Ni3vi—Dy1—Ni2xi48.75 (8)Ni4xxvi—Ni3—Ni4xxvii119.998 (3)
Ni2vii—Dy1—Ni2xi88.03 (4)Ni1iv—Ni3—Ni4xxviii54.40 (11)
Ni2viii—Dy1—Ni2xi106.71 (5)Ni1xvi—Ni3—Ni4xxviii107.29 (14)
Ni2ix—Dy1—Ni2xi47.304 (17)Ni1xv—Ni3—Ni4xxviii107.29 (14)
Ni2x—Dy1—Ni2xi47.304 (17)Ni2xxiii—Ni3—Ni4xxviii54.24 (9)
Ni2—Dy1—Ni2xi88.03 (4)Ni2xxiv—Ni3—Ni4xxviii106.62 (14)
Ni1xii—Dy2—Ni1xi52.03 (11)Ni2xxv—Ni3—Ni4xxviii106.62 (14)
Ni1xii—Dy2—Ni1vii51.67 (11)Ni4xxvi—Ni3—Ni4xxviii119.997 (3)
Ni1xi—Dy2—Ni1vii98.44 (6)Ni4xxvii—Ni3—Ni4xxviii119.997 (3)
Ni1xii—Dy2—Ni1121.94 (10)Ni1iv—Ni3—Dy1iv75.76 (7)
Ni1xi—Dy2—Ni198.44 (6)Ni1xvi—Ni3—Dy1iv129.19 (18)
Ni1vii—Dy2—Ni198.44 (6)Ni1xv—Ni3—Dy1iv75.76 (7)
Ni1xii—Dy2—Ni1xiii98.44 (6)Ni2xxiii—Ni3—Dy1iv70.34 (6)
Ni1xi—Dy2—Ni1xiii51.67 (11)Ni2xxiv—Ni3—Dy1iv70.34 (6)
Ni1vii—Dy2—Ni1xiii121.94 (10)Ni2xxv—Ni3—Dy1iv122.17 (17)
Ni1—Dy2—Ni1xiii52.03 (11)Ni4xxvi—Ni3—Dy1iv60.035 (7)
Ni1xii—Dy2—Ni1xiv98.44 (6)Ni4xxvii—Ni3—Dy1iv176.4 (2)
Ni1xi—Dy2—Ni1xiv121.94 (10)Ni4xxviii—Ni3—Dy1iv60.036 (7)
Ni1vii—Dy2—Ni1xiv52.03 (11)Ni1iv—Ni3—Dy1v75.76 (7)
Ni1—Dy2—Ni1xiv51.67 (11)Ni1xvi—Ni3—Dy1v75.76 (7)
Ni1xiii—Dy2—Ni1xiv98.44 (6)Ni1xv—Ni3—Dy1v129.19 (18)
Ni1xii—Dy2—Ni5i148.28 (6)Ni2xxiii—Ni3—Dy1v70.34 (6)
Ni1xi—Dy2—Ni5i96.44 (6)Ni2xxiv—Ni3—Dy1v122.17 (17)
Ni1vii—Dy2—Ni5i148.28 (6)Ni2xxv—Ni3—Dy1v70.34 (6)
Ni1—Dy2—Ni5i51.56 (5)Ni4xxvi—Ni3—Dy1v176.4 (2)
Ni1xiii—Dy2—Ni5i51.56 (5)Ni4xxvii—Ni3—Dy1v60.035 (7)
Ni1xiv—Dy2—Ni5i96.44 (6)Ni4xxviii—Ni3—Dy1v60.036 (7)
Ni1xii—Dy2—Ni5ii51.56 (5)Dy1iv—Ni3—Dy1v119.67 (2)
Ni1xi—Dy2—Ni5ii51.56 (5)Ni1iv—Ni3—Dy1vi129.19 (18)
Ni1vii—Dy2—Ni5ii96.44 (6)Ni1xvi—Ni3—Dy1vi75.76 (7)
Ni1—Dy2—Ni5ii148.28 (6)Ni1xv—Ni3—Dy1vi75.76 (7)
Ni1xiii—Dy2—Ni5ii96.44 (6)Ni2xxiii—Ni3—Dy1vi122.17 (17)
Ni1xiv—Dy2—Ni5ii148.28 (6)Ni2xxiv—Ni3—Dy1vi70.34 (6)
Ni5i—Dy2—Ni5ii114.68 (3)Ni2xxv—Ni3—Dy1vi70.34 (6)
Ni1xii—Dy2—Ni5iii96.44 (6)Ni4xxvi—Ni3—Dy1vi60.036 (7)
Ni1xi—Dy2—Ni5iii148.28 (6)Ni4xxvii—Ni3—Dy1vi60.036 (7)
Ni1vii—Dy2—Ni5iii51.56 (5)Ni4xxviii—Ni3—Dy1vi176.4 (2)
Ni1—Dy2—Ni5iii96.44 (6)Dy1iv—Ni3—Dy1vi119.67 (2)
Ni1xiii—Dy2—Ni5iii148.28 (6)Dy1v—Ni3—Dy1vi119.67 (2)
Ni1xiv—Dy2—Ni5iii51.56 (5)Ni1xxix—Ni4—Ni1xxx60.97 (14)
Ni5i—Dy2—Ni5iii114.68 (3)Ni1xxix—Ni4—Ni1xxxi60.97 (14)
Ni5ii—Dy2—Ni5iii114.68 (3)Ni1xxx—Ni4—Ni1xxxi60.97 (14)
Ni1xii—Dy2—Ni1iv115.48 (5)Ni1xxix—Ni4—Ni2xxiii108.47 (6)
Ni1xi—Dy2—Ni1iv141.21 (5)Ni1xxx—Ni4—Ni2xxiii146.02 (3)
Ni1vii—Dy2—Ni1iv94.77 (8)Ni1xxxi—Ni4—Ni2xxiii146.02 (3)
Ni1—Dy2—Ni1iv115.48 (5)Ni1xxix—Ni4—Ni2xxv146.02 (3)
Ni1xiii—Dy2—Ni1iv141.21 (5)Ni1xxx—Ni4—Ni2xxv146.02 (3)
Ni1xiv—Dy2—Ni1iv94.77 (8)Ni1xxxi—Ni4—Ni2xxv108.47 (7)
Ni5i—Dy2—Ni1iv90.88 (5)Ni2xxiii—Ni4—Ni2xxv60.66 (9)
Ni5ii—Dy2—Ni1iv90.88 (5)Ni1xxix—Ni4—Ni2xxiv146.02 (3)
Ni5iii—Dy2—Ni1iv49.08 (5)Ni1xxx—Ni4—Ni2xxiv108.47 (7)
Ni1xii—Dy2—Ni1xv141.21 (5)Ni1xxxi—Ni4—Ni2xxiv146.02 (3)
Ni1xi—Dy2—Ni1xv115.48 (5)Ni2xxiii—Ni4—Ni2xxiv60.66 (9)
Ni1vii—Dy2—Ni1xv141.21 (5)Ni2xxv—Ni4—Ni2xxiv60.66 (9)
Ni1—Dy2—Ni1xv94.77 (8)Ni1xxix—Ni4—Ni3xxvi106.79 (14)
Ni1xiii—Dy2—Ni1xv94.77 (8)Ni1xxx—Ni4—Ni3xxvi53.85 (12)
Ni1xiv—Dy2—Ni1xv115.48 (5)Ni1xxxi—Ni4—Ni3xxvi106.79 (14)
Ni5i—Dy2—Ni1xv49.08 (5)Ni2xxiii—Ni4—Ni3xxvi107.19 (13)
Ni5ii—Dy2—Ni1xv90.88 (5)Ni2xxv—Ni4—Ni3xxvi107.20 (13)
Ni5iii—Dy2—Ni1xv90.88 (5)Ni2xxiv—Ni4—Ni3xxvi54.62 (10)
Ni1iv—Dy2—Ni1xv46.92 (9)Ni1xxix—Ni4—Ni3xxvii106.79 (14)
Ni1xii—Dy2—Ni1xvi94.77 (8)Ni1xxx—Ni4—Ni3xxvii106.79 (14)
Ni1xi—Dy2—Ni1xvi94.77 (8)Ni1xxxi—Ni4—Ni3xxvii53.85 (12)
Ni1vii—Dy2—Ni1xvi115.48 (5)Ni2xxiii—Ni4—Ni3xxvii107.19 (13)
Ni1—Dy2—Ni1xvi141.21 (5)Ni2xxv—Ni4—Ni3xxvii54.62 (10)
Ni1xiii—Dy2—Ni1xvi115.48 (5)Ni2xxiv—Ni4—Ni3xxvii107.20 (13)
Ni1xiv—Dy2—Ni1xvi141.21 (5)Ni3xxvi—Ni4—Ni3xxvii119.998 (3)
Ni5i—Dy2—Ni1xvi90.88 (5)Ni1xxix—Ni4—Ni3xxviii53.85 (12)
Ni5ii—Dy2—Ni1xvi49.08 (5)Ni1xxx—Ni4—Ni3xxviii106.79 (14)
Ni5iii—Dy2—Ni1xvi90.88 (5)Ni1xxxi—Ni4—Ni3xxviii106.79 (14)
Ni1iv—Dy2—Ni1xvi46.92 (9)Ni2xxiii—Ni4—Ni3xxviii54.62 (10)
Ni1xv—Dy2—Ni1xvi46.92 (9)Ni2xxv—Ni4—Ni3xxviii107.20 (13)
Ni3iv—Ni1—Ni4i71.75 (10)Ni2xxiv—Ni4—Ni3xxviii107.20 (13)
Ni3iv—Ni1—Ni1x59.49 (7)Ni3xxvi—Ni4—Ni3xxviii119.997 (3)
Ni4i—Ni1—Ni1x120.49 (7)Ni3xxvii—Ni4—Ni3xxviii119.997 (3)
Ni3iv—Ni1—Ni1xiv59.49 (7)Ni1xxix—Ni4—Dy1xxix75.52 (6)
Ni4i—Ni1—Ni1xiv120.49 (7)Ni1xxx—Ni4—Dy1xxix128.87 (16)
Ni1x—Ni1—Ni1xiv60.0Ni1xxxi—Ni4—Dy1xxix75.52 (6)
Ni3iv—Ni1—Ni1xiii120.51 (7)Ni2xxiii—Ni4—Dy1xxix70.51 (6)
Ni4i—Ni1—Ni1xiii59.51 (7)Ni2xxv—Ni4—Dy1xxix70.51 (6)
Ni1x—Ni1—Ni1xiii180.00 (13)Ni2xxiv—Ni4—Dy1xxix122.66 (14)
Ni1xiv—Ni1—Ni1xiii120.000 (1)Ni3xxvi—Ni4—Dy1xxix177.3 (2)
Ni3iv—Ni1—Ni1xvii120.51 (7)Ni3xxvii—Ni4—Dy1xxix60.063 (7)
Ni4i—Ni1—Ni1xvii59.51 (7)Ni3xxviii—Ni4—Dy1xxix60.064 (7)
Ni1x—Ni1—Ni1xvii120.000 (1)Ni1xxix—Ni4—Dy1xxxii75.52 (6)
Ni1xiv—Ni1—Ni1xvii180.00 (13)Ni1xxx—Ni4—Dy1xxxii75.52 (6)
Ni1xiii—Ni1—Ni1xvii60.000 (1)Ni1xxxi—Ni4—Dy1xxxii128.87 (16)
Ni3iv—Ni1—Ni5i178.91 (14)Ni2xxiii—Ni4—Dy1xxxii70.51 (6)
Ni4i—Ni1—Ni5i109.34 (12)Ni2xxv—Ni4—Dy1xxxii122.66 (14)
Ni1x—Ni1—Ni5i119.62 (5)Ni2xxiv—Ni4—Dy1xxxii70.51 (6)
Ni1xiv—Ni1—Ni5i119.62 (5)Ni3xxvi—Ni4—Dy1xxxii60.063 (7)
Ni1xiii—Ni1—Ni5i60.38 (5)Ni3xxvii—Ni4—Dy1xxxii177.3 (2)
Ni1xvii—Ni1—Ni5i60.38 (5)Ni3xxviii—Ni4—Dy1xxxii60.064 (7)
Ni3iv—Ni1—Dy2xviii113.21 (6)Dy1xxix—Ni4—Dy1xxxii119.728 (17)
Ni4i—Ni1—Dy2xviii113.10 (7)Ni1xxix—Ni4—Dy1xxiv128.86 (16)
Ni1x—Ni1—Dy2xviii64.16 (6)Ni1xxx—Ni4—Dy1xxiv75.52 (6)
Ni1xiv—Ni1—Dy2xviii116.01 (6)Ni1xxxi—Ni4—Dy1xxiv75.52 (6)
Ni1xiii—Ni1—Dy2xviii115.84 (5)Ni2xxiii—Ni4—Dy1xxiv122.66 (14)
Ni1xvii—Ni1—Dy2xviii63.99 (6)Ni2xxv—Ni4—Dy1xxiv70.50 (6)
Ni5i—Ni1—Dy2xviii66.46 (5)Ni2xxiv—Ni4—Dy1xxiv70.50 (6)
Ni3iv—Ni1—Dy2113.21 (6)Ni3xxvi—Ni4—Dy1xxiv60.064 (7)
Ni4i—Ni1—Dy2113.10 (7)Ni3xxvii—Ni4—Dy1xxiv60.064 (7)
Ni1x—Ni1—Dy2116.01 (6)Ni3xxviii—Ni4—Dy1xxiv177.3 (2)
Ni1xiv—Ni1—Dy264.16 (6)Dy1xxix—Ni4—Dy1xxiv119.727 (17)
Ni1xiii—Ni1—Dy263.99 (6)Dy1xxxii—Ni4—Dy1xxiv119.727 (17)
Ni1xvii—Ni1—Dy2115.84 (5)Ni1xxvi—Ni5—Ni1xxix180.00 (6)
Ni5i—Ni1—Dy266.46 (5)Ni1xxvi—Ni5—Ni1xxxiii59.24 (10)
Dy2xviii—Ni1—Dy2121.94 (10)Ni1xxix—Ni5—Ni1xxxiii120.76 (10)
Ni3iv—Ni1—Dy2iv116.74 (12)Ni1xxvi—Ni5—Ni1xxxi120.76 (10)
Ni4i—Ni1—Dy2iv171.51 (13)Ni1xxix—Ni5—Ni1xxxi59.24 (10)
Ni1x—Ni1—Dy2iv66.54 (4)Ni1xxxiii—Ni5—Ni1xxxi180.000 (1)
Ni1xiv—Ni1—Dy2iv66.54 (4)Ni1xxvi—Ni5—Ni1xxxiv59.24 (10)
Ni1xiii—Ni1—Dy2iv113.46 (4)Ni1xxix—Ni5—Ni1xxxiv120.76 (10)
Ni1xvii—Ni1—Dy2iv113.46 (4)Ni1xxxiii—Ni5—Ni1xxxiv59.24 (10)
Ni5i—Ni1—Dy2iv62.17 (6)Ni1xxxi—Ni5—Ni1xxxiv120.76 (11)
Dy2xviii—Ni1—Dy2iv64.52 (5)Ni1xxvi—Ni5—Ni1xxx120.76 (10)
Dy2—Ni1—Dy2iv64.52 (5)Ni1xxix—Ni5—Ni1xxx59.24 (10)
Ni3iv—Ni1—Dy158.12 (5)Ni1xxxiii—Ni5—Ni1xxx120.76 (11)
Ni4i—Ni1—Dy158.00 (5)Ni1xxxi—Ni5—Ni1xxx59.24 (10)
Ni1x—Ni1—Dy1112.33 (5)Ni1xxxiv—Ni5—Ni1xxx180.000 (1)
Ni1xiv—Ni1—Dy167.82 (5)Ni1xxvi—Ni5—Dy2xxvi61.98 (3)
Ni1xiii—Ni1—Dy167.67 (5)Ni1xxix—Ni5—Dy2xxvi118.02 (3)
Ni1xvii—Ni1—Dy1112.18 (5)Ni1xxxiii—Ni5—Dy2xxvi61.98 (3)
Ni5i—Ni1—Dy1122.36 (6)Ni1xxxi—Ni5—Dy2xxvi118.02 (3)
Dy2xviii—Ni1—Dy1168.27 (8)Ni1xxxiv—Ni5—Dy2xxvi111.25 (7)
Dy2—Ni1—Dy169.79 (4)Ni1xxx—Ni5—Dy2xxvi68.75 (7)
Dy2iv—Ni1—Dy1125.48 (5)Ni1xxvi—Ni5—Dy2xxix118.02 (3)
Ni3iv—Ni1—Dy1xviii58.12 (5)Ni1xxix—Ni5—Dy2xxix61.98 (3)
Ni4i—Ni1—Dy1xviii58.00 (5)Ni1xxxiii—Ni5—Dy2xxix118.03 (3)
Ni1x—Ni1—Dy1xviii67.82 (5)Ni1xxxi—Ni5—Dy2xxix61.97 (3)
Ni1xiv—Ni1—Dy1xviii112.33 (5)Ni1xxxiv—Ni5—Dy2xxix68.75 (7)
Ni1xiii—Ni1—Dy1xviii112.18 (5)Ni1xxx—Ni5—Dy2xxix111.25 (7)
Ni1xvii—Ni1—Dy1xviii67.67 (5)Dy2xxvi—Ni5—Dy2xxix180.0
Ni5i—Ni1—Dy1xviii122.36 (6)Ni1xxvi—Ni5—Dy2xxvii61.98 (3)
Dy2xviii—Ni1—Dy1xviii69.79 (4)Ni1xxix—Ni5—Dy2xxvii118.02 (3)
Dy2—Ni1—Dy1xviii168.27 (8)Ni1xxxiii—Ni5—Dy2xxvii111.25 (7)
Dy2iv—Ni1—Dy1xviii125.48 (5)Ni1xxxi—Ni5—Dy2xxvii68.75 (7)
Dy1—Ni1—Dy1xviii98.49 (8)Ni1xxxiv—Ni5—Dy2xxvii61.98 (3)
Ni4iv—Ni2—Ni4iii180.00 (11)Ni1xxx—Ni5—Dy2xxvii118.02 (3)
Ni4iv—Ni2—Ni3iv108.86 (8)Dy2xxvi—Ni5—Dy2xxvii114.68 (3)
Ni4iii—Ni2—Ni3iv71.14 (8)Dy2xxix—Ni5—Dy2xxvii65.32 (3)
Ni4iv—Ni2—Ni3iii71.14 (8)Ni1xxvi—Ni5—Dy2xxxii118.02 (3)
Ni4iii—Ni2—Ni3iii108.86 (8)Ni1xxix—Ni5—Dy2xxxii61.98 (3)
Ni3iv—Ni2—Ni3iii180.00 (13)Ni1xxxiii—Ni5—Dy2xxxii68.75 (7)
Ni4iv—Ni2—Ni2xiv59.67 (5)Ni1xxxi—Ni5—Dy2xxxii111.25 (7)
Ni4iii—Ni2—Ni2xiv120.33 (5)Ni1xxxiv—Ni5—Dy2xxxii118.03 (3)
Ni3iv—Ni2—Ni2xiv59.83 (5)Ni1xxx—Ni5—Dy2xxxii61.97 (3)
Ni3iii—Ni2—Ni2xiv120.17 (5)Dy2xxvi—Ni5—Dy2xxxii65.32 (3)
Ni4iv—Ni2—Ni2viii120.33 (5)Dy2xxix—Ni5—Dy2xxxii114.68 (3)
Ni4iii—Ni2—Ni2viii59.67 (5)Dy2xxvii—Ni5—Dy2xxxii180.00 (7)
Ni3iv—Ni2—Ni2viii120.17 (5)Ni1xxvi—Ni5—Dy2xxviii111.24 (7)
Ni3iii—Ni2—Ni2viii59.83 (5)Ni1xxix—Ni5—Dy2xxviii68.76 (7)
Ni2xiv—Ni2—Ni2viii180.0Ni1xxxiii—Ni5—Dy2xxviii61.97 (3)
Ni4iv—Ni2—Ni2x59.67 (5)Ni1xxxi—Ni5—Dy2xxviii118.03 (3)
Ni4iii—Ni2—Ni2x120.33 (5)Ni1xxxiv—Ni5—Dy2xxviii61.97 (3)
Ni3iv—Ni2—Ni2x59.83 (5)Ni1xxx—Ni5—Dy2xxviii118.03 (3)
Ni3iii—Ni2—Ni2x120.17 (5)Dy2xxvi—Ni5—Dy2xxviii114.68 (3)
Ni2xiv—Ni2—Ni2x60.0Dy2xxix—Ni5—Dy2xxviii65.32 (3)
Ni2viii—Ni2—Ni2x120.0Dy2xxvii—Ni5—Dy2xxviii114.68 (3)
Ni4iv—Ni2—Ni2xix120.33 (5)Dy2xxxii—Ni5—Dy2xxviii65.32 (3)
Ni4iii—Ni2—Ni2xix59.67 (5)Ni1xxvi—Ni5—Dy2xxiv68.76 (7)
Ni3iv—Ni2—Ni2xix120.17 (5)Ni1xxix—Ni5—Dy2xxiv111.24 (7)
Ni3iii—Ni2—Ni2xix59.83 (5)Ni1xxxiii—Ni5—Dy2xxiv118.03 (3)
Ni2xiv—Ni2—Ni2xix120.0Ni1xxxi—Ni5—Dy2xxiv61.97 (3)
Ni2viii—Ni2—Ni2xix60.0Ni1xxxiv—Ni5—Dy2xxiv118.03 (3)
Ni2x—Ni2—Ni2xix180.0Ni1xxx—Ni5—Dy2xxiv61.97 (3)
Ni4iv—Ni2—Dy1xx119.00 (3)Dy2xxvi—Ni5—Dy2xxiv65.32 (3)
Ni4iii—Ni2—Dy1xx61.00 (3)Dy2xxix—Ni5—Dy2xxiv114.68 (3)
Ni3iv—Ni2—Dy1xx60.92 (3)Dy2xxvii—Ni5—Dy2xxiv65.32 (3)
Ni3iii—Ni2—Dy1xx119.08 (3)Dy2xxxii—Ni5—Dy2xxiv114.68 (3)
Ni2xiv—Ni2—Dy1xx66.348 (8)Dy2xxviii—Ni5—Dy2xxiv180.00 (7)
Symmetry codes: (i) x+1/3, y+2/3, z1/3; (ii) x2/3, y1/3, z1/3; (iii) x+1/3, y1/3, z1/3; (iv) x+2/3, y+1/3, z+1/3; (v) x1/3, y2/3, z+1/3; (vi) x1/3, y+1/3, z+1/3; (vii) x+y, x, z; (viii) y, xy1, z; (ix) x1, y, z; (x) x+y+1, x+1, z; (xi) y, xy, z; (xii) x1, y1, z; (xiii) x+y, x+1, z; (xiv) y+1, xy, z; (xv) y1/3, x+y+1/3, z+1/3; (xvi) xy1/3, x2/3, z+1/3; (xvii) y+1, xy+1, z; (xviii) x+1, y+1, z; (xix) x+y+1, x, z; (xx) x+1, y, z; (xxi) x, y, z; (xxii) x+1, y, z; (xxiii) x+y+2/3, x+1/3, z+1/3; (xxiv) x1/3, y+1/3, z+1/3; (xxv) y1/3, xy2/3, z+1/3; (xxvi) x+1/3, y+2/3, z+2/3; (xxvii) x2/3, y1/3, z+2/3; (xxviii) x+1/3, y1/3, z+2/3; (xxix) x1/3, y2/3, z+1/3; (xxx) y+2/3, xy+1/3, z+1/3; (xxxi) x+y1/3, x+1/3, z+1/3; (xxxii) x+2/3, y+1/3, z+1/3; (xxxiii) xy+1/3, x1/3, z+2/3; (xxxiv) y2/3, x+y1/3, z+2/3.

Experimental details

Crystal data
Chemical formulaDy2Ni7
Mr735.97
Crystal system, space groupTrigonal, R3m
Temperature (K)293
a, c (Å)4.9460 (9), 36.191 (9)
V3)766.7 (3)
Z6
Radiation typeMo Kα
µ (mm1)53.83
Crystal size (mm)0.14 × 0.09 × 0.06
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionNumerical
(X-RED; Stoe & Cie, 2009)
Tmin, Tmax0.067, 0.135
No. of measured, independent and
observed [I > 2σ(I)] reflections
372, 253, 208
Rint0.027
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.115, 1.07
No. of reflections253
No. of parameters25
Δρmax, Δρmin (e Å3)5.07, 2.37

Computer programs: X-AREA (Stoe & Cie, 2009), SIR2011 (Burla et al., 2012), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

References

First citationBertaut, E. F., Lemaire, R. & Schweizer, J. (1965). Bull. Soc. Fr. Mineral. Cristallogr. 88, 580–585.  CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. In the press.  CrossRef IUCr Journals Google Scholar
First citationBuschow, K. H. J. & van der Goot, A. S. (1970). J. Less Common Met. 22, 419–428.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGrin, Yu. (1992). Modern Perspectives in Inorganic Crystal Chemistry, edited by E. Parthé, pp. 77–95. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationLemaire, R. & Paccard, D. (1969). Bull. Soc. Fr. Mineral. Cristallogr. 92, 9–16.  CAS Google Scholar
First citationLemaire, R., Paccard, D. & Pauthenet, R. (1967). C. R. Acad. Sci. Ser. B, 265, 1280–1282.  Google Scholar
First citationParthé, E., Chabot, B. A. & Censual, K. (1985). Chimia, 39, 164–174.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds