metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m273-m274

Bis[N-(3-amino­prop­yl)propane-1,3-di­amine-κ3N,N′,N′′]cadmium nitrate perchlorate

aFaculty of Science, Department of Chemistry, Ilam University, Ilam, Iran, bDepartment of Solid State Chemistry, Institute of Chemical Technology, Technická 5, 166 28 Prague, Czech Republic, and cInstitute of Physics AS CR, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic
*Correspondence e-mail: hamid_gafshar@yahoo.com

(Received 16 January 2012; accepted 2 February 2012; online 10 February 2012)

The title complex, [Cd(C6H17N3)2](ClO4)(NO3), was synthesized by the reaction of Cd(NO3)2·4H2O, bis­(3-amino­prop­yl)­amine and sodium perchlorate in methanol. The asymmetric unit of the title complex consists of one Cd2+ cation, two tridentate bis­(3-amino­prop­yl)amine ligands, one nitrate anion and one perchlorate anion. The Cd2+ cation is coordinated by six N atoms of the bis­(3-amino­prop­yl)amine ligands in a slightly distorted octa­hedral coordination geometry. In the crystal, mol­ecules are held together by an intricate network of N—H⋯O inter­actions. One of the two amine ligands was found to be disordered over two sets of sites, with a ratio of 0.802 (3):0.198 (3), similarly to the nitrate anion, with a ratio of 0.762 (10):0.238 (10).

Related literature

For background about the usage of this ligand for complexation, see: Boeckmann & Näther (2011a[Boeckmann, J. & Näther, C. (2011a). Acta Cryst. E67, m1025-m1026.],b[Boeckmann, J. & Näther, C. (2011b). Acta Cryst. E67, m1201-m1202.]); Choi et al. (1995[Choi, J.-H., Suh, I.-H. & Kwak, S.-H. (1995). Acta Cryst. C51, 1745-1748.]); Pajunen et al. (1996[Pajunen, A., Pajunen, S., Kivikoski, J. & Valkonen, J. (1996). Acta Cryst. C52, 1901-1903.]); Maji et al. (2003[Maji, K. T., Mostafa, G., Clemente-Juan, J., Ribas, J., Lloret, F., Okamoto, K. & Chaudhuri, N. (2003). Eur. J. Inorg. Chem. pp. 1005-1011.]). For the extinction correction, see: Becker & Coppens (1974[Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C6H17N3)2](NO3)(ClO4)

  • Mr = 536.3

  • Monoclinic, P 21 /c

  • a = 12.6030 (5) Å

  • b = 11.9403 (5) Å

  • c = 14.1977 (5) Å

  • β = 97.717 (3)°

  • V = 2117.17 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 9.86 mm−1

  • T = 120 K

  • 0.35 × 0.30 × 0.21 mm

Data collection
  • Oxford Diffraction CCD diffractometer

  • Absorption correction: analytical (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) Tmin = 0.103, Tmax = 0.286

  • 53531 measured reflections

  • 3778 independent reflections

  • 3680 reflections with I > 3σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 3σ(F2)] = 0.022

  • wR(F2) = 0.068

  • S = 1.50

  • 3778 reflections

  • 298 parameters

  • 14 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N1 2.3456 (16)
Cd1—N2 2.5084 (14)
Cd1—N3 2.3430 (19)
Cd1—N4 2.3598 (17)
Cd1—N5 2.3970 (17)
Cd1—N7 2.426 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n1⋯O5ai 0.870 (17) 2.289 (19) 3.127 (6) 161.7 (16)
N1—H1n1⋯O5bi 0.870 (17) 2.10 (2) 2.929 (10) 158.1 (16)
N1—H2n1⋯O7aii 0.870 (12) 2.278 (17) 2.986 (7) 139 (2)
N1—H2n1⋯O4bii 0.870 (12) 2.403 (14) 3.262 (9) 170 (2)
N1—H2n1⋯O7bii 0.870 (12) 2.410 (19) 3.027 (11) 128.4 (19)
N2—H1n2⋯O4ai 0.870 (17) 2.339 (18) 3.149 (4) 155.0 (18)
N2—H1n2⋯O4bi 0.870 (17) 2.28 (2) 3.116 (10) 162.4 (16)
N3—H1n3⋯O3iii 0.870 (19) 2.43 (2) 3.196 (3) 148 (2)
N3—H2n3⋯O5aiv 0.870 (9) 2.472 (13) 3.289 (8) 157 (2)
N3—H2n3⋯O7aiv 0.870 (9) 2.48 (2) 3.134 (7) 132 (2)
N3—H2n3⋯O5biv 0.870 (9) 2.426 (18) 3.215 (13) 151 (2)
N3—H2n3⋯O7biv 0.870 (9) 2.50 (2) 3.239 (13) 144 (2)
N5—H1n5⋯O4ai 0.870 (17) 2.396 (16) 3.200 (4) 154 (2)
N5—H1n5⋯O5ai 0.870 (17) 2.30 (2) 3.065 (7) 146.5 (16)
N5—H1n5⋯O5bi 0.870 (17) 2.33 (2) 3.076 (12) 144.0 (16)
N5—H2n5⋯O1v 0.870 (14) 2.263 (14) 3.122 (2) 169 (2)
N7—H1n7⋯O4aii 0.87 2.20 3.067 (4) 174.11
N7—H1n7⋯O4bii 0.87 2.45 3.313 (11) 169.55
N4—H1n4⋯O3iii 0.870 (5) 2.379 (11) 3.215 (2) 161 (2)
N4—H2n4⋯O2v 0.870 (15) 2.170 (15) 3.011 (2) 163 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2000. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the crystal structure of the title complex, see Fig. 1, the Cd2+ cation is bonded to six nitrogen atoms of two tridentate bis(3-aminopropyl)amine ligands in a slightly distorted octahedral coordination. One of the ligands was found to be disordered, assuming two differently occupied orientations (Fig. 2). Because the low occupation of one of these orientations does not allow its free refinement, its precise geometry remains unsure (for further details, see experimental section) and therefore will not be included in the following discussion.

The octahedral coordination sphere around Cd2+ contains two longer Cd–N2 and Cd–N7 bonds of 2.5084 (14) and 2.426 (2) Å as well as two shorter Cd–N3 and Cd–N1 bonds of 2.3430 (19) and 2.3456 (16) Å, respectively (Table 1). The angles around the metals atoms range from 81.40 (5)° to 103.19 (7)° and from 159.83 (5)° to 175.31 (7)°. Both the perchlorate and nitrate anions are linked to the complex cations through an intricate network of N—H···O hydrogen bonds. The hydrogen bonds involving the nitrate anion connect the molecules of the complex to slabs parallel to (100). The hydrogen bonds involving the perchlorate anion eventually connect the slabs into three-dimensional network (Table 2, Fig. 3).

Similar complexes with bis(3-aminopropyl)amine as a ligand were reported previously, e.g. by Boeckmann & Näther (2011a,b); Choi et al. (1995); Maji et al.(2003); Pajunen et al. (1996).

Related literature top

For background about the usage of this ligand for complexation, see: Boeckmann & Näther (2011a,b); Choi et al. (1995); Pajunen et al. (1996); Maji et al.(2003). For the extinction correction, see: Becker & Coppens (1974).

Experimental top

The title complex was prepared by the branch tube method: bis(3-aminopropyl)amine (0.282 ml, 2 mmol) was placed in one arm of a branched tube and Cd(NO3)2.4H2O (0.308 g, 1 mmol) and sodium perchlorate (0.122 g, 1 mmol) in the other. Methanol was then carefully added to fill both arms, the tube sealed and the ligand-containing arm immersed in a bath at 333 K, while the other was left at ambient temperature. After one week, colorless crystals were collected in the cooler arm. Then they were then filtered off, washed with acetone and diethylether, and air dried. M.p.: 583 K, yield: (78%).

Refinement top

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometries. According to common practice, H atoms bonded to C were kept in ideal positions with C–H = 0.96 Å while positions of H atoms bonded to N (except N7 and N7' – see below) were refined with distance restraint N–H= 0.87 Å (NH1, NH2). In both cases Uiso(H) was set to 1.2Ueq(C,N). Disorder of the nitrate anion was treated using a rigid body refinement. Two orientations of the disordered bis(3-aminopropyl)amine ligand (Fig. 2) were refined using split atom positions. While some atoms of both orientations coincide, the C8, N7 and C10 positions were split to C8—C8', N7—N7' and C10—C10', respectively. The sum of occupancies for each split pair was kept equal to the original full occupancy and the occupancies of all atoms belonging to a given conformer were kept equal. Positions C5, C7 and C9 were the same for both orientations but the attached hydrogen atoms positions were split because of a different geometry of neighboring atoms. These carbon atoms were formally split by placing two atoms to the same position in order to allow the refinement program using two geometry constraints for two different pairs of hydrogen atoms. Thus C5 is bonded to hydrogen atoms H1C5, H2C5, H1C5' and H2C5', and similarly for C7 and C9. The positions of the major orientation were refined without restrictions. However, the low occupancy of the minor component, 0.198 (3), did not allow a free refinement of positions C8', N7', and C10'. For these atoms we defined following distance restraints: C9–C8' = 1.517 Å, C8'–N7' = 1.482 Å, N7'–C5' = 1.482 Å, C5'–C10' = 1.517 Å and C10'–C7 = 1.517 Å, with weight 0.001 allowing only very small deviations during the refinement from the defined values. Hydrogen atoms attached to N7 and N7' were kept in ideal positions, without refinement.

The angles of the minor component of the disordered part were refined to slightly differents values compared with the major part (see Table 2). However, it remained unclear whether the difference could be taken seriously or whether this is caused by an unreliable refinement due to the low occupation. For this reason we created (using the rigid body tool in Jana2006) a structure model where both orientations were described with a common shape of the ligand refining its atomic parameters and a translation vector plus three rotations (followed by inversion, when necessary) allowing transformation of the common ligand to the position of the first and the second orientation, respectively. In this approach, both orientations have exactly the same geometry, differing only in their occupation. While the number of refined parameters decreased from 298 to 295, the R value increased by 0.8% and the occupation of the minor component decreased from 0.198 (3) to 0.109 (4). The increase of R value and decrease of the minor component occupation indicate that the conformers are really slightly different in their shape. Hence this approach was finally neglected.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 2] Fig. 2. Disorder of dpt. The chain of dpt assumes two conformations with occupations refined to 0.802 (3) and 0.198 (3), respectively. The atoms and bonds of the major part are highlighted in red. Some atoms of both conformers coincide.
[Figure 3] Fig. 3. Packing of the title structure with hydrogen bonds. Molecules of the complex are plotted in light gray, cadmium is a gray circle. Perchlorate anion and nitrate anion are highlighted in light green and blue, respectively. N—H bonds in black thick lines, N—H···O hydrogen bonds in black dashed lines.
Bis[N-(3-aminopropyl)propane-1,3-diamine- κ3N,N',N'']cadmium nitrate perchlorate top
Crystal data top
[Cd(C6H17N3)2](NO3)(ClO4)F(000) = 1104
Mr = 536.3Dx = 1.682 Mg m3
Monoclinic, P21/cMelting point: 210 K
Hall symbol: -P 2ycbCu Kα radiation, λ = 1.5418 Å
a = 12.6030 (5) ÅCell parameters from 35544 reflections
b = 11.9403 (5) Åθ = 3.1–67.0°
c = 14.1977 (5) ŵ = 9.86 mm1
β = 97.717 (3)°T = 120 K
V = 2117.17 (14) Å3Parallelpiped, colourless
Z = 40.35 × 0.30 × 0.21 mm
Data collection top
Oxford Diffraction CCD
diffractometer
3778 independent reflections
Radiation source: X-ray tube3680 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 10.3784 pixels mm-1θmax = 67.1°, θmin = 3.5°
ω scansh = 1515
Absorption correction: analytical
(Clark & Reid, 1995)
k = 1414
Tmin = 0.103, Tmax = 0.286l = 1616
53531 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
S = 1.50(Δ/σ)max = 0.039
3778 reflectionsΔρmax = 0.28 e Å3
298 parametersΔρmin = 0.43 e Å3
14 restraintsExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
232 constraintsExtinction coefficient: 2810 (150)
Crystal data top
[Cd(C6H17N3)2](NO3)(ClO4)V = 2117.17 (14) Å3
Mr = 536.3Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.6030 (5) ŵ = 9.86 mm1
b = 11.9403 (5) ÅT = 120 K
c = 14.1977 (5) Å0.35 × 0.30 × 0.21 mm
β = 97.717 (3)°
Data collection top
Oxford Diffraction CCD
diffractometer
3778 independent reflections
Absorption correction: analytical
(Clark & Reid, 1995)
3680 reflections with I > 3σ(I)
Tmin = 0.103, Tmax = 0.286Rint = 0.038
53531 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02214 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.50Δρmax = 0.28 e Å3
3778 reflectionsΔρmin = 0.43 e Å3
298 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.277764 (9)0.929182 (10)0.204521 (8)0.01647 (7)
Cl10.10390 (3)0.32823 (4)0.20236 (3)0.02461 (14)
O10.02248 (12)0.24458 (15)0.18695 (12)0.0392 (5)
O20.07450 (15)0.41160 (16)0.26595 (13)0.0443 (6)
N10.43298 (12)0.82683 (14)0.18776 (11)0.0207 (4)
N20.38913 (12)0.98590 (13)0.35687 (11)0.0193 (4)
N30.32575 (14)1.09505 (16)0.13282 (12)0.0251 (5)
O30.20171 (12)0.27577 (14)0.24324 (13)0.0402 (5)
N40.14304 (12)1.01825 (14)0.27775 (12)0.0229 (5)
N50.20751 (13)0.75584 (14)0.25474 (12)0.0241 (5)
C10.34052 (17)1.08536 (17)0.39575 (15)0.0253 (6)
O60.11755 (18)0.3793 (2)0.11419 (15)0.0598 (8)
N70.18359 (18)0.87035 (19)0.05226 (15)0.0232 (6)0.802 (3)
C20.53983 (15)0.87914 (18)0.21111 (14)0.0240 (6)
C30.56460 (16)0.91132 (18)0.31510 (15)0.0260 (6)
C40.23878 (19)1.06025 (18)0.43935 (16)0.0304 (7)
C50.15261 (18)0.9619 (2)0.01547 (15)0.0333 (7)1.000 (3)
C60.50246 (14)1.01040 (17)0.34683 (13)0.0232 (5)
C70.26605 (18)1.1318 (2)0.04151 (15)0.0344 (7)1.000 (3)
C80.0878 (2)0.8049 (2)0.06677 (17)0.0288 (8)0.802 (3)
C90.11010 (18)0.68513 (19)0.10329 (16)0.0346 (7)1.000 (3)
C100.2447 (2)1.0412 (3)0.03105 (19)0.0317 (8)0.802 (3)
C110.20439 (18)0.66885 (18)0.17965 (17)0.0358 (7)
C120.15661 (15)0.98729 (18)0.37967 (14)0.0261 (6)
C8'0.1370 (8)0.7727 (5)0.0329 (4)0.0288 (8)0.198 (3)
N7'0.1439 (8)0.8897 (5)0.0681 (3)0.0232 (6)0.198 (3)
C10'0.1547 (2)1.0843 (3)0.0133 (7)0.0317 (8)0.198 (3)
H1c10.325371.1406140.3466670.0304*
H2c10.3920611.1205130.4424230.0304*
H1c20.5441280.9443750.1722790.0289*
H2c20.5937860.828630.1948480.0289*
H1c30.5544410.8474950.3540310.0312*
H2c30.6399950.9250110.3305380.0312*
H1c40.2574821.0267540.5008060.0365*
H2c40.2058391.1293040.4543830.0365*
H1c60.5383861.0389120.4058740.0279*
H2c60.5054541.0714320.3032480.0279*
H1c110.2003110.5960670.2076650.0429*
H2c110.2695760.6714190.1516420.0429*
H1c120.1777750.9101710.3865870.0313*
H2c120.0889880.9930870.4033980.0313*
H1n10.4272 (18)0.7680 (12)0.2228 (14)0.0248*
H2n10.4284 (19)0.8001 (19)0.1304 (7)0.0248*
H1n20.393 (2)0.9325 (14)0.3989 (13)0.0232*
H1n30.319 (2)1.1494 (14)0.1725 (14)0.0301*
H2n30.3936 (5)1.092 (2)0.1270 (19)0.0301*
H1n50.2532 (15)0.735 (2)0.3028 (11)0.0289*
H2n50.1433 (8)0.762 (2)0.2701 (17)0.0289*
H1n70.2291980.829660.0264830.0278*0.802 (3)
H1n7'0.0859490.9041030.092970.0278*0.198 (3)
H1n40.144 (2)1.0907 (3)0.2717 (19)0.0275*
H2n40.0813 (10)0.992 (2)0.2525 (16)0.0275*
H1c50.0953961.0043020.0054480.0399*0.802 (3)
H2c50.1217220.9310590.0753570.0399*0.802 (3)
H1c80.0480270.8444560.109350.0346*0.802 (3)
H2c80.0391930.8028010.0086230.0346*0.802 (3)
H1c100.3088150.9984450.0333040.0381*0.802 (3)
H2c100.2306071.0738810.0932360.0381*0.802 (3)
H1c8'0.0860710.7685530.0237310.0346*0.198 (3)
H2c8'0.2026680.7528310.0098630.0346*0.198 (3)
H1c10'0.117681.1281230.0374770.0381*0.198 (3)
H2c10'0.1131141.0943350.0646250.0381*0.198 (3)
H1c5'0.0925210.9486540.0632870.0399*0.198 (3)
H2c5'0.2171250.943980.0413010.0399*0.198 (3)
H1c90.0467960.6550020.1245380.0415*0.802 (3)
H2c90.1172730.6364680.0506930.0415*0.802 (3)
H1c70.3040211.1918740.0159360.0413*0.802 (3)
H2c70.1995521.1652330.052570.0413*0.802 (3)
H1c7'0.3086361.1187780.0086270.0413*0.198 (3)
H2c7'0.2628931.212140.039860.0413*0.198 (3)
H1c9'0.0491140.7092870.1318190.0415*0.198 (3)
H2c9'0.093530.6155330.0707630.0415*0.198 (3)
O4a0.6475 (3)0.2430 (2)0.5421 (3)0.0291 (8)0.762 (10)
O5a0.5820 (6)0.3444 (5)0.6479 (4)0.0268 (9)0.762 (10)
N6a0.5753 (4)0.3067 (4)0.5645 (4)0.0251 (6)0.762 (10)
O7a0.4980 (5)0.3311 (7)0.5053 (4)0.0549 (13)0.762 (10)
O4b0.6175 (9)0.2377 (9)0.5309 (6)0.0291 (8)0.238 (10)
O5b0.5721 (10)0.3276 (10)0.6526 (7)0.0268 (9)0.238 (10)
N6b0.5711 (10)0.3192 (9)0.5641 (6)0.0251 (6)0.238 (10)
O7b0.5243 (10)0.3897 (11)0.5103 (7)0.0549 (13)0.238 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01634 (11)0.01748 (12)0.01549 (11)0.00038 (4)0.00177 (6)0.00021 (4)
Cl10.0209 (2)0.0243 (2)0.0291 (2)0.00155 (16)0.00491 (17)0.00203 (17)
O10.0245 (7)0.0393 (9)0.0532 (9)0.0073 (7)0.0026 (6)0.0014 (7)
O20.0418 (10)0.0455 (10)0.0421 (10)0.0168 (8)0.0069 (8)0.0160 (8)
N10.0221 (7)0.0211 (8)0.0190 (7)0.0014 (6)0.0038 (6)0.0003 (6)
N20.0201 (7)0.0201 (8)0.0175 (7)0.0022 (6)0.0016 (6)0.0002 (6)
N30.0259 (8)0.0252 (8)0.0242 (8)0.0017 (7)0.0035 (7)0.0045 (7)
O30.0219 (7)0.0335 (9)0.0625 (11)0.0065 (6)0.0042 (7)0.0024 (7)
N40.0210 (8)0.0213 (9)0.0267 (8)0.0011 (6)0.0044 (6)0.0017 (6)
N50.0228 (8)0.0212 (8)0.0282 (9)0.0014 (7)0.0033 (6)0.0021 (7)
C10.0254 (10)0.0253 (10)0.0254 (10)0.0025 (8)0.0039 (8)0.0072 (8)
O60.0699 (13)0.0626 (14)0.0530 (12)0.0087 (11)0.0303 (10)0.0269 (10)
N70.0203 (12)0.0291 (11)0.0196 (10)0.0044 (9)0.0009 (8)0.0033 (8)
C20.0190 (9)0.0269 (11)0.0271 (10)0.0024 (7)0.0065 (7)0.0008 (8)
C30.0176 (9)0.0322 (11)0.0275 (10)0.0008 (8)0.0003 (8)0.0012 (8)
C40.0353 (12)0.0335 (12)0.0244 (11)0.0012 (9)0.0111 (9)0.0093 (8)
C50.0326 (11)0.0419 (12)0.0222 (10)0.0013 (10)0.0080 (8)0.0036 (9)
C60.0202 (9)0.0266 (10)0.0224 (9)0.0049 (7)0.0007 (7)0.0028 (7)
C70.0367 (11)0.0316 (12)0.0332 (11)0.0004 (9)0.0017 (9)0.0122 (9)
C80.0246 (12)0.0373 (15)0.0238 (12)0.0072 (11)0.0004 (9)0.0080 (10)
C90.0346 (11)0.0315 (12)0.0380 (12)0.0100 (9)0.0062 (9)0.0125 (9)
C100.0343 (14)0.0395 (15)0.0208 (12)0.0030 (12)0.0012 (10)0.0070 (11)
C110.0375 (12)0.0192 (10)0.0499 (13)0.0019 (9)0.0035 (10)0.0067 (9)
C120.0253 (9)0.0280 (11)0.0268 (10)0.0007 (8)0.0105 (7)0.0003 (8)
C8'0.0246 (12)0.0373 (15)0.0238 (12)0.0072 (11)0.0004 (9)0.0080 (10)
N7'0.0203 (12)0.0291 (11)0.0196 (10)0.0044 (9)0.0009 (8)0.0033 (8)
C10'0.0343 (14)0.0395 (15)0.0208 (12)0.0030 (12)0.0012 (10)0.0070 (11)
O4a0.0291 (17)0.0285 (10)0.0324 (12)0.0014 (12)0.0137 (14)0.0031 (9)
O5a0.0384 (14)0.024 (2)0.0182 (8)0.0011 (16)0.0057 (8)0.0039 (8)
N6a0.0225 (9)0.0340 (13)0.0196 (8)0.0005 (9)0.0058 (7)0.0031 (8)
O7a0.0333 (12)0.107 (4)0.0236 (9)0.0220 (19)0.0004 (8)0.0030 (16)
O4b0.0258 (18)0.0284 (13)0.0355 (12)0.0011 (11)0.0127 (13)0.0027 (9)
O5b0.0351 (17)0.025 (2)0.0221 (9)0.0064 (13)0.0092 (9)0.0025 (9)
N6b0.0223 (10)0.0307 (12)0.0237 (9)0.0025 (8)0.0083 (7)0.0051 (7)
O7b0.0629 (19)0.070 (3)0.0359 (14)0.0389 (19)0.0218 (12)0.0258 (17)
Geometric parameters (Å, º) top
Cd1—N12.3456 (16)C5—N7'1.483 (6)
Cd1—N22.5084 (14)C5—C10'1.517 (5)
Cd1—N32.3430 (19)C5—H1c50.96
Cd1—N42.3598 (17)C5—H2c50.96
Cd1—N52.3970 (17)C5—H1c5'0.96
Cd1—N72.426 (2)C5—H2c5'0.96
Cl1—O11.4276 (17)C6—H1c60.96
Cl1—O21.426 (2)C6—H2c60.96
Cl1—O31.4341 (15)C7—C101.494 (4)
Cl1—O61.423 (2)C7—C10'1.517 (4)
N1—C21.481 (2)C7—H1c70.96
N1—H1n10.870 (17)C7—H2c70.96
N1—H2n10.870 (12)C7—H1c7'0.96
N2—C11.477 (3)C7—H2c7'0.96
N2—C61.483 (2)C8—C91.534 (4)
N2—H1n20.870 (17)C8—H1c80.96
N3—C71.476 (3)C8—H2c80.96
N3—H1n30.870 (19)C9—C111.510 (3)
N3—H2n30.870 (9)C9—C8'1.516 (7)
N4—C121.481 (3)C9—H1c90.96
N4—H1n40.870 (5)C9—H2c90.96
N4—H2n40.870 (15)C9—H1c9'0.96
N5—C111.485 (3)C9—H2c9'0.96
N5—H1n50.870 (17)C10—H1c100.96
N5—H2n50.870 (14)C10—H2c100.96
C1—C41.527 (3)C11—H1c110.96
C1—H1c10.96C11—H2c110.96
C1—H2c10.96C12—H1c120.96
N7—C51.474 (3)C12—H2c120.96
N7—C81.476 (4)C8'—N7'1.482 (9)
N7—H1n70.87C8'—H1c8'0.96
C2—C31.517 (3)C8'—H2c8'0.96
C2—H1c20.96N7'—H1n7'0.87
C2—H2c20.96C10'—H1c10'0.96
C3—C61.520 (3)C10'—H2c10'0.96
C3—H1c30.96O4a—N6a1.259 (6)
C3—H2c30.96O5a—N6a1.259 (7)
C4—C121.521 (3)N6a—O7a1.233 (8)
C4—H1c40.96O4b—N6b1.259 (15)
C4—H2c40.96O5b—N6b1.259 (13)
C5—C101.536 (4)N6b—O7b1.233 (15)
N1—Cd1—N281.40 (5)C10'—C5—H1c5'109.4712
N1—Cd1—N397.40 (6)C10'—C5—H2c5'109.4707
N1—Cd1—N4159.83 (5)H1c5—C5—H2c5104.1342
N1—Cd1—N585.80 (6)H1c5'—C5—H2c5'108.7286
N1—Cd1—N794.22 (7)N2—C6—C3114.58 (16)
N2—Cd1—N389.96 (5)N2—C6—H1c6109.4713
N2—Cd1—N481.42 (5)N2—C6—H2c6109.4717
N2—Cd1—N599.37 (5)C3—C6—H1c6109.4713
N2—Cd1—N7175.31 (7)C3—C6—H2c6109.4711
N3—Cd1—N493.06 (6)H1c6—C6—H2c6103.8245
N3—Cd1—N5170.51 (5)N3—C7—C10114.4 (2)
N3—Cd1—N788.95 (7)N3—C7—C10'117.7 (4)
N4—Cd1—N586.66 (6)N3—C7—H1c7109.4717
N4—Cd1—N7103.19 (7)N3—C7—H2c7109.4714
N5—Cd1—N781.89 (7)N3—C7—H1c7'109.4709
O1—Cl1—O2110.06 (11)N3—C7—H2c7'109.4713
O1—Cl1—O3108.51 (10)C10—C7—H1c7109.4709
O1—Cl1—O6109.52 (12)C10—C7—H2c7109.471
O2—Cl1—O3109.33 (10)C10'—C7—H1c7'109.4708
O2—Cl1—O6109.28 (13)C10'—C7—H2c7'109.4719
O3—Cl1—O6110.13 (12)H1c7—C7—H2c7104.0001
Cd1—N1—C2120.21 (12)H1c7'—C7—H2c7'99.7563
Cd1—N1—H1n1103.1 (15)N7—C8—C9115.1 (2)
Cd1—N1—H2n1109.6 (15)N7—C8—H1c8109.4705
C2—N1—H1n1110.9 (14)N7—C8—H2c8109.4704
C2—N1—H2n1108.0 (15)C9—C8—H1c8109.472
H1n1—N1—H2n1103.9 (19)C9—C8—H2c8109.4716
C1—N2—C6109.29 (15)H1c8—C8—H2c8103.1391
C1—N2—H1n2108.8 (14)C8—C9—C11116.97 (19)
C6—N2—H1n2103.9 (18)C8—C9—H1c9109.4708
Cd1—N3—C7120.15 (13)C8—C9—H2c9109.4714
Cd1—N3—H1n3107.3 (13)C11—C9—C8'109.8 (4)
Cd1—N3—H2n3109.0 (18)C11—C9—H1c9109.4713
C7—N3—H1n3105.4 (13)C11—C9—H2c9109.4715
C7—N3—H2n3108.6 (18)C11—C9—H1c9'109.4714
H1n3—N3—H2n3105 (2)C11—C9—H2c9'109.4713
Cd1—N4—C12108.81 (11)C8'—C9—H1c9'109.4716
Cd1—N4—H1n4112.8 (18)C8'—C9—H2c9'109.4711
Cd1—N4—H2n4108.3 (14)H1c9—C9—H2c9100.7569
C12—N4—H1n4110.1 (17)H1c9'—C9—H2c9'109.1632
C12—N4—H2n4107.0 (15)C5—C10—C7114.6 (2)
H1n4—N4—H2n4110 (2)C5—C10—H1c10109.4713
C11—N5—H1n5108.0 (15)C5—C10—H2c10109.4714
C11—N5—H2n5107.8 (16)C7—C10—H1c10109.4714
H1n5—N5—H2n5112 (2)C7—C10—H2c10109.4708
N2—C1—C4114.00 (17)H1c10—C10—H2c10103.7599
N2—C1—H1c1109.4715N5—C11—C9111.58 (18)
N2—C1—H2c1109.4717N5—C11—H1c11109.4716
C4—C1—H1c1109.4711N5—C11—H2c11109.4713
C4—C1—H2c1109.4708C9—C11—H1c11109.4709
H1c1—C1—H2c1104.5246C9—C11—H2c11109.4714
C5—N7—C8109.52 (19)H1c11—C11—H2c11107.2787
C5—N7—H1n7105.7778N4—C12—C4112.45 (17)
C8—N7—H1n7111.2224N4—C12—H1c12109.4711
N1—C2—C3112.75 (17)N4—C12—H2c12109.4712
N1—C2—H1c2109.4715C4—C12—H1c12109.4712
N1—C2—H2c2109.4715C4—C12—H2c12109.4713
C3—C2—H1c2109.4715H1c12—C12—H2c12106.3151
C3—C2—H2c2109.471C9—C8'—N7'115.9 (5)
H1c2—C2—H2c2105.9748C9—C8'—H1c8'109.4709
C2—C3—C6116.02 (16)C9—C8'—H2c8'109.4711
C2—C3—H1c3109.4715N7'—C8'—H1c8'109.4716
C2—C3—H2c3109.4709N7'—C8'—H2c8'109.4716
C6—C3—H1c3109.4716H1c8'—C8'—H2c8'102.2362
C6—C3—H2c3109.4707C5—N7'—C8'106.6 (4)
H1c3—C3—H2c3102.0223C5—N7'—H1n7'111.4805
C1—C4—C12115.64 (18)C8'—N7'—H1n7'108.0034
C1—C4—H1c4109.4709C5—C10'—C7114.4 (2)
C1—C4—H2c4109.4712C5—C10'—H1c10'109.4716
C12—C4—H1c4109.4715C5—C10'—H2c10'109.4715
C12—C4—H2c4109.4715C7—C10'—H1c10'109.4715
H1c4—C4—H2c4102.5005C7—C10'—H2c10'109.4708
N7—C5—C10114.33 (19)H1c10'—C10'—H2c10'104.0234
N7—C5—H1c5109.471O4a—N6a—O5a119.5 (5)
N7—C5—H2c5109.4715O4a—N6a—O7a120.2 (5)
C10—C5—H1c5109.4711O5a—N6a—O7a120.3 (6)
C10—C5—H2c5109.4712O4b—N6b—O5b119.5 (10)
N7'—C5—C10'110.2 (5)O4b—N6b—O7b120.2 (10)
N7'—C5—H1c5'109.4712O5b—N6b—O7b120.3 (12)
N7'—C5—H2c5'109.4718
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n1···O5ai0.870 (17)2.289 (19)3.127 (6)161.7 (16)
N1—H1n1···O5bi0.870 (17)2.10 (2)2.929 (10)158.1 (16)
N1—H2n1···O7aii0.870 (12)2.278 (17)2.986 (7)139 (2)
N1—H2n1···O4bii0.870 (12)2.403 (14)3.262 (9)170 (2)
N1—H2n1···O7bii0.870 (12)2.410 (19)3.027 (11)128.4 (19)
N2—H1n2···O4ai0.870 (17)2.339 (18)3.149 (4)155.0 (18)
N2—H1n2···O4bi0.870 (17)2.28 (2)3.116 (10)162.4 (16)
N3—H1n3···O3iii0.870 (19)2.43 (2)3.196 (3)148 (2)
N3—H2n3···O5aiv0.870 (9)2.472 (13)3.289 (8)157 (2)
N3—H2n3···O7aiv0.870 (9)2.48 (2)3.134 (7)132 (2)
N3—H2n3···O5biv0.870 (9)2.426 (18)3.215 (13)151 (2)
N3—H2n3···O7biv0.870 (9)2.50 (2)3.239 (13)144 (2)
N5—H1n5···O4ai0.870 (17)2.396 (16)3.200 (4)154 (2)
N5—H1n5···O5ai0.870 (17)2.30 (2)3.065 (7)146.5 (16)
N5—H1n5···O5bi0.870 (17)2.33 (2)3.076 (12)144.0 (16)
N5—H2n5···O1v0.870 (14)2.263 (14)3.122 (2)169 (2)
N7—H1n7···O4aii0.872.203.067 (4)174.11
N7—H1n7···O4bii0.872.453.313 (11)169.55
N4—H1n4···O3iii0.870 (5)2.379 (11)3.215 (2)161 (2)
N4—H2n4···O2v0.870 (15)2.170 (15)3.011 (2)163 (2)
C10—H1c10···O7bii0.962.463.407 (13)170.52
C8—H2c8···O4aii0.962.123.069 (11)168.87
C8—H2c8···O4bii0.962.423.364 (15)168.03
C7—H1c7···O7aiv0.962.483.067 (7)119.01
C7—H1c7···O7aiv0.962.443.067 (7)122.52
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+3/2, z1/2; (v) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C6H17N3)2](NO3)(ClO4)
Mr536.3
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)12.6030 (5), 11.9403 (5), 14.1977 (5)
β (°) 97.717 (3)
V3)2117.17 (14)
Z4
Radiation typeCu Kα
µ (mm1)9.86
Crystal size (mm)0.35 × 0.30 × 0.21
Data collection
DiffractometerOxford Diffraction CCD
diffractometer
Absorption correctionAnalytical
(Clark & Reid, 1995)
Tmin, Tmax0.103, 0.286
No. of measured, independent and
observed [I > 3σ(I)] reflections
53531, 3778, 3680
Rint0.038
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.068, 1.50
No. of reflections3778
No. of parameters298
No. of restraints14
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.43

Computer programs: CrysAlis PRO (Agilent, 2011), Superflip (Palatinus & Chapuis, 2007), JANA2006 (Petříček et al., 2006), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cd1—N12.3456 (16)Cd1—N42.3598 (17)
Cd1—N22.5084 (14)Cd1—N52.3970 (17)
Cd1—N32.3430 (19)Cd1—N72.426 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n1···O5ai0.870 (17)2.289 (19)3.127 (6)161.7 (16)
N1—H1n1···O5bi0.870 (17)2.10 (2)2.929 (10)158.1 (16)
N1—H2n1···O7aii0.870 (12)2.278 (17)2.986 (7)139 (2)
N1—H2n1···O4bii0.870 (12)2.403 (14)3.262 (9)170 (2)
N1—H2n1···O7bii0.870 (12)2.410 (19)3.027 (11)128.4 (19)
N2—H1n2···O4ai0.870 (17)2.339 (18)3.149 (4)155.0 (18)
N2—H1n2···O4bi0.870 (17)2.28 (2)3.116 (10)162.4 (16)
N3—H1n3···O3iii0.870 (19)2.43 (2)3.196 (3)148 (2)
N3—H2n3···O5aiv0.870 (9)2.472 (13)3.289 (8)157 (2)
N3—H2n3···O7aiv0.870 (9)2.48 (2)3.134 (7)132 (2)
N3—H2n3···O5biv0.870 (9)2.426 (18)3.215 (13)151 (2)
N3—H2n3···O7biv0.870 (9)2.50 (2)3.239 (13)144 (2)
N5—H1n5···O4ai0.870 (17)2.396 (16)3.200 (4)154 (2)
N5—H1n5···O5ai0.870 (17)2.30 (2)3.065 (7)146.5 (16)
N5—H1n5···O5bi0.870 (17)2.33 (2)3.076 (12)144.0 (16)
N5—H2n5···O1v0.870 (14)2.263 (14)3.122 (2)169 (2)
N7—H1n7···O4aii0.872.203.067 (4)174.11
N7—H1n7···O4bii0.872.453.313 (11)169.55
N4—H1n4···O3iii0.870 (5)2.379 (11)3.215 (2)161 (2)
N4—H2n4···O2v0.870 (15)2.170 (15)3.011 (2)163 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+3/2, z1/2; (v) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the University of Ilam, by the Institutional research plan No. AVOZ10100521 of the Institute of Physics and by the project Praemium Academiae of the Academy of Sciences (ASCR).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationBecker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBoeckmann, J. & Näther, C. (2011a). Acta Cryst. E67, m1025–m1026.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBoeckmann, J. & Näther, C. (2011b). Acta Cryst. E67, m1201–m1202.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, J.-H., Suh, I.-H. & Kwak, S.-H. (1995). Acta Cryst. C51, 1745–1748.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaji, K. T., Mostafa, G., Clemente-Juan, J., Ribas, J., Lloret, F., Okamoto, K. & Chaudhuri, N. (2003). Eur. J. Inorg. Chem. pp. 1005–1011.  Google Scholar
First citationPajunen, A., Pajunen, S., Kivikoski, J. & Valkonen, J. (1996). Acta Cryst. C52, 1901–1903.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2000. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m273-m274
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds