metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m239-m240

Bis[(2-chloro-4-fluoro­benz­yl)tri­phenyl­phospho­nium] bis­­(1,2,5-thia­diazole-3,4-di­thiol­ato)nickelate(II)

aCollege of Chemical Engineering, Huanggang Normal University, Huangzhou 438000, People's Republic of China
*Correspondence e-mail: yangsb168@126.com

(Received 18 January 2012; accepted 27 January 2012; online 4 February 2012)

The title ion-pair complex, (C25H20ClFP)2[Ni(C2N2S3)2], was obtained by the direct reaction of (4-F,2-ClBzTPP)+·Br [4-F,2-ClBzTPP+ is (2-chloro-4-fluoro­benz­yl)triphenyl­phos­pho­nium], NiCl2·6H2O and Na2tdas (tdas2− is 1,2,5-thia­diazole-3,4-dithiol­ate) in methanol. The asymmetric unit of the title structure comprises one (4-F,2-ClBzTPP)+ cation and half of an [Ni(tdas)2]2− complex anion, with the NiII ion situated on a center of symmetry, leading to a slightly distorted square-planar coordination of the latter. In the cation, the tetra­hedral angles around the P atom are nearly undistorted. In the crystal, the cations and anions are linked by C—H⋯S, C—H⋯N and C—H⋯Cl hydrogen bonds.

Related literature

For background to complexes containing the [Ni(maleo­nitrile­dithiol­ate)2]2− anion, see: Chen et al. (2010[Chen, X., Zou, H. L., Lin, J. H., Huang, Q., Zuo, H. R., Zhou, J. R., Ni, C. L. & Hu, X. L. (2010). J. Mol. Struct. 981, 139-145.]); Hou et al. (2008[Hou, Y., Ni, C. L., Zhou, J. R., Liu, X. P., Yu, L. L. & Yang, L. M. (2008). Synth. Met. 158, 379-382.]); Ni et al. (2005[Ni, Z. P., Ren, X. M., Ma, J., Xie, J. L., Ni, C. L., Chen, Z. D. & Meng, Q. J. (2005). J. Am. Chem. Soc. 127, 14330-14338.]); Ren et al. (2002[Ren, X. M., Meng, Q. J., Song, Y., Lu, C. S. & Hu, C. J. (2002). Inorg. Chem. 41, 5686-5692.]); Robertson & Cronin (2002[Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93-127.]); Xie et al. (2002[Xie, J. L., Ren, X. M., Song, Y., Zhang, W. W., Liu, W. L., He, C. & Meng, Q. J. (2002). Chem. Commun. pp. 2346-2347.]); Zhou et al. (2011[Zhou, J. R., Ni, C. L. & Hu, X. L. (2011). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 41, 8-14.]). For details of other square-planar Ni(1,2,5-thia­diazole-3,4-dithiol­ate)2 complexes, see: Awaga et al. (1994[Awaga, K., Okuno, T., Maruyama, Y., Kobayashi, A., Kobayashi, H., Schenk, S. & Underhill, A. E. (1994). Inorg. Chem. 33, 5598-5600.]); Yamochi et al. (2001[Yamochi, H., Sogoshi, N., Simizu, Y., Saito, G. & Matsumoto, K. (2001). J. Mater. Chem. 11, 2216-2220.]); Okuno et al. (2003[Okuno, T., Kuwamoto, K., Fujita, W., Awaga, K. & Nakanishi, W. (2003). Polyhedron, 22, 2311-2315.]); Ni et al. (2004[Ni, C. L., Dang, D. B., Ni, Z. P., Li, Y. Z., Xie, J. L., Meng, Q. J. & Yao, Y. G. (2004). J. Coord. Chem. 57, 1529-1536.]); Zuo et al. (2009[Zuo, H. R., Tian, J., Chen, X., Huang, Q., Zhou, J. R., Liu, X. P., Ni, C. L. & Hu, X. L. (2009). J. Chem. Crystallogr. 39, 698-701.]).

[Scheme 1]

Experimental

Crystal data
  • (C25H20ClFP)2[Ni(C2N2S3)2]

  • Mr = 1166.81

  • Triclinic, [P \overline 1]

  • a = 9.4447 (11) Å

  • b = 12.1385 (15) Å

  • c = 13.1309 (16) Å

  • α = 71.447 (1)°

  • β = 83.601 (2)°

  • γ = 68.691 (2)°

  • V = 1329.6 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 291 K

  • 0.19 × 0.15 × 0.11 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.861, Tmax = 0.916

  • 9694 measured reflections

  • 4652 independent reflections

  • 3807 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.118

  • S = 1.00

  • 4652 reflections

  • 322 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—S1 2.1842 (9)
Ni1—S2 2.1966 (9)
S1i—Ni1—S2 86.82 (3)
S1—Ni1—S2 93.18 (3)
Symmetry code: (i) -x+1, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯S1ii 0.97 2.71 3.635 (4) 160
C9—H9B⋯Cl1 0.97 2.66 3.129 (4) 110
C24—H24⋯N2iii 0.93 2.61 3.401 (7) 143
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y, z.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transition metal complexes of bis(1,2-ditholene) and derivatives thereof have been extensively studied due to their potential applications in molecular materials showing superconducting, magnetic or optical properties (Robertson & Cronin, 2002; Ni et al., 2005; Ren et al., 2002). In recent years, much attention has been paid to the study of ion-pair complexes containing the [Ni(mnt)2]n- (mnt is maleonitriledithiolate, n is 1 or 2) anion that possesses spin bistability with potential application as a molecular switch, in data storage or in displays (Chen et al., 2010; Hou et al., 2008; Xie et al., 2002; Zhou et al., 2011), while there is only few information available on complexes containing the [M(tdas)2]n- (tdas is 1,2,5-thiadiazole-3,4-dithiolate, n is 1 or 2; M is a transition metal) anion (Awaga et al., 1994; Yamochi et al., 2001; Okuno et al., 2003). Substantial efforts have been devoted for finding more suitable counter cations to tune the stacking in the crystal structures containing [M(tdas)2]n- anions and also to obtain materials with interesting properties (Ni et al., 2004; Zuo et al., 2009). Substituted benzyl triphenylphosphonium as a cation has been proved to be suitable for this purpose. In this article we report on the preparation and crystal structure of the new ion-pair complex, [4-F,2-ClBzTPP]2[Ni(tdas)2] (I).

The molecular structure of (I) is shown in Fig. 1. There are one (2-chloro-4-fluorobenzyl)triphenylphosphonium and half of an [Ni(tdas)2]2- anion in the asymmetric unit of (I). The nickel(II) ion of the complex [Ni(tdas)2]2- anion is situated on a center of symmetry within a slightly distorted square-planar coordination. The Ni1—S1 and Ni1—S2 bond lengths are 2.1842 (9) Å and 2.1966 (9) Å, and the S1—Ni1—S2 bond angle within the five-membered metalla ring is 93.18 (3)°, similar to those observed for other structures with an [Ni(tdas)2]2- anion (Okuno et al., 2003; Zuo et al., 2009). In the cation, the deviations of the F and Cl atoms from the C3—C8 benzene ring are 0.082 (2)Å and -0.029 (2) Å, respectively.

C—H···S, C—H···N and C—H···Cl hydrogen bonds between the anion and cation consolidate the crystal packing (Fig. 2, Table 2).

Related literature top

For background to complexes containing the [Ni(maleonitriledithiolate)2]2- anion, see: Chen et al. (2010); Hou et al. (2008); Ni et al. (2005); Ren et al. (2002); Robertson & Cronin (2002); Xie et al. (2002); Zhou et al. (2011). For details of other square-planar Ni(1,2,5-thiadiazole-3,4-dithiolate)2 complexes, see: Awaga et al. (1994); Yamochi et al. (2001); Okuno et al. (2003); Ni et al. (2004); Zuo et al. (2009).

Experimental top

The title ion-pair complex was prepared by the direct reaction of 1:2:2 mol equiv. of NiCl2.6H2O, Na2tdas and (2-chloro-4-fluorobenzyl)triphenylphosphonium bromide in methanol. A brown product was obtained and purified through recrystallization from a mixed solution of methanol and water (yield: 86%). Brown block-sheped single crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent at room temperature within 3 weeks.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic and 0.97 Å, Uiso = 1.2Ueq (C) for CH2 atoms.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and atoms displayed with displacement ellipsoids at the 30% probability level for all non-H atoms. The non-labelled atoms are generated by the inversion symmetry operation: -x + 1, -y + 1, -z.
[Figure 2] Fig. 2. The crystal packing of (I), viewed approximately down the a axis, showing the network of molecules connected by non-classical hydrogen bonds (dashed lines).
Bis[(2-chloro-4-fluorobenzyl)triphenylphosphonium] bis(1,2,5-thiadiazole-3,4-dithiolato)nickelate(II) top
Crystal data top
(C25H20ClFP)2[Ni(C2N2S3)2]Z = 1
Mr = 1166.81F(000) = 598
Triclinic, P1Dx = 1.457 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4447 (11) ÅCell parameters from 3884 reflections
b = 12.1385 (15) Åθ = 2.3–26.0°
c = 13.1309 (16) ŵ = 0.81 mm1
α = 71.447 (1)°T = 291 K
β = 83.601 (2)°Block, brown
γ = 68.691 (2)°0.19 × 0.15 × 0.11 mm
V = 1329.6 (3) Å3
Data collection top
Bruker SMART CCD
diffractometer
4652 independent reflections
Radiation source: fine-focus sealed tube3807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1110
Tmin = 0.861, Tmax = 0.916k = 1414
9694 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0368P)2 + 1.988P]
where P = (Fo2 + 2Fc2)/3
4652 reflections(Δ/σ)max < 0.001
322 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
(C25H20ClFP)2[Ni(C2N2S3)2]γ = 68.691 (2)°
Mr = 1166.81V = 1329.6 (3) Å3
Triclinic, P1Z = 1
a = 9.4447 (11) ÅMo Kα radiation
b = 12.1385 (15) ŵ = 0.81 mm1
c = 13.1309 (16) ÅT = 291 K
α = 71.447 (1)°0.19 × 0.15 × 0.11 mm
β = 83.601 (2)°
Data collection top
Bruker SMART CCD
diffractometer
4652 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3807 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.916Rint = 0.033
9694 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.00Δρmax = 0.54 e Å3
4652 reflectionsΔρmin = 0.39 e Å3
322 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.00000.03811 (17)
S10.58693 (12)0.34739 (9)0.07028 (7)0.0552 (3)
S20.42586 (13)0.38755 (9)0.14777 (8)0.0618 (3)
S30.49400 (15)0.04337 (10)0.12386 (9)0.0728 (3)
Cl10.70371 (13)0.46088 (10)0.42942 (8)0.0685 (3)
F10.5385 (4)0.1177 (3)0.4145 (3)0.1061 (10)
N10.5634 (4)0.1203 (3)0.0147 (3)0.0644 (9)
N20.4341 (4)0.1508 (3)0.1854 (3)0.0654 (9)
P10.95727 (10)0.22890 (8)0.69433 (7)0.0408 (2)
C10.5392 (4)0.2291 (3)0.0242 (3)0.0459 (8)
C20.4655 (4)0.2480 (3)0.1213 (3)0.0475 (8)
C30.6640 (4)0.3250 (3)0.4940 (3)0.0505 (8)
C40.6126 (5)0.2753 (4)0.4295 (3)0.0632 (11)
H40.59920.31360.35590.076*
C50.5826 (5)0.1690 (4)0.4779 (4)0.0684 (11)
C60.5948 (5)0.1121 (4)0.5864 (4)0.0680 (11)
H60.56860.04180.61720.082*
C70.6469 (4)0.1618 (4)0.6486 (3)0.0544 (9)
H70.65650.12360.72240.065*
C80.6859 (4)0.2682 (3)0.6042 (3)0.0436 (8)
C90.7547 (4)0.3131 (3)0.6737 (3)0.0456 (8)
H9A0.70420.30380.74290.055*
H9B0.73760.40060.64040.055*
C100.8961 (5)0.0449 (4)0.8608 (3)0.0588 (10)
H100.81380.10870.87530.071*
C110.9250 (6)0.0750 (4)0.9244 (3)0.0738 (12)
H110.86150.09250.98190.089*
C121.0475 (6)0.1698 (5)0.9035 (4)0.0797 (14)
H121.06510.25110.94610.096*
C131.1436 (5)0.1448 (4)0.8202 (4)0.0717 (12)
H131.22720.20890.80750.086*
C141.1167 (4)0.0246 (3)0.7551 (3)0.0553 (9)
H141.18240.00760.69900.066*
C150.9911 (4)0.0703 (3)0.7741 (3)0.0454 (8)
C160.9476 (5)0.3957 (4)0.8019 (3)0.0583 (10)
H160.84260.42580.79330.070*
C171.0149 (6)0.4456 (5)0.8554 (4)0.0757 (13)
H170.95530.50920.88320.091*
C181.1704 (6)0.4007 (5)0.8674 (4)0.0777 (13)
H181.21520.43470.90320.093*
C191.2600 (5)0.3067 (5)0.8274 (4)0.0760 (13)
H191.36500.27770.83520.091*
C201.1938 (5)0.2558 (4)0.7757 (3)0.0673 (11)
H201.25400.19040.75010.081*
C211.0368 (4)0.3015 (3)0.7614 (3)0.0475 (8)
C221.1227 (4)0.3129 (3)0.5183 (3)0.0559 (9)
H221.13550.36250.55530.067*
C231.1813 (5)0.3194 (4)0.4163 (4)0.0721 (12)
H231.23530.37240.38550.087*
C241.1614 (5)0.2499 (5)0.3607 (4)0.0773 (14)
H241.20110.25590.29190.093*
C251.0820 (5)0.1692 (4)0.4052 (3)0.0663 (11)
H251.06780.12210.36620.080*
C261.0242 (4)0.1596 (3)0.5083 (3)0.0524 (9)
H260.97210.10520.53940.063*
C271.0450 (4)0.2327 (3)0.5651 (3)0.0439 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0364 (3)0.0470 (4)0.0314 (3)0.0127 (3)0.0052 (2)0.0163 (2)
S10.0713 (6)0.0579 (6)0.0441 (5)0.0277 (5)0.0236 (4)0.0269 (4)
S20.0861 (7)0.0503 (5)0.0480 (5)0.0237 (5)0.0288 (5)0.0230 (4)
S30.0978 (9)0.0573 (6)0.0710 (7)0.0355 (6)0.0188 (6)0.0257 (5)
Cl10.0798 (7)0.0599 (6)0.0587 (6)0.0315 (5)0.0064 (5)0.0020 (5)
F10.123 (3)0.127 (3)0.108 (2)0.064 (2)0.0197 (19)0.056 (2)
N10.085 (2)0.055 (2)0.061 (2)0.0268 (18)0.0149 (17)0.0296 (16)
N20.082 (2)0.057 (2)0.059 (2)0.0284 (18)0.0207 (17)0.0200 (16)
P10.0422 (5)0.0435 (5)0.0385 (4)0.0172 (4)0.0047 (4)0.0137 (4)
C10.0465 (19)0.048 (2)0.0452 (19)0.0146 (16)0.0030 (15)0.0204 (16)
C20.0447 (19)0.054 (2)0.0430 (18)0.0168 (16)0.0083 (15)0.0157 (16)
C30.046 (2)0.054 (2)0.050 (2)0.0155 (17)0.0012 (16)0.0157 (17)
C40.058 (2)0.079 (3)0.052 (2)0.019 (2)0.0064 (18)0.022 (2)
C50.063 (3)0.081 (3)0.077 (3)0.029 (2)0.010 (2)0.036 (3)
C60.066 (3)0.067 (3)0.083 (3)0.037 (2)0.003 (2)0.021 (2)
C70.050 (2)0.061 (2)0.054 (2)0.0263 (18)0.0026 (17)0.0123 (18)
C80.0367 (17)0.0486 (19)0.0444 (18)0.0121 (15)0.0041 (14)0.0168 (15)
C90.0443 (19)0.050 (2)0.0436 (18)0.0154 (16)0.0045 (15)0.0182 (16)
C100.059 (2)0.069 (3)0.044 (2)0.024 (2)0.0023 (17)0.0088 (18)
C110.083 (3)0.078 (3)0.052 (2)0.040 (3)0.002 (2)0.006 (2)
C120.098 (4)0.063 (3)0.068 (3)0.037 (3)0.025 (3)0.011 (2)
C130.075 (3)0.056 (3)0.073 (3)0.013 (2)0.019 (2)0.010 (2)
C140.053 (2)0.054 (2)0.056 (2)0.0165 (18)0.0012 (17)0.0143 (18)
C150.0471 (19)0.052 (2)0.0387 (17)0.0216 (16)0.0003 (15)0.0098 (15)
C160.059 (2)0.064 (2)0.060 (2)0.022 (2)0.0012 (18)0.029 (2)
C170.083 (3)0.083 (3)0.077 (3)0.032 (3)0.001 (2)0.041 (3)
C180.094 (4)0.091 (3)0.068 (3)0.050 (3)0.013 (3)0.025 (3)
C190.066 (3)0.088 (3)0.081 (3)0.029 (3)0.018 (2)0.027 (3)
C200.054 (2)0.074 (3)0.074 (3)0.015 (2)0.012 (2)0.027 (2)
C210.052 (2)0.052 (2)0.0408 (18)0.0230 (17)0.0022 (15)0.0108 (15)
C220.060 (2)0.051 (2)0.058 (2)0.0253 (19)0.0099 (18)0.0135 (18)
C230.072 (3)0.073 (3)0.068 (3)0.038 (2)0.025 (2)0.011 (2)
C240.075 (3)0.085 (3)0.055 (2)0.020 (3)0.029 (2)0.016 (2)
C250.071 (3)0.072 (3)0.053 (2)0.016 (2)0.013 (2)0.030 (2)
C260.054 (2)0.057 (2)0.048 (2)0.0209 (18)0.0103 (16)0.0185 (17)
C270.0429 (18)0.0435 (19)0.0437 (18)0.0155 (15)0.0081 (14)0.0132 (15)
Geometric parameters (Å, º) top
Ni1—S1i2.1842 (9)C10—H100.9300
Ni1—S12.1842 (9)C11—C121.379 (7)
Ni1—S2i2.1966 (9)C11—H110.9300
Ni1—S22.1966 (9)C12—C131.371 (7)
S1—C11.736 (4)C12—H120.9300
S2—C21.737 (4)C13—C141.381 (6)
S3—N21.644 (3)C13—H130.9300
S3—N11.655 (3)C14—C151.386 (5)
Cl1—C31.752 (4)C14—H140.9300
F1—C51.361 (5)C16—C211.373 (5)
N1—C11.300 (4)C16—C171.384 (5)
N2—C21.324 (5)C16—H160.9300
P1—C271.798 (3)C17—C181.376 (7)
P1—C211.799 (3)C17—H170.9300
P1—C151.802 (4)C18—C191.370 (7)
P1—C91.816 (3)C18—H180.9300
C1—C21.427 (5)C19—C201.368 (6)
C3—C81.393 (5)C19—H190.9300
C3—C41.394 (5)C20—C211.394 (5)
C4—C51.361 (6)C20—H200.9300
C4—H40.9300C22—C271.379 (5)
C5—C61.368 (6)C22—C231.380 (6)
C6—C71.375 (5)C22—H220.9300
C6—H60.9300C23—C241.349 (6)
C7—C81.401 (5)C23—H230.9300
C7—H70.9300C24—C251.391 (6)
C8—C91.503 (5)C24—H240.9300
C9—H9A0.9700C25—C261.388 (5)
C9—H9B0.9700C25—H250.9300
C10—C111.371 (6)C26—C271.400 (5)
C10—C151.395 (5)C26—H260.9300
S1i—Ni1—S1180.00 (4)C10—C11—H11119.8
S1i—Ni1—S2i93.18 (3)C12—C11—H11119.8
S1—Ni1—S2i86.82 (3)C13—C12—C11120.3 (4)
S1i—Ni1—S286.82 (3)C13—C12—H12119.9
S1—Ni1—S293.18 (3)C11—C12—H12119.9
S2i—Ni1—S2180.00 (8)C12—C13—C14120.3 (4)
C1—S1—Ni1103.26 (11)C12—C13—H13119.8
C2—S2—Ni1102.65 (12)C14—C13—H13119.8
N2—S3—N198.37 (16)C13—C14—C15119.4 (4)
C1—N1—S3106.9 (3)C13—C14—H14120.3
C2—N2—S3106.6 (3)C15—C14—H14120.3
C27—P1—C21109.46 (16)C14—C15—C10120.0 (3)
C27—P1—C15109.54 (16)C14—C15—P1120.6 (3)
C21—P1—C15109.54 (16)C10—C15—P1119.2 (3)
C27—P1—C9108.25 (16)C21—C16—C17119.6 (4)
C21—P1—C9109.81 (16)C21—C16—H16120.2
C15—P1—C9110.22 (16)C17—C16—H16120.2
N1—C1—C2114.5 (3)C18—C17—C16119.8 (4)
N1—C1—S1125.5 (3)C18—C17—H17120.1
C2—C1—S1120.1 (3)C16—C17—H17120.1
N2—C2—C1113.6 (3)C19—C18—C17120.9 (4)
N2—C2—S2125.7 (3)C19—C18—H18119.6
C1—C2—S2120.7 (3)C17—C18—H18119.6
C8—C3—C4121.8 (4)C20—C19—C18119.5 (4)
C8—C3—Cl1121.3 (3)C20—C19—H19120.2
C4—C3—Cl1116.8 (3)C18—C19—H19120.2
C5—C4—C3117.8 (4)C19—C20—C21120.3 (4)
C5—C4—H4121.1C19—C20—H20119.8
C3—C4—H4121.1C21—C20—H20119.8
F1—C5—C4117.8 (4)C16—C21—C20119.8 (4)
F1—C5—C6119.0 (4)C16—C21—P1122.2 (3)
C4—C5—C6123.2 (4)C20—C21—P1117.9 (3)
C5—C6—C7118.1 (4)C27—C22—C23119.8 (4)
C5—C6—H6120.9C27—C22—H22120.1
C7—C6—H6120.9C23—C22—H22120.1
C6—C7—C8122.0 (4)C24—C23—C22120.9 (4)
C6—C7—H7119.0C24—C23—H23119.6
C8—C7—H7119.0C22—C23—H23119.6
C3—C8—C7116.9 (3)C23—C24—C25120.7 (4)
C3—C8—C9122.8 (3)C23—C24—H24119.7
C7—C8—C9120.2 (3)C25—C24—H24119.7
C8—C9—P1112.3 (2)C26—C25—C24119.4 (4)
C8—C9—H9A109.2C26—C25—H25120.3
P1—C9—H9A109.2C24—C25—H25120.3
C8—C9—H9B109.2C25—C26—C27119.4 (4)
P1—C9—H9B109.2C25—C26—H26120.3
H9A—C9—H9B107.9C27—C26—H26120.3
C11—C10—C15119.5 (4)C22—C27—C26119.8 (3)
C11—C10—H10120.3C22—C27—P1120.8 (3)
C15—C10—H10120.3C26—C27—P1119.2 (3)
C10—C11—C12120.4 (4)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···S1ii0.972.713.635 (4)160
C9—H9B···Cl10.972.663.129 (4)110
C24—H24···N2iii0.932.613.401 (7)143
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula(C25H20ClFP)2[Ni(C2N2S3)2]
Mr1166.81
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)9.4447 (11), 12.1385 (15), 13.1309 (16)
α, β, γ (°)71.447 (1), 83.601 (2), 68.691 (2)
V3)1329.6 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.19 × 0.15 × 0.11
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.861, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
9694, 4652, 3807
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.00
No. of reflections4652
No. of parameters322
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.39

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—S12.1842 (9)Ni1—S22.1966 (9)
S1i—Ni1—S286.82 (3)S1—Ni1—S293.18 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···S1ii0.9702.7103.635 (4)160.0
C9—H9B···Cl10.9702.6603.129 (4)110.0
C24—H24···N2iii0.9302.6103.401 (7)143.0
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y, z.
 

Acknowledgements

The authors thank the Department of Education of Hubei Province (grant No. D20082705) for financial support.

References

First citationAwaga, K., Okuno, T., Maruyama, Y., Kobayashi, A., Kobayashi, H., Schenk, S. & Underhill, A. E. (1994). Inorg. Chem. 33, 5598–5600.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X., Zou, H. L., Lin, J. H., Huang, Q., Zuo, H. R., Zhou, J. R., Ni, C. L. & Hu, X. L. (2010). J. Mol. Struct. 981, 139–145.  Web of Science CSD CrossRef CAS Google Scholar
First citationHou, Y., Ni, C. L., Zhou, J. R., Liu, X. P., Yu, L. L. & Yang, L. M. (2008). Synth. Met. 158, 379–382.  Web of Science CSD CrossRef CAS Google Scholar
First citationNi, C. L., Dang, D. B., Ni, Z. P., Li, Y. Z., Xie, J. L., Meng, Q. J. & Yao, Y. G. (2004). J. Coord. Chem. 57, 1529–1536.  Web of Science CSD CrossRef CAS Google Scholar
First citationNi, Z. P., Ren, X. M., Ma, J., Xie, J. L., Ni, C. L., Chen, Z. D. & Meng, Q. J. (2005). J. Am. Chem. Soc. 127, 14330–14338.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOkuno, T., Kuwamoto, K., Fujita, W., Awaga, K. & Nakanishi, W. (2003). Polyhedron, 22, 2311–2315.  Web of Science CSD CrossRef CAS Google Scholar
First citationRen, X. M., Meng, Q. J., Song, Y., Lu, C. S. & Hu, C. J. (2002). Inorg. Chem. 41, 5686–5692.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRobertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93–127.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, J. L., Ren, X. M., Song, Y., Zhang, W. W., Liu, W. L., He, C. & Meng, Q. J. (2002). Chem. Commun. pp. 2346–2347.  Web of Science CSD CrossRef Google Scholar
First citationYamochi, H., Sogoshi, N., Simizu, Y., Saito, G. & Matsumoto, K. (2001). J. Mater. Chem. 11, 2216–2220.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, J. R., Ni, C. L. & Hu, X. L. (2011). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 41, 8–14.  Google Scholar
First citationZuo, H. R., Tian, J., Chen, X., Huang, Q., Zhou, J. R., Liu, X. P., Ni, C. L. & Hu, X. L. (2009). J. Chem. Crystallogr. 39, 698–701.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m239-m240
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds