metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m333-m334

Tris(tetra­butyl­ammonium) hexa­kis­(tert-butane­thiol­ato-κS)hepta-μ3-chlorido-μ3-sulfido-hexa­molybdate dihydrate

aNikolaev Institute of Inorganic Chemistry, SB Russian Academy of Sciences, Akademician Lavrentiev prospekt 3, Novosibirsk 90, 630090, Russian Federation, and, Novosibirsk State University, Pirogov street 2, Novosibirsk 90, 630090, Russian Federation
*Correspondence e-mail: panah@mail.ru

(Received 1 February 2012; accepted 19 February 2012; online 24 February 2012)

The octa­hedral cluster core of the anion in the structure of the title compound, (C16H36N)3[Mo6(C4H9S)6(μ3-Cl)7(μ3-S)]·2H2O, has -3 site symmetry. Two μ3-Cl atoms fully occupy positions in the cluster core, while the remaining six positions are statistically occupied by Cl and S atoms in a 1:5 ratio. The fully occupied Cl-atom positions are located on sites with 3 symmetry, and the N atom of tetra­butyl­ammonium cation is located on a site with 2 symmetry. The structure contains also two disordered solvent water mol­ecules, one of which is located on a threefold rotation axis and the other in a general position, both with an occupancy of 0.25. The water mol­ecules are localized in cavities formed by the tetra­butyl­ammonium cations and the tert-butane­thiol­ate groups. The metal clusters are stacked in a cubic close packing arrangement along [001].

Related literature

For a review of octa­hedral halogen-bridged metal clusters, see: Prokopuk & Shryver (1998[Prokopuk, N. & Shryver, D. F. (1998). Adv. Inorg. Chem., Vol. 46, edited by A.G. Sykes, pp. 1-49. New York: Academic Press.]). For synthesis and structures of related halogen/chalcogen clusters, see: Abramov et al. (2009[Abramov, P. A., Sokolov, M. N., Virovets, A. V., Peresypkina, E. V., Vicent, C. & Fedin, V. P. (2009). J. Cluster Sci. 20, 83-92.]); Ebihara et al. (1988[Ebihara, M., Toriumi, K. & Saito, K. (1988). Inorg. Chem. 27, 13-18.]); Ebihara, Imai et al. (1995[Ebihara, M., Imai, T. & Kawamura, T. (1995). Acta Cryst. C51, 1743-1745.]); Ebihara, Toriumi et al. (1995[Ebihara, M., Toriumi, K., Sasaki, Y. & Saito, K. (1995). Gazz. Chim. Ital. 125, 87-95.]); Michel & McCarley (1982[Michel, J. B. & McCarley, R. E. (1982). Inorg. Chem. 21, 1864-1872.]); Nocera & Gray (1984[Nocera, D. G. & Gray, H. B. (1984). J. Am. Chem. Soc. 106, 824-825.]). For a related transformation of tBuS, see: Petrov et al. (2010[Petrov, P. A., Virovets, A. V., Alberola, A., Llusar, R. & Konchenko, S. N. (2010). Dalton Trans. 39, 8875-8877.]). For synthesis and structures of related clusters with sulfur-substituted halogen atoms, see: Schoonover et al. (1996[Schoonover, J. R., Zietlow, T. C., Clark, D. L., Heppert, J. A., Chisholm, M. H., Gray, H. B., Sattelberger, A. P. & Woodruff, W. H. (1996). Inorg. Chem. 35, 6606-6613.]); Szczepura et al. (2008[Szczepura, L. F., Ketcham, K. A., Ooro, B. A., Edwards, J. A., Templeton, J. N., Cedeno, D. L. & Jircitano, A. J. (2008). Inorg. Chem. 47, 7271-7278.]).

[Scheme 1]

Experimental

Crystal data
  • (C16H36N)3[Mo6(C4H9S)6Cl7S]·2H2O

  • Mr = 2154.29

  • Trigonal, [R \overline 3c ]

  • a = 18.7481 (5) Å

  • c = 52.4233 (12) Å

  • V = 15957.7 (7) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 150 K

  • 0.42 × 0.35 × 0.23 mm

Data collection
  • Bruker–Nonius X8 APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.670, Tmax = 0.797

  • 36925 measured reflections

  • 3637 independent reflections

  • 3092 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.125

  • S = 1.14

  • 3637 reflections

  • 161 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 1.16 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Selected bond lengths (Å)

Mo1—Mo1i 2.6067 (4)
Mo1—Mo1ii 2.6328 (5)
Mo1—S1 2.5158 (9)
Mo1—S2iii 2.4792 (9)
Mo1—S2iv 2.4842 (9)
Mo1—Cl1 2.5054 (10)
Mo1—Cl2 2.4801 (9)
Mo1—Cl2iii 2.4792 (9)
Mo1—Cl2iv 2.4842 (9)
Symmetry codes: (i) y, -x+y, -z; (ii) -x+y, -x, z; (iii) -y, x-y, z; (iv) x-y, x, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and POV-RAY (Persistence of Vision, 2004[Persistence of Vision (2004). POV-RAY Persistence of Vision Pty. Ltd, Williamstown, Victoria, Australia.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The octahedral clusters of early transition metals are often regarded as precursors of functional materials with redox and/or luminescent properties. The advantage of halide-bridged clusters [Mo63-X)8X6]2- (X = halogen) is the ability of tuning the electronic structure and the properties of the cluster core by step-by-step exchange of the terminal X atoms. The exchange of the µ3-bridging X atoms is also possible; however, reactions of this type are less common. The halogen-chalcogen clusters with one or two chalcogen atoms (or their mixtures) were obtained in the reactions of [Mo63-X)8X6]2- with NaSH, NaSeH or in situ-generated H2Se (Michel & McCarley, 1982; Ebihara et al., 1988; Ebihara, Imai et al., 1995; Ebihara, Toriumi et al., 1995; Abramov et al., 2009).

Recently, the reaction of [Mo63-X)8(OMe)6]2- with excess EtSH was reported leading to the smooth substitution of the terminal methoxides to ethanethiolate groups. The latter can be further substituted by other SR- groups where R = butyl, benzyl or 3-indolyl (Szczepura et al., 2008). Our attempt was aimed to prove if the reaction of [Mo63-X)8X6]2- with tBuSNa would stop on the substitution of the terminal X atoms, or would result in a core rearrangement as well. Previously, tBuS- was reported to be the source of the S2- anion (see, for example: Petrov et al. 2010).

The presence of three tetrabutylammonium cations designates the charge of the cluster core. Keeping in mind the high oxidation potential of the [Mo63-Cl)8Cl6]3-/2- pair (1.53 V in MeCN versus SCE, Nocera & Gray, 1984) one would formulate the cluster core composition as [Mo63-S)(µ3-Cl)7(StBu)6]3-. The analysis of the temperature factors of the atoms in the µ3-positions leads us to the conclusion that two positions are occupied with Cl atoms only, while the remaining six positions are statistically occupied with Cl and S atoms in a 1:5 ratio (Fig. 1). The presence of one S atom in the cluster core has no noticeable effect on its geometry (Schoonover et al., 1996; Szczepura et al., 2008).

The structure contains two disordered lattice water molecules. One is located on a threefold rotation axis, the other is located in a general position. Both have an occupancy of 0.25 and are disordered over a site with symmetry 32. These two water molecules have an O ··· O distance of 2.706 (8) Å, pointing to hydrogen-bonding interactions. The water molecules are localized in cavities formed by the Bu4N+ cations and tBuS groups. The water incorporated in the structure most likely originated from the starting material (Bu4N)2[Mo63-Cl)8Cl6].nH2O.

The centres of the metal clusters are arranged in a cubic close packing along [001] as stacking direction (Fig. 2).

Related literature top

For a review of octahedral halogen-bridged metal clusters, see: Prokopuk & Shryver (1998). For synthesis and structures of related halogen/chalcogen clusters, see: Abramov et al. (2009); Ebihara et al. (1988); Ebihara, Imai et al. (1995); Ebihara, Toriumi et al. (1995); Michel & McCarley (1982); Nocera & Gray (1984). For synthesis and structures of related clusters with sulfur-substituted halogen atoms, see: Schoonover et al. (1996); Szczepura et al. (2008).

Experimental top

A mixture of 128.8 mg (0.083 mmol) (Bu4N)2[Mo6Cl14] and 154.8 mg (1.38 mmol) NaStBu (1:16.7 molar ratio) in 15 ml CH3CN was refluxed for 5 days. The resulting brown solution was filtered to remove the white residue and left standing at 278 K. After several weeks almost black crystals were formed. The largest positive and negative residual electron densities are located 0.73 Å from atom OW3 and 0.58 Å from atom S2, respectively.

Refinement top

The site occupation factors of the S and Cl atoms of the disordered Cl2/S2 site were preliminary refined without any constrains giving us the ratio. Constrained occupation factors were taken into account in the final refinement cycle. The composition of the anion has been confirmed by electrospray mass-spectrometry. The signal at m/z 695.7 was assigned to the [Mo63-S)(µ3-Cl)7(StBu)6]]2- anion. The H atoms of the disordered water molecules could not be located and were excluded from refinement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006) and POV-RAY (Persistence of Vision, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of [Mo63-S)(µ3-Cl)7(StBu)6]3- anion. Displacement ellipsoids are plotted at the 50% probability level.
[Figure 2] Fig. 2. Packing of the structure viewed along c axis. O and H atoms are omitted for clarity.
Tris(tetrabutylammonium) hexakis(tert-butanethiolato-κS)hepta-µ3- chlorido-µ3-sulfido-hexamolybdate dihydrate top
Crystal data top
(C16H36N)3[Mo6(C4H9S)6Cl7S]·2H2ODx = 1.345 Mg m3
Mr = 2154.29Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3cCell parameters from 9844 reflections
Hall symbol: -R 3 2"cθ = 2.5–28.3°
a = 18.7481 (5) ŵ = 1.04 mm1
c = 52.4233 (12) ÅT = 150 K
V = 15957.7 (7) Å3Prism, brown
Z = 60.42 × 0.35 × 0.23 mm
F(000) = 6708
Data collection top
Bruker–Nonius X8 APEX CCD
diffractometer
3637 independent reflections
Radiation source: fine-focus sealed tube3092 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 25 pixels mm-1θmax = 26.4°, θmin = 2.2°
ϕ scansh = 2323
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 2322
Tmin = 0.670, Tmax = 0.797l = 6555
36925 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0654P)2 + 69.7786P]
where P = (Fo2 + 2Fc2)/3
3637 reflections(Δ/σ)max < 0.001
161 parametersΔρmax = 1.16 e Å3
12 restraintsΔρmin = 0.76 e Å3
Crystal data top
(C16H36N)3[Mo6(C4H9S)6Cl7S]·2H2OZ = 6
Mr = 2154.29Mo Kα radiation
Trigonal, R3cµ = 1.04 mm1
a = 18.7481 (5) ÅT = 150 K
c = 52.4233 (12) Å0.42 × 0.35 × 0.23 mm
V = 15957.7 (7) Å3
Data collection top
Bruker–Nonius X8 APEX CCD
diffractometer
3637 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3092 reflections with I > 2σ(I)
Tmin = 0.670, Tmax = 0.797Rint = 0.034
36925 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03812 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0654P)2 + 69.7786P]
where P = (Fo2 + 2Fc2)/3
3637 reflectionsΔρmax = 1.16 e Å3
161 parametersΔρmin = 0.76 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Hydrogen atoms of water molecules are not located. One of water molecules is disodered by two positions. Hydrogen atoms of cation and anion are placed geometrically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.093280 (16)0.039723 (17)0.020197 (5)0.02512 (13)
Cl10.00000.00000.05819 (2)0.0298 (3)
Cl20.07472 (5)0.10085 (5)0.019692 (16)0.0374 (2)0.8333333
S10.21632 (6)0.09894 (7)0.049357 (18)0.0458 (3)
S20.07472 (5)0.10085 (5)0.019692 (16)0.0374 (2)0.1666667
O2W0.5911 (10)0.3102 (13)0.0925 (4)0.103 (6)0.25
N10.2617 (3)0.33330.08330.0555 (12)
C10.3076 (2)0.0927 (3)0.03926 (8)0.0478 (9)
C20.3649 (4)0.1194 (6)0.06188 (11)0.107 (3)
H2A0.41280.11370.05780.161*
H2B0.33590.08480.07660.161*
H2C0.38310.17710.06590.161*
C30.2844 (4)0.0089 (4)0.02944 (17)0.111 (3)
H3A0.24540.00540.01530.167*
H3B0.25870.03160.04320.167*
H3C0.33390.00890.02340.167*
C40.3539 (4)0.1528 (5)0.01793 (13)0.099 (2)
H4A0.37310.20910.02380.148*
H4B0.31720.14080.00330.148*
H4C0.40130.14730.01290.148*
C110.3094 (3)0.3354 (3)0.10717 (8)0.0559 (11)
H11A0.36200.38830.10750.067*
H11B0.27730.33420.12230.067*
C120.3281 (3)0.2659 (3)0.10940 (9)0.0669 (13)
H12A0.27610.21260.10780.080*
H12B0.36450.26970.09520.080*
C130.3688 (4)0.2676 (3)0.13419 (10)0.0809 (16)
H13A0.33140.26200.14840.097*
H13B0.41950.32180.13600.097*
C140.3909 (4)0.2012 (4)0.13669 (13)0.0886 (18)
H14A0.34050.14730.13690.133*
H14B0.42140.20900.15260.133*
H14C0.42520.20400.12220.133*
C210.2550 (3)0.4108 (3)0.08358 (10)0.0649 (13)
H21A0.31080.45870.08620.078*
H21B0.22120.40810.09840.078*
C220.2179 (5)0.4266 (4)0.05962 (15)0.107 (3)
H22A0.24720.42290.04440.128*
H22B0.15950.38280.05820.128*
C230.2222 (4)0.5059 (4)0.05953 (12)0.0854 (17)
H23A0.28080.54940.06060.102*
H23B0.19420.50990.07500.102*
C240.1854 (6)0.5224 (5)0.03716 (18)0.136 (4)
H24A0.20260.50590.02160.204*
H24B0.20390.58140.03640.204*
H24C0.12520.49100.03860.204*
O1W0.66670.33330.0468 (7)0.095 (8)0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02590 (17)0.02668 (17)0.02253 (19)0.01297 (12)0.00049 (9)0.00092 (9)
Cl10.0327 (4)0.0327 (4)0.0241 (6)0.0163 (2)0.0000.000
Cl20.0400 (4)0.0387 (4)0.0356 (4)0.0212 (4)0.0011 (3)0.0002 (3)
S10.0345 (5)0.0652 (6)0.0409 (5)0.0273 (4)0.0101 (4)0.0199 (4)
S20.0400 (4)0.0387 (4)0.0356 (4)0.0212 (4)0.0011 (3)0.0002 (3)
O2W0.049 (7)0.116 (10)0.122 (10)0.024 (6)0.007 (6)0.007 (7)
N10.060 (2)0.051 (3)0.052 (3)0.0254 (14)0.0121 (11)0.024 (2)
C10.0364 (19)0.054 (2)0.057 (2)0.0256 (18)0.0009 (17)0.0042 (18)
C20.061 (3)0.210 (8)0.076 (4)0.086 (5)0.021 (3)0.020 (4)
C30.061 (3)0.066 (4)0.219 (8)0.040 (3)0.019 (4)0.011 (4)
C40.055 (3)0.126 (6)0.100 (5)0.034 (4)0.019 (3)0.031 (4)
C110.062 (3)0.056 (3)0.044 (2)0.024 (2)0.0055 (19)0.0146 (18)
C120.082 (3)0.063 (3)0.058 (3)0.039 (3)0.011 (2)0.015 (2)
C130.110 (5)0.063 (3)0.063 (3)0.038 (3)0.013 (3)0.002 (2)
C140.100 (5)0.088 (4)0.082 (4)0.050 (4)0.012 (3)0.009 (3)
C210.061 (3)0.057 (3)0.075 (3)0.028 (2)0.019 (2)0.033 (2)
C220.131 (6)0.086 (4)0.122 (5)0.070 (4)0.078 (5)0.058 (4)
C230.086 (4)0.081 (4)0.094 (4)0.045 (3)0.018 (3)0.026 (3)
C240.157 (8)0.091 (5)0.181 (8)0.078 (5)0.083 (7)0.039 (5)
O1W0.086 (8)0.086 (8)0.113 (12)0.043 (4)0.0000.000
Geometric parameters (Å, º) top
Mo1—Mo1i2.6067 (4)C3—H3C0.9800
Mo1—Mo1ii2.6067 (4)C4—H4A0.9800
Mo1—Mo1iii2.6328 (5)C4—H4B0.9800
Mo1—Mo1iv2.6328 (5)C4—H4C0.9800
Mo1—S12.5158 (9)C11—C121.515 (7)
Mo1—S2iv2.4792 (9)C11—H11A0.9900
Mo1—S2ii2.4842 (9)C11—H11B0.9900
Mo1—Cl12.5054 (10)C12—C131.500 (7)
Mo1—Cl22.4801 (9)C12—H12A0.9900
Mo1—Cl2iv2.4792 (9)C12—H12B0.9900
Mo1—Cl2ii2.4842 (9)C13—C141.501 (8)
Cl1—Mo1iii2.5054 (10)C13—H13A0.9900
Cl1—Mo1iv2.5054 (10)C13—H13B0.9900
Cl2—Mo1iii2.4792 (9)C14—H14A0.9800
Cl2—Mo1i2.4842 (9)C14—H14B0.9800
S1—C11.849 (4)C14—H14C0.9800
O2W—O2Wv1.22 (4)C21—C221.535 (8)
N1—C21v1.520 (5)C21—H21A0.9900
N1—C211.520 (5)C21—H21B0.9900
N1—C11v1.525 (5)C22—C231.448 (8)
N1—C111.525 (5)C22—H22A0.9900
C1—C31.497 (7)C22—H22B0.9900
C1—C21.508 (6)C23—C241.470 (9)
C1—C41.515 (7)C23—H23A0.9900
C2—H2A0.9800C23—H23B0.9900
C2—H2B0.9800C24—H24A0.9800
C2—H2C0.9800C24—H24B0.9800
C3—H3A0.9800C24—H24C0.9800
C3—H3B0.9800
S2iv—Mo1—Cl2iv0.00 (5)C2—C1—C4106.6 (5)
S2iv—Mo1—Cl2175.69 (3)C3—C1—S1111.9 (3)
Cl2iv—Mo1—Cl2175.69 (3)C2—C1—S1106.4 (3)
S2iv—Mo1—S2ii90.61 (2)C4—C1—S1111.6 (4)
Cl2iv—Mo1—S2ii90.61 (2)C1—C2—H2A109.5
Cl2—Mo1—S2ii90.59 (2)C1—C2—H2B109.5
S2iv—Mo1—Cl2ii90.61 (2)H2A—C2—H2B109.5
Cl2iv—Mo1—Cl2ii90.61 (2)C1—C2—H2C109.5
Cl2—Mo1—Cl2ii90.59 (2)H2A—C2—H2C109.5
S2ii—Mo1—Cl2ii0.00 (5)H2B—C2—H2C109.5
S2iv—Mo1—Cl189.24 (2)C1—C3—H3A109.5
Cl2iv—Mo1—Cl189.24 (2)C1—C3—H3B109.5
Cl2—Mo1—Cl189.22 (2)H3A—C3—H3B109.5
S2ii—Mo1—Cl1175.32 (3)C1—C3—H3C109.5
Cl2ii—Mo1—Cl1175.32 (3)H3A—C3—H3C109.5
S2iv—Mo1—S189.10 (3)H3B—C3—H3C109.5
Cl2iv—Mo1—S189.10 (3)C1—C4—H4A109.5
Cl2—Mo1—S194.93 (3)C1—C4—H4B109.5
S2ii—Mo1—S194.79 (3)H4A—C4—H4B109.5
Cl2ii—Mo1—S194.79 (3)C1—C4—H4C109.5
Cl1—Mo1—S189.88 (3)H4A—C4—H4C109.5
S2iv—Mo1—Mo1i119.05 (2)H4B—C4—H4C109.5
Cl2iv—Mo1—Mo1i119.05 (2)C12—C11—N1115.2 (3)
Cl2—Mo1—Mo1i58.40 (2)C12—C11—H11A108.5
S2ii—Mo1—Mo1i58.22 (2)N1—C11—H11A108.5
Cl2ii—Mo1—Mo1i58.22 (2)C12—C11—H11B108.5
Cl1—Mo1—Mo1i117.960 (18)N1—C11—H11B108.5
S1—Mo1—Mo1i138.62 (2)H11A—C11—H11B107.5
S2iv—Mo1—Mo1ii58.41 (2)C13—C12—C11112.5 (4)
Cl2iv—Mo1—Mo1ii58.41 (2)C13—C12—H12A109.1
Cl2—Mo1—Mo1ii119.04 (2)C11—C12—H12A109.1
S2ii—Mo1—Mo1ii58.25 (2)C13—C12—H12B109.1
Cl2ii—Mo1—Mo1ii58.25 (2)C11—C12—H12B109.1
Cl1—Mo1—Mo1ii117.960 (17)H12A—C12—H12B107.8
S1—Mo1—Mo1ii134.36 (3)C12—C13—C14114.0 (5)
Mo1i—Mo1—Mo1ii60.665 (13)C12—C13—H13A108.8
S2iv—Mo1—Mo1iii117.95 (2)C14—C13—H13A108.8
Cl2iv—Mo1—Mo1iii117.95 (2)C12—C13—H13B108.8
Cl2—Mo1—Mo1iii57.92 (2)C14—C13—H13B108.8
S2ii—Mo1—Mo1iii117.86 (2)H13A—C13—H13B107.7
Cl2ii—Mo1—Mo1iii117.86 (2)C13—C14—H14A109.5
Cl1—Mo1—Mo1iii58.302 (15)C13—C14—H14B109.5
S1—Mo1—Mo1iii135.38 (3)H14A—C14—H14B109.5
Mo1i—Mo1—Mo1iii59.667 (7)C13—C14—H14C109.5
Mo1ii—Mo1—Mo1iii90.0H14A—C14—H14C109.5
S2iv—Mo1—Mo1iv57.95 (2)H14B—C14—H14C109.5
Cl2iv—Mo1—Mo1iv57.95 (2)N1—C21—C22116.1 (4)
Cl2—Mo1—Mo1iv117.91 (2)N1—C21—H21A108.3
S2ii—Mo1—Mo1iv117.89 (2)C22—C21—H21A108.3
Cl2ii—Mo1—Mo1iv117.89 (2)N1—C21—H21B108.3
Cl1—Mo1—Mo1iv58.302 (15)C22—C21—H21B108.3
S1—Mo1—Mo1iv131.38 (2)H21A—C21—H21B107.4
Mo1i—Mo1—Mo1iv90.0C23—C22—C21113.7 (5)
Mo1ii—Mo1—Mo1iv59.667 (7)C23—C22—H22A108.8
Mo1iii—Mo1—Mo1iv60.0C21—C22—H22A108.8
Mo1iii—Cl1—Mo1iv63.40 (3)C23—C22—H22B108.8
Mo1iii—Cl1—Mo163.40 (3)C21—C22—H22B108.8
Mo1iv—Cl1—Mo163.40 (3)H22A—C22—H22B107.7
Mo1iii—Cl2—Mo164.13 (2)C22—C23—C24115.3 (5)
Mo1iii—Cl2—Mo1i63.36 (2)C22—C23—H23A108.4
Mo1—Cl2—Mo1i63.35 (2)C24—C23—H23A108.4
C1—S1—Mo1118.11 (13)C22—C23—H23B108.4
C21v—N1—C21111.8 (5)C24—C23—H23B108.4
C21v—N1—C11v107.2 (2)H23A—C23—H23B107.5
C21—N1—C11v110.3 (3)C23—C24—H24A109.5
C21v—N1—C11110.3 (3)C23—C24—H24B109.5
C21—N1—C11107.2 (2)H24A—C24—H24B109.5
C11v—N1—C11110.1 (5)C23—C24—H24C109.5
C3—C1—C2113.8 (5)H24A—C24—H24C109.5
C3—C1—C4106.5 (5)H24B—C24—H24C109.5
Symmetry codes: (i) y, x+y, z; (ii) xy, x, z; (iii) x+y, x, z; (iv) y, xy, z; (v) xy+1/3, y+2/3, z+1/6.

Experimental details

Crystal data
Chemical formula(C16H36N)3[Mo6(C4H9S)6Cl7S]·2H2O
Mr2154.29
Crystal system, space groupTrigonal, R3c
Temperature (K)150
a, c (Å)18.7481 (5), 52.4233 (12)
V3)15957.7 (7)
Z6
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.42 × 0.35 × 0.23
Data collection
DiffractometerBruker–Nonius X8 APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.670, 0.797
No. of measured, independent and
observed [I > 2σ(I)] reflections
36925, 3637, 3092
Rint0.034
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.125, 1.14
No. of reflections3637
No. of parameters161
No. of restraints12
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0654P)2 + 69.7786P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.16, 0.76

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006) and POV-RAY (Persistence of Vision, 2004), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mo1—Mo1i2.6067 (4)Mo1—Cl12.5054 (10)
Mo1—Mo1ii2.6328 (5)Mo1—Cl22.4801 (9)
Mo1—S12.5158 (9)Mo1—Cl2iii2.4792 (9)
Mo1—S2iii2.4792 (9)Mo1—Cl2iv2.4842 (9)
Mo1—S2iv2.4842 (9)
Symmetry codes: (i) y, x+y, z; (ii) x+y, x, z; (iii) y, xy, z; (iv) xy, x, z.
 

Acknowledgements

The work was supported by RFBR (grants 09–03-38245a and 10–03-38245a) and State Contract GK-02.740.11.0628. The authors are grateful to Dr Cristian Vicent (Universitat Jaume I, Castello, Spain) for ES-MS data.

References

First citationAbramov, P. A., Sokolov, M. N., Virovets, A. V., Peresypkina, E. V., Vicent, C. & Fedin, V. P. (2009). J. Cluster Sci. 20, 83–92.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEbihara, M., Imai, T. & Kawamura, T. (1995). Acta Cryst. C51, 1743–1745.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEbihara, M., Toriumi, K. & Saito, K. (1988). Inorg. Chem. 27, 13–18.  CrossRef CAS Web of Science Google Scholar
First citationEbihara, M., Toriumi, K., Sasaki, Y. & Saito, K. (1995). Gazz. Chim. Ital. 125, 87–95.  CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMichel, J. B. & McCarley, R. E. (1982). Inorg. Chem. 21, 1864–1872.  CSD CrossRef CAS Web of Science Google Scholar
First citationNocera, D. G. & Gray, H. B. (1984). J. Am. Chem. Soc. 106, 824–825.  CrossRef CAS Web of Science Google Scholar
First citationPersistence of Vision (2004). POV-RAY Persistence of Vision Pty. Ltd, Williamstown, Victoria, Australia.  Google Scholar
First citationPetrov, P. A., Virovets, A. V., Alberola, A., Llusar, R. & Konchenko, S. N. (2010). Dalton Trans. 39, 8875–8877.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationProkopuk, N. & Shryver, D. F. (1998). Adv. Inorg. Chem., Vol. 46, edited by A.G. Sykes, pp. 1–49. New York: Academic Press.  Google Scholar
First citationSchoonover, J. R., Zietlow, T. C., Clark, D. L., Heppert, J. A., Chisholm, M. H., Gray, H. B., Sattelberger, A. P. & Woodruff, W. H. (1996). Inorg. Chem. 35, 6606–6613.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzczepura, L. F., Ketcham, K. A., Ooro, B. A., Edwards, J. A., Templeton, J. N., Cedeno, D. L. & Jircitano, A. J. (2008). Inorg. Chem. 47, 7271–7278.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m333-m334
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds