metal-organic compounds
Tris(tetrabutylammonium) hexakis(tert-butanethiolato-κS)hepta-μ3-chlorido-μ3-sulfido-hexamolybdate dihydrate
aNikolaev Institute of Inorganic Chemistry, SB Russian Academy of Sciences, Akademician Lavrentiev prospekt 3, Novosibirsk 90, 630090, Russian Federation, and, Novosibirsk State University, Pirogov street 2, Novosibirsk 90, 630090, Russian Federation
*Correspondence e-mail: panah@mail.ru
The octahedral cluster core of the anion in the structure of the title compound, (C16H36N)3[Mo6(C4H9S)6(μ3-Cl)7(μ3-S)]·2H2O, has -3 Two μ3-Cl atoms fully occupy positions in the cluster core, while the remaining six positions are statistically occupied by Cl and S atoms in a 1:5 ratio. The fully occupied Cl-atom positions are located on sites with 3 symmetry, and the N atom of tetrabutylammonium cation is located on a site with 2 symmetry. The structure contains also two disordered solvent water molecules, one of which is located on a threefold rotation axis and the other in a general position, both with an occupancy of 0.25. The water molecules are localized in cavities formed by the tetrabutylammonium cations and the tert-butanethiolate groups. The metal clusters are stacked in a cubic close packing arrangement along [001].
Related literature
For a review of octahedral halogen-bridged metal clusters, see: Prokopuk & Shryver (1998). For synthesis and structures of related halogen/chalcogen clusters, see: Abramov et al. (2009); Ebihara et al. (1988); Ebihara, Imai et al. (1995); Ebihara, Toriumi et al. (1995); Michel & McCarley (1982); Nocera & Gray (1984). For a related transformation of tBuS−, see: Petrov et al. (2010). For synthesis and structures of related clusters with sulfur-substituted halogen atoms, see: Schoonover et al. (1996); Szczepura et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006) and POV-RAY (Persistence of Vision, 2004); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812007416/wm2589sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812007416/wm2589Isup2.hkl
A mixture of 128.8 mg (0.083 mmol) (Bu4N)2[Mo6Cl14] and 154.8 mg (1.38 mmol) NaStBu (1:16.7 molar ratio) in 15 ml CH3CN was refluxed for 5 days. The resulting brown solution was filtered to remove the white residue and left standing at 278 K. After several weeks almost black crystals were formed. The largest positive and negative residual electron densities are located 0.73 Å from atom OW3 and 0.58 Å from atom S2, respectively.
The site occupation factors of the S and Cl atoms of the disordered Cl2/S2 site were preliminary refined without any constrains giving us the ratio. Constrained occupation factors were taken into account in the final
cycle. The composition of the anion has been confirmed by electrospray mass-spectrometry. The signal at m/z 695.7 was assigned to the [Mo6(µ3-S)(µ3-Cl)7(StBu)6]]2- anion. The H atoms of the disordered water molecules could not be located and were excluded from refinement.Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006) and POV-RAY (Persistence of Vision, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).(C16H36N)3[Mo6(C4H9S)6Cl7S]·2H2O | Dx = 1.345 Mg m−3 |
Mr = 2154.29 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3c | Cell parameters from 9844 reflections |
Hall symbol: -R 3 2"c | θ = 2.5–28.3° |
a = 18.7481 (5) Å | µ = 1.04 mm−1 |
c = 52.4233 (12) Å | T = 150 K |
V = 15957.7 (7) Å3 | Prism, brown |
Z = 6 | 0.42 × 0.35 × 0.23 mm |
F(000) = 6708 |
Bruker–Nonius X8 APEX CCD diffractometer | 3637 independent reflections |
Radiation source: fine-focus sealed tube | 3092 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
Detector resolution: 25 pixels mm-1 | θmax = 26.4°, θmin = 2.2° |
ϕ scans | h = −23→23 |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | k = −23→22 |
Tmin = 0.670, Tmax = 0.797 | l = −65→55 |
36925 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.125 | H-atom parameters constrained |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0654P)2 + 69.7786P] where P = (Fo2 + 2Fc2)/3 |
3637 reflections | (Δ/σ)max < 0.001 |
161 parameters | Δρmax = 1.16 e Å−3 |
12 restraints | Δρmin = −0.76 e Å−3 |
(C16H36N)3[Mo6(C4H9S)6Cl7S]·2H2O | Z = 6 |
Mr = 2154.29 | Mo Kα radiation |
Trigonal, R3c | µ = 1.04 mm−1 |
a = 18.7481 (5) Å | T = 150 K |
c = 52.4233 (12) Å | 0.42 × 0.35 × 0.23 mm |
V = 15957.7 (7) Å3 |
Bruker–Nonius X8 APEX CCD diffractometer | 3637 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 3092 reflections with I > 2σ(I) |
Tmin = 0.670, Tmax = 0.797 | Rint = 0.034 |
36925 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 12 restraints |
wR(F2) = 0.125 | H-atom parameters constrained |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0654P)2 + 69.7786P] where P = (Fo2 + 2Fc2)/3 |
3637 reflections | Δρmax = 1.16 e Å−3 |
161 parameters | Δρmin = −0.76 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Hydrogen atoms of water molecules are not located. One of water molecules is disodered by two positions. Hydrogen atoms of cation and anion are placed geometrically. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mo1 | 0.093280 (16) | 0.039723 (17) | 0.020197 (5) | 0.02512 (13) | |
Cl1 | 0.0000 | 0.0000 | 0.05819 (2) | 0.0298 (3) | |
Cl2 | 0.07472 (5) | −0.10085 (5) | 0.019692 (16) | 0.0374 (2) | 0.8333333 |
S1 | 0.21632 (6) | 0.09894 (7) | 0.049357 (18) | 0.0458 (3) | |
S2 | 0.07472 (5) | −0.10085 (5) | 0.019692 (16) | 0.0374 (2) | 0.1666667 |
O2W | 0.5911 (10) | 0.3102 (13) | 0.0925 (4) | 0.103 (6) | 0.25 |
N1 | 0.2617 (3) | 0.3333 | 0.0833 | 0.0555 (12) | |
C1 | 0.3076 (2) | 0.0927 (3) | 0.03926 (8) | 0.0478 (9) | |
C2 | 0.3649 (4) | 0.1194 (6) | 0.06188 (11) | 0.107 (3) | |
H2A | 0.4128 | 0.1137 | 0.0578 | 0.161* | |
H2B | 0.3359 | 0.0848 | 0.0766 | 0.161* | |
H2C | 0.3831 | 0.1771 | 0.0659 | 0.161* | |
C3 | 0.2844 (4) | 0.0089 (4) | 0.02944 (17) | 0.111 (3) | |
H3A | 0.2454 | −0.0054 | 0.0153 | 0.167* | |
H3B | 0.2587 | −0.0316 | 0.0432 | 0.167* | |
H3C | 0.3339 | 0.0089 | 0.0234 | 0.167* | |
C4 | 0.3539 (4) | 0.1528 (5) | 0.01793 (13) | 0.099 (2) | |
H4A | 0.3731 | 0.2091 | 0.0238 | 0.148* | |
H4B | 0.3172 | 0.1408 | 0.0033 | 0.148* | |
H4C | 0.4013 | 0.1473 | 0.0129 | 0.148* | |
C11 | 0.3094 (3) | 0.3354 (3) | 0.10717 (8) | 0.0559 (11) | |
H11A | 0.3620 | 0.3883 | 0.1075 | 0.067* | |
H11B | 0.2773 | 0.3342 | 0.1223 | 0.067* | |
C12 | 0.3281 (3) | 0.2659 (3) | 0.10940 (9) | 0.0669 (13) | |
H12A | 0.2761 | 0.2126 | 0.1078 | 0.080* | |
H12B | 0.3645 | 0.2697 | 0.0952 | 0.080* | |
C13 | 0.3688 (4) | 0.2676 (3) | 0.13419 (10) | 0.0809 (16) | |
H13A | 0.3314 | 0.2620 | 0.1484 | 0.097* | |
H13B | 0.4195 | 0.3218 | 0.1360 | 0.097* | |
C14 | 0.3909 (4) | 0.2012 (4) | 0.13669 (13) | 0.0886 (18) | |
H14A | 0.3405 | 0.1473 | 0.1369 | 0.133* | |
H14B | 0.4214 | 0.2090 | 0.1526 | 0.133* | |
H14C | 0.4252 | 0.2040 | 0.1222 | 0.133* | |
C21 | 0.2550 (3) | 0.4108 (3) | 0.08358 (10) | 0.0649 (13) | |
H21A | 0.3108 | 0.4587 | 0.0862 | 0.078* | |
H21B | 0.2212 | 0.4081 | 0.0984 | 0.078* | |
C22 | 0.2179 (5) | 0.4266 (4) | 0.05962 (15) | 0.107 (3) | |
H22A | 0.2472 | 0.4229 | 0.0444 | 0.128* | |
H22B | 0.1595 | 0.3828 | 0.0582 | 0.128* | |
C23 | 0.2222 (4) | 0.5059 (4) | 0.05953 (12) | 0.0854 (17) | |
H23A | 0.2808 | 0.5494 | 0.0606 | 0.102* | |
H23B | 0.1942 | 0.5099 | 0.0750 | 0.102* | |
C24 | 0.1854 (6) | 0.5224 (5) | 0.03716 (18) | 0.136 (4) | |
H24A | 0.2026 | 0.5059 | 0.0216 | 0.204* | |
H24B | 0.2039 | 0.5814 | 0.0364 | 0.204* | |
H24C | 0.1252 | 0.4910 | 0.0386 | 0.204* | |
O1W | 0.6667 | 0.3333 | 0.0468 (7) | 0.095 (8) | 0.25 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.02590 (17) | 0.02668 (17) | 0.02253 (19) | 0.01297 (12) | −0.00049 (9) | −0.00092 (9) |
Cl1 | 0.0327 (4) | 0.0327 (4) | 0.0241 (6) | 0.0163 (2) | 0.000 | 0.000 |
Cl2 | 0.0400 (4) | 0.0387 (4) | 0.0356 (4) | 0.0212 (4) | −0.0011 (3) | 0.0002 (3) |
S1 | 0.0345 (5) | 0.0652 (6) | 0.0409 (5) | 0.0273 (4) | −0.0101 (4) | −0.0199 (4) |
S2 | 0.0400 (4) | 0.0387 (4) | 0.0356 (4) | 0.0212 (4) | −0.0011 (3) | 0.0002 (3) |
O2W | 0.049 (7) | 0.116 (10) | 0.122 (10) | 0.024 (6) | 0.007 (6) | 0.007 (7) |
N1 | 0.060 (2) | 0.051 (3) | 0.052 (3) | 0.0254 (14) | −0.0121 (11) | −0.024 (2) |
C1 | 0.0364 (19) | 0.054 (2) | 0.057 (2) | 0.0256 (18) | −0.0009 (17) | −0.0042 (18) |
C2 | 0.061 (3) | 0.210 (8) | 0.076 (4) | 0.086 (5) | −0.021 (3) | −0.020 (4) |
C3 | 0.061 (3) | 0.066 (4) | 0.219 (8) | 0.040 (3) | 0.019 (4) | −0.011 (4) |
C4 | 0.055 (3) | 0.126 (6) | 0.100 (5) | 0.034 (4) | 0.019 (3) | 0.031 (4) |
C11 | 0.062 (3) | 0.056 (3) | 0.044 (2) | 0.024 (2) | −0.0055 (19) | −0.0146 (18) |
C12 | 0.082 (3) | 0.063 (3) | 0.058 (3) | 0.039 (3) | −0.011 (2) | −0.015 (2) |
C13 | 0.110 (5) | 0.063 (3) | 0.063 (3) | 0.038 (3) | −0.013 (3) | −0.002 (2) |
C14 | 0.100 (5) | 0.088 (4) | 0.082 (4) | 0.050 (4) | −0.012 (3) | 0.009 (3) |
C21 | 0.061 (3) | 0.057 (3) | 0.075 (3) | 0.028 (2) | −0.019 (2) | −0.033 (2) |
C22 | 0.131 (6) | 0.086 (4) | 0.122 (5) | 0.070 (4) | −0.078 (5) | −0.058 (4) |
C23 | 0.086 (4) | 0.081 (4) | 0.094 (4) | 0.045 (3) | −0.018 (3) | −0.026 (3) |
C24 | 0.157 (8) | 0.091 (5) | 0.181 (8) | 0.078 (5) | −0.083 (7) | −0.039 (5) |
O1W | 0.086 (8) | 0.086 (8) | 0.113 (12) | 0.043 (4) | 0.000 | 0.000 |
Mo1—Mo1i | 2.6067 (4) | C3—H3C | 0.9800 |
Mo1—Mo1ii | 2.6067 (4) | C4—H4A | 0.9800 |
Mo1—Mo1iii | 2.6328 (5) | C4—H4B | 0.9800 |
Mo1—Mo1iv | 2.6328 (5) | C4—H4C | 0.9800 |
Mo1—S1 | 2.5158 (9) | C11—C12 | 1.515 (7) |
Mo1—S2iv | 2.4792 (9) | C11—H11A | 0.9900 |
Mo1—S2ii | 2.4842 (9) | C11—H11B | 0.9900 |
Mo1—Cl1 | 2.5054 (10) | C12—C13 | 1.500 (7) |
Mo1—Cl2 | 2.4801 (9) | C12—H12A | 0.9900 |
Mo1—Cl2iv | 2.4792 (9) | C12—H12B | 0.9900 |
Mo1—Cl2ii | 2.4842 (9) | C13—C14 | 1.501 (8) |
Cl1—Mo1iii | 2.5054 (10) | C13—H13A | 0.9900 |
Cl1—Mo1iv | 2.5054 (10) | C13—H13B | 0.9900 |
Cl2—Mo1iii | 2.4792 (9) | C14—H14A | 0.9800 |
Cl2—Mo1i | 2.4842 (9) | C14—H14B | 0.9800 |
S1—C1 | 1.849 (4) | C14—H14C | 0.9800 |
O2W—O2Wv | 1.22 (4) | C21—C22 | 1.535 (8) |
N1—C21v | 1.520 (5) | C21—H21A | 0.9900 |
N1—C21 | 1.520 (5) | C21—H21B | 0.9900 |
N1—C11v | 1.525 (5) | C22—C23 | 1.448 (8) |
N1—C11 | 1.525 (5) | C22—H22A | 0.9900 |
C1—C3 | 1.497 (7) | C22—H22B | 0.9900 |
C1—C2 | 1.508 (6) | C23—C24 | 1.470 (9) |
C1—C4 | 1.515 (7) | C23—H23A | 0.9900 |
C2—H2A | 0.9800 | C23—H23B | 0.9900 |
C2—H2B | 0.9800 | C24—H24A | 0.9800 |
C2—H2C | 0.9800 | C24—H24B | 0.9800 |
C3—H3A | 0.9800 | C24—H24C | 0.9800 |
C3—H3B | 0.9800 | ||
S2iv—Mo1—Cl2iv | 0.00 (5) | C2—C1—C4 | 106.6 (5) |
S2iv—Mo1—Cl2 | 175.69 (3) | C3—C1—S1 | 111.9 (3) |
Cl2iv—Mo1—Cl2 | 175.69 (3) | C2—C1—S1 | 106.4 (3) |
S2iv—Mo1—S2ii | 90.61 (2) | C4—C1—S1 | 111.6 (4) |
Cl2iv—Mo1—S2ii | 90.61 (2) | C1—C2—H2A | 109.5 |
Cl2—Mo1—S2ii | 90.59 (2) | C1—C2—H2B | 109.5 |
S2iv—Mo1—Cl2ii | 90.61 (2) | H2A—C2—H2B | 109.5 |
Cl2iv—Mo1—Cl2ii | 90.61 (2) | C1—C2—H2C | 109.5 |
Cl2—Mo1—Cl2ii | 90.59 (2) | H2A—C2—H2C | 109.5 |
S2ii—Mo1—Cl2ii | 0.00 (5) | H2B—C2—H2C | 109.5 |
S2iv—Mo1—Cl1 | 89.24 (2) | C1—C3—H3A | 109.5 |
Cl2iv—Mo1—Cl1 | 89.24 (2) | C1—C3—H3B | 109.5 |
Cl2—Mo1—Cl1 | 89.22 (2) | H3A—C3—H3B | 109.5 |
S2ii—Mo1—Cl1 | 175.32 (3) | C1—C3—H3C | 109.5 |
Cl2ii—Mo1—Cl1 | 175.32 (3) | H3A—C3—H3C | 109.5 |
S2iv—Mo1—S1 | 89.10 (3) | H3B—C3—H3C | 109.5 |
Cl2iv—Mo1—S1 | 89.10 (3) | C1—C4—H4A | 109.5 |
Cl2—Mo1—S1 | 94.93 (3) | C1—C4—H4B | 109.5 |
S2ii—Mo1—S1 | 94.79 (3) | H4A—C4—H4B | 109.5 |
Cl2ii—Mo1—S1 | 94.79 (3) | C1—C4—H4C | 109.5 |
Cl1—Mo1—S1 | 89.88 (3) | H4A—C4—H4C | 109.5 |
S2iv—Mo1—Mo1i | 119.05 (2) | H4B—C4—H4C | 109.5 |
Cl2iv—Mo1—Mo1i | 119.05 (2) | C12—C11—N1 | 115.2 (3) |
Cl2—Mo1—Mo1i | 58.40 (2) | C12—C11—H11A | 108.5 |
S2ii—Mo1—Mo1i | 58.22 (2) | N1—C11—H11A | 108.5 |
Cl2ii—Mo1—Mo1i | 58.22 (2) | C12—C11—H11B | 108.5 |
Cl1—Mo1—Mo1i | 117.960 (18) | N1—C11—H11B | 108.5 |
S1—Mo1—Mo1i | 138.62 (2) | H11A—C11—H11B | 107.5 |
S2iv—Mo1—Mo1ii | 58.41 (2) | C13—C12—C11 | 112.5 (4) |
Cl2iv—Mo1—Mo1ii | 58.41 (2) | C13—C12—H12A | 109.1 |
Cl2—Mo1—Mo1ii | 119.04 (2) | C11—C12—H12A | 109.1 |
S2ii—Mo1—Mo1ii | 58.25 (2) | C13—C12—H12B | 109.1 |
Cl2ii—Mo1—Mo1ii | 58.25 (2) | C11—C12—H12B | 109.1 |
Cl1—Mo1—Mo1ii | 117.960 (17) | H12A—C12—H12B | 107.8 |
S1—Mo1—Mo1ii | 134.36 (3) | C12—C13—C14 | 114.0 (5) |
Mo1i—Mo1—Mo1ii | 60.665 (13) | C12—C13—H13A | 108.8 |
S2iv—Mo1—Mo1iii | 117.95 (2) | C14—C13—H13A | 108.8 |
Cl2iv—Mo1—Mo1iii | 117.95 (2) | C12—C13—H13B | 108.8 |
Cl2—Mo1—Mo1iii | 57.92 (2) | C14—C13—H13B | 108.8 |
S2ii—Mo1—Mo1iii | 117.86 (2) | H13A—C13—H13B | 107.7 |
Cl2ii—Mo1—Mo1iii | 117.86 (2) | C13—C14—H14A | 109.5 |
Cl1—Mo1—Mo1iii | 58.302 (15) | C13—C14—H14B | 109.5 |
S1—Mo1—Mo1iii | 135.38 (3) | H14A—C14—H14B | 109.5 |
Mo1i—Mo1—Mo1iii | 59.667 (7) | C13—C14—H14C | 109.5 |
Mo1ii—Mo1—Mo1iii | 90.0 | H14A—C14—H14C | 109.5 |
S2iv—Mo1—Mo1iv | 57.95 (2) | H14B—C14—H14C | 109.5 |
Cl2iv—Mo1—Mo1iv | 57.95 (2) | N1—C21—C22 | 116.1 (4) |
Cl2—Mo1—Mo1iv | 117.91 (2) | N1—C21—H21A | 108.3 |
S2ii—Mo1—Mo1iv | 117.89 (2) | C22—C21—H21A | 108.3 |
Cl2ii—Mo1—Mo1iv | 117.89 (2) | N1—C21—H21B | 108.3 |
Cl1—Mo1—Mo1iv | 58.302 (15) | C22—C21—H21B | 108.3 |
S1—Mo1—Mo1iv | 131.38 (2) | H21A—C21—H21B | 107.4 |
Mo1i—Mo1—Mo1iv | 90.0 | C23—C22—C21 | 113.7 (5) |
Mo1ii—Mo1—Mo1iv | 59.667 (7) | C23—C22—H22A | 108.8 |
Mo1iii—Mo1—Mo1iv | 60.0 | C21—C22—H22A | 108.8 |
Mo1iii—Cl1—Mo1iv | 63.40 (3) | C23—C22—H22B | 108.8 |
Mo1iii—Cl1—Mo1 | 63.40 (3) | C21—C22—H22B | 108.8 |
Mo1iv—Cl1—Mo1 | 63.40 (3) | H22A—C22—H22B | 107.7 |
Mo1iii—Cl2—Mo1 | 64.13 (2) | C22—C23—C24 | 115.3 (5) |
Mo1iii—Cl2—Mo1i | 63.36 (2) | C22—C23—H23A | 108.4 |
Mo1—Cl2—Mo1i | 63.35 (2) | C24—C23—H23A | 108.4 |
C1—S1—Mo1 | 118.11 (13) | C22—C23—H23B | 108.4 |
C21v—N1—C21 | 111.8 (5) | C24—C23—H23B | 108.4 |
C21v—N1—C11v | 107.2 (2) | H23A—C23—H23B | 107.5 |
C21—N1—C11v | 110.3 (3) | C23—C24—H24A | 109.5 |
C21v—N1—C11 | 110.3 (3) | C23—C24—H24B | 109.5 |
C21—N1—C11 | 107.2 (2) | H24A—C24—H24B | 109.5 |
C11v—N1—C11 | 110.1 (5) | C23—C24—H24C | 109.5 |
C3—C1—C2 | 113.8 (5) | H24A—C24—H24C | 109.5 |
C3—C1—C4 | 106.5 (5) | H24B—C24—H24C | 109.5 |
Symmetry codes: (i) y, −x+y, −z; (ii) x−y, x, −z; (iii) −x+y, −x, z; (iv) −y, x−y, z; (v) x−y+1/3, −y+2/3, −z+1/6. |
Experimental details
Crystal data | |
Chemical formula | (C16H36N)3[Mo6(C4H9S)6Cl7S]·2H2O |
Mr | 2154.29 |
Crystal system, space group | Trigonal, R3c |
Temperature (K) | 150 |
a, c (Å) | 18.7481 (5), 52.4233 (12) |
V (Å3) | 15957.7 (7) |
Z | 6 |
Radiation type | Mo Kα |
µ (mm−1) | 1.04 |
Crystal size (mm) | 0.42 × 0.35 × 0.23 |
Data collection | |
Diffractometer | Bruker–Nonius X8 APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.670, 0.797 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 36925, 3637, 3092 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.125, 1.14 |
No. of reflections | 3637 |
No. of parameters | 161 |
No. of restraints | 12 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0654P)2 + 69.7786P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 1.16, −0.76 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006) and POV-RAY (Persistence of Vision, 2004), SHELXTL (Sheldrick, 2008).
Mo1—Mo1i | 2.6067 (4) | Mo1—Cl1 | 2.5054 (10) |
Mo1—Mo1ii | 2.6328 (5) | Mo1—Cl2 | 2.4801 (9) |
Mo1—S1 | 2.5158 (9) | Mo1—Cl2iii | 2.4792 (9) |
Mo1—S2iii | 2.4792 (9) | Mo1—Cl2iv | 2.4842 (9) |
Mo1—S2iv | 2.4842 (9) |
Symmetry codes: (i) y, −x+y, −z; (ii) −x+y, −x, z; (iii) −y, x−y, z; (iv) x−y, x, −z. |
Acknowledgements
The work was supported by RFBR (grants 09–03-38245a and 10–03-38245a) and State Contract GK-02.740.11.0628. The authors are grateful to Dr Cristian Vicent (Universitat Jaume I, Castello, Spain) for ES-MS data.
References
Abramov, P. A., Sokolov, M. N., Virovets, A. V., Peresypkina, E. V., Vicent, C. & Fedin, V. P. (2009). J. Cluster Sci. 20, 83–92. Web of Science CrossRef CAS Google Scholar
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ebihara, M., Imai, T. & Kawamura, T. (1995). Acta Cryst. C51, 1743–1745. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Ebihara, M., Toriumi, K. & Saito, K. (1988). Inorg. Chem. 27, 13–18. CrossRef CAS Web of Science Google Scholar
Ebihara, M., Toriumi, K., Sasaki, Y. & Saito, K. (1995). Gazz. Chim. Ital. 125, 87–95. CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Michel, J. B. & McCarley, R. E. (1982). Inorg. Chem. 21, 1864–1872. CSD CrossRef CAS Web of Science Google Scholar
Nocera, D. G. & Gray, H. B. (1984). J. Am. Chem. Soc. 106, 824–825. CrossRef CAS Web of Science Google Scholar
Persistence of Vision (2004). POV-RAY Persistence of Vision Pty. Ltd, Williamstown, Victoria, Australia. Google Scholar
Petrov, P. A., Virovets, A. V., Alberola, A., Llusar, R. & Konchenko, S. N. (2010). Dalton Trans. 39, 8875–8877. Web of Science CSD CrossRef CAS PubMed Google Scholar
Prokopuk, N. & Shryver, D. F. (1998). Adv. Inorg. Chem., Vol. 46, edited by A.G. Sykes, pp. 1–49. New York: Academic Press. Google Scholar
Schoonover, J. R., Zietlow, T. C., Clark, D. L., Heppert, J. A., Chisholm, M. H., Gray, H. B., Sattelberger, A. P. & Woodruff, W. H. (1996). Inorg. Chem. 35, 6606–6613. CSD CrossRef PubMed CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Szczepura, L. F., Ketcham, K. A., Ooro, B. A., Edwards, J. A., Templeton, J. N., Cedeno, D. L. & Jircitano, A. J. (2008). Inorg. Chem. 47, 7271–7278. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The octahedral clusters of early transition metals are often regarded as precursors of functional materials with redox and/or luminescent properties. The advantage of halide-bridged clusters [Mo6(µ3-X)8X6]2- (X = halogen) is the ability of tuning the electronic structure and the properties of the cluster core by step-by-step exchange of the terminal X atoms. The exchange of the µ3-bridging X atoms is also possible; however, reactions of this type are less common. The halogen-chalcogen clusters with one or two chalcogen atoms (or their mixtures) were obtained in the reactions of [Mo6(µ3-X)8X6]2- with NaSH, NaSeH or in situ-generated H2Se (Michel & McCarley, 1982; Ebihara et al., 1988; Ebihara, Imai et al., 1995; Ebihara, Toriumi et al., 1995; Abramov et al., 2009).
Recently, the reaction of [Mo6(µ3-X)8(OMe)6]2- with excess EtSH was reported leading to the smooth substitution of the terminal methoxides to ethanethiolate groups. The latter can be further substituted by other SR- groups where R = butyl, benzyl or 3-indolyl (Szczepura et al., 2008). Our attempt was aimed to prove if the reaction of [Mo6(µ3-X)8X6]2- with tBuSNa would stop on the substitution of the terminal X atoms, or would result in a core rearrangement as well. Previously, tBuS- was reported to be the source of the S2- anion (see, for example: Petrov et al. 2010).
The presence of three tetrabutylammonium cations designates the charge of the cluster core. Keeping in mind the high oxidation potential of the [Mo6(µ3-Cl)8Cl6]3-/2- pair (1.53 V in MeCN versus SCE, Nocera & Gray, 1984) one would formulate the cluster core composition as [Mo6(µ3-S)(µ3-Cl)7(StBu)6]3-. The analysis of the temperature factors of the atoms in the µ3-positions leads us to the conclusion that two positions are occupied with Cl atoms only, while the remaining six positions are statistically occupied with Cl and S atoms in a 1:5 ratio (Fig. 1). The presence of one S atom in the cluster core has no noticeable effect on its geometry (Schoonover et al., 1996; Szczepura et al., 2008).
The structure contains two disordered lattice water molecules. One is located on a threefold rotation axis, the other is located in a general position. Both have an occupancy of 0.25 and are disordered over a site with symmetry 32. These two water molecules have an O ··· O distance of 2.706 (8) Å, pointing to hydrogen-bonding interactions. The water molecules are localized in cavities formed by the Bu4N+ cations and tBuS groups. The water incorporated in the structure most likely originated from the starting material (Bu4N)2[Mo6(µ3-Cl)8Cl6].nH2O.
The centres of the metal clusters are arranged in a cubic close packing along [001] as stacking direction (Fig. 2).