metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m316-m317

{S-Benzyl 3-[(6-methyl­pyridin-2-yl)­methyl­­idene]di­thio­carbazato}nickel(II) monohydrate

aDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
*Correspondence e-mail: thahira.begum@science.upm.edu.my

(Received 10 February 2012; accepted 16 February 2012; online 24 February 2012)

The structure of the title compound, [Ni(C15H14N3S2)2]·H2O, has one mol­ecule in the asymmetric unit, along with a solvent water mol­ecule. The two different Schiff base moieties coordinate to the central NiII ion as tridentate N,N′,S-chelating ligands, creating a six-coordinate distorted octa­hedral environment [the smallest angle being 77.43 (7)° and the widest angle being 169.99 (7)°]. The mean planes of the two ligands are nearly orthogonal to each other with an angle of 89.53 (6)°. The packing of the complex is supported by O—H⋯N and O—H⋯S hydrogen bonding between the solvent water mol­ecule and the uncoordinated N and S atoms of neighbouring ligands.

Related literature

For background on the coordination chemistry of hydrazine carbodithio­ates, see: Ravoof et al. (2010[Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871-876.]). For the synthesis, see: Ali et al. (1997[Ali, M. A., Majumder, S. M. M. H., Butcher, R. J., Jasinski, J. P. & Jasinski, J. M. (1997). Polyhedron, 16, 2749-2754.]). For related structures, see: Khoo et al. (2005[Khoo, T.-J., Cowley, A. R., Watkin, D. J., Crouse, K. A. & Tarafder, M. T. H. (2005). Acta Cryst. E61, o2441-o2443.]); Paulus et al. (2011[Paulus, G., Crouse, K. A., Mohamed Tahir, M. I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o1370-o1371.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C15H14N3S2)2]·H2O

  • Mr = 677.58

  • Monoclinic, P 21 /c

  • a = 16.2165 (5) Å

  • b = 13.2474 (3) Å

  • c = 15.5935 (3) Å

  • β = 111.404 (3)°

  • V = 3118.86 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 150 K

  • 0.37 × 0.12 × 0.06 mm

Data collection
  • Oxford Diffraction Gemini CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2002[Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.89, Tmax = 0.95

  • 20706 measured reflections

  • 7223 independent reflections

  • 6011 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.087

  • S = 0.97

  • 7199 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Selected bond lengths (Å)

N102—Ni1 2.0127 (18)
S106—Ni1 2.4259 (5)
N115—Ni1 2.1787 (16)
N202—Ni1 2.0197 (18)
S205—Ni1 2.4211 (6)
N215—Ni1 2.1784 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O301—H3011⋯S205 0.91 2.42 3.323 (3) 173
O301—H3012⋯N203i 0.91 2.04 2.919 (4) 162
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2002[Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2002[Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The title compound was preferentially formed during the synthesis of the tridentate Schiff base with NiII saccharinate, by eliminating the saccharinate anion and instead coordinating one metal ion with two tridentate deprotonated Schiff base moieties. Background on the coordination chemistry of hydrazine carbodithioates were given by Ravoof et al. (2010). This compound has been previously synthesized by Ali et al. (1997), but its crystal structure has not been reported so far.

There is one independent molecule in the asymmetric unit which contains the NiII ion coordinated to two tridentate Schiff bases via the pyridyl nitrogen (N_115, N_215) azomethine nitrogen (N_102, N_202) and thiolate sulfur (S_106, S_205) atoms (Fig. 1). A solvent water molecule in also present in the lattice. The coordination of the metal ion is distorted octahedral with equatorial angles ranging from 77.43 (7)° to 108.62 (7)°. The distortion from the ideal geometry maybe due to the restricted bite angles (80.83 (5) and 81.03 (5) °) of the Schiff base ligands.

The mean planes defined by S106—S105—C104—N103—N102 (largest deviation 0.005 Å) and S206—S205—C204—N203—N202 (largest deviation 0.025 Å) are nearly planar to each other (89.53 (6) °). The torsion angles between the C104—S105—C107—C108 and C204- S206—C207—C208 moieties are -175.11 (18)° and 178.40 (16)° respectively, whereas the torsion angles for the C104—N103—N102—C101 and C204—N203—N202—C201 moieties are -176.7 (2)° and -171.1 (2)° respectively, values close to 180° indicate that the moieties are almost in the same plane.

There is some weak hydrogen bonding (Fig. 2, Table 2) as evidenced by the interaction between the oxygen atom from the independent water molecule with the uncoordinated nitrogen (N_203) and sulfur atoms (S_205) of neighbouring ligands.

For related structures, see: Khoo et al. (2005); Paulus et al. (2011).

Related literature top

For background on the coordination chemistry of hydrazine carbodithioates, see: Ravoof et al. (2010). For the synthesis, see: Ali et al. (1997). For related structures, see: Khoo et al. (2005); Paulus et al. (2011).

Experimental top

The Schiff base ligand was prepared according to Ali et al. (1997). The metal complex of the Schiff base was prepared by adding nickel(II) acetate in hot ethanol (25 ml) to an equimolar quantity of the Schiff base in ethanol (30 ml). The resulting mixture was heated on a water bath until the volume reduced to 30 ml. On standing overnight, the mixture yielded crystals which were filtered off, washed with ethanol and dried in a desiccator over anhydrous silica gel, overnight. The crystals were then dissolved in a solvent mixture of acetonitrile:chloroform in 2:1 mole ratio. To this solution, excess sodium saccharin in water was added (20 ml) in a 1:4 mole ratio. The resulting mixture was heated on a water bath until the volume reduced to 30 ml. On standing overnight inside the fridge, crystals obtained were filtered off, washed with ethanol and dried in desiccator over anhydrous silica gel, overnight. Crystals of the nickel complex suitable for X-ray diffraction analysis were obtained by slow evaporation from a mixture of acetonitrile and THF over a few weeks.

Refinement top

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 Å, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2002); cell refinement: CrysAlis RED (Oxford Diffraction, 2002); data reduction: CrysAlis RED (Oxford Diffraction, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are omitted for clarity.
[Figure 2] Fig. 2. Molecular packing diagram of title compound viewed along the a axis showing the O—H···N hydrogen bonding as dotted lines.
{S-Benzyl 3-[(6-methylpyridin-2-yl)methylidene]dithiocarbazato}nickel(II) monohydrate top
Crystal data top
[Ni(C15H14N3S2)2]·H2OF(000) = 1408
Mr = 677.58Dx = 1.443 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6534 reflections
a = 16.2165 (5) Åθ = 2–29°
b = 13.2474 (3) ŵ = 0.93 mm1
c = 15.5935 (3) ÅT = 150 K
β = 111.404 (3)°Plate, black
V = 3118.86 (14) Å30.37 × 0.12 × 0.06 mm
Z = 4
Data collection top
Oxford Diffraction Gemini CCD
diffractometer
7223 independent reflections
Radiation source: sealed x-ray tube6011 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
combined ϕ and ω scansθmax = 29.0°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2002)
h = 2121
Tmin = 0.89, Tmax = 0.95k = 1617
20706 measured reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.087 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.04P)2 + 2.87P],
where P = (max(Fo2,0) + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
7199 reflectionsΔρmax = 0.53 e Å3
379 parametersΔρmin = 0.74 e Å3
0 restraints
Crystal data top
[Ni(C15H14N3S2)2]·H2OV = 3118.86 (14) Å3
Mr = 677.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.2165 (5) ŵ = 0.93 mm1
b = 13.2474 (3) ÅT = 150 K
c = 15.5935 (3) Å0.37 × 0.12 × 0.06 mm
β = 111.404 (3)°
Data collection top
Oxford Diffraction Gemini CCD
diffractometer
7223 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2002)
6011 reflections with I > 2σ(I)
Tmin = 0.89, Tmax = 0.95Rint = 0.032
20706 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 0.97Δρmax = 0.53 e Å3
7199 reflectionsΔρmin = 0.74 e Å3
379 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105 107.

Refinement. The number of reflections in the refinement section is 7199 because we used [sin θ/λ]2 at least 0.01 to eliminate poor reflections that may be poorly measured in the vicinity of the beam stop. If we removed this condition we will get the 7233 reflections as per data collection with an R factor of 3.66% and weighted R factor of 8.18%.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1010.78816 (15)0.24923 (17)0.47882 (15)0.0283
N1020.75659 (12)0.22384 (13)0.54036 (11)0.0238
N1030.71678 (12)0.29966 (14)0.57292 (12)0.0272
C1040.69132 (14)0.26683 (16)0.63824 (13)0.0226
S1050.64057 (4)0.35514 (4)0.68689 (4)0.0282
S1060.70004 (4)0.14821 (4)0.68466 (3)0.0238
C1070.65542 (19)0.47171 (17)0.63233 (17)0.0377
C1080.53242 (17)0.58004 (19)0.64409 (19)0.0395
C1090.50227 (18)0.6579 (2)0.6853 (2)0.0446
C1100.56150 (19)0.71305 (19)0.75561 (18)0.0409
C1110.65034 (19)0.69239 (19)0.78473 (17)0.0406
C1120.68026 (17)0.61438 (19)0.74452 (16)0.0355
C1130.62176 (16)0.55768 (17)0.67379 (15)0.0298
C1140.83009 (14)0.17023 (17)0.44438 (14)0.0259
N1150.83334 (11)0.07754 (14)0.48268 (11)0.0240
C1160.86856 (14)0.00076 (18)0.45121 (14)0.0273
C1170.90229 (16)0.0166 (2)0.38157 (16)0.0353
C1180.89933 (16)0.1106 (2)0.34373 (16)0.0373
C1190.86213 (15)0.1900 (2)0.37501 (15)0.0319
C1200.86909 (17)0.10138 (18)0.49139 (17)0.0350
C2010.75877 (14)0.11392 (16)0.65377 (14)0.0245
N2020.81710 (11)0.04416 (14)0.66865 (11)0.0227
N2030.89420 (12)0.05579 (14)0.74432 (12)0.0262
C2040.94462 (14)0.02487 (17)0.76176 (14)0.0248
S2050.92301 (4)0.13799 (4)0.70535 (4)0.0270
S2061.04398 (4)0.00134 (5)0.85547 (4)0.0333
C2071.08635 (16)0.12604 (19)0.89890 (16)0.0355
C2081.17032 (15)0.10646 (17)0.98114 (14)0.0280
C2091.16698 (17)0.05990 (19)1.05927 (16)0.0348
C2101.24391 (18)0.0352 (2)1.13128 (15)0.0391
C2111.32515 (17)0.05774 (19)1.12651 (16)0.0387
C2121.32915 (16)0.10684 (19)1.04979 (17)0.0364
C2131.25177 (15)0.13052 (18)0.97718 (15)0.0302
C2140.67716 (14)0.10128 (16)0.57445 (14)0.0236
N2150.67192 (11)0.01687 (13)0.52345 (11)0.0219
C2160.59903 (14)0.00295 (17)0.44840 (13)0.0250
C2170.52933 (15)0.07246 (18)0.42331 (15)0.0301
C2180.53438 (15)0.15647 (18)0.47575 (16)0.0313
C2190.60967 (15)0.17207 (17)0.55357 (15)0.0283
C2200.59440 (16)0.0891 (2)0.39242 (16)0.0360
Ni10.782107 (17)0.08387 (2)0.593737 (17)0.0203
O3011.09855 (15)0.24209 (18)0.67870 (18)0.0708
H10110.78470.31650.45690.0339*
H10720.71790.48100.64380.0478*
H10710.62290.46720.56730.0477*
H10810.49170.54310.59550.0485*
H10910.44160.67190.66450.0539*
H11010.54150.76610.78400.0505*
H11110.69120.73250.83290.0497*
H11210.74240.60050.76630.0448*
H11710.92640.03890.36170.0437*
H11810.92240.12050.29660.0455*
H11910.85820.25590.35060.0391*
H12030.89300.14930.46020.0539*
H12020.90430.10120.55600.0535*
H12010.80980.12200.48290.0538*
H20110.76920.17140.69360.0297*
H20711.09820.16530.84930.0443*
H20721.04170.16110.91780.0448*
H20911.11110.04471.06360.0436*
H21011.24070.00271.18330.0494*
H21111.37820.04151.17590.0471*
H21211.38440.12561.04700.0452*
H21311.25400.16240.92320.0378*
H21710.47870.06070.36910.0360*
H21810.48750.20230.45960.0384*
H21910.61590.22840.59250.0346*
H22010.53980.09050.34000.0560*
H22030.64410.09170.37260.0562*
H22020.59770.14760.42990.0563*
H30111.04770.21450.68050.1043*
H30121.10230.30910.69140.1042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1010.0341 (12)0.0252 (12)0.0303 (11)0.0032 (9)0.0172 (9)0.0072 (9)
N1020.0270 (9)0.0223 (9)0.0239 (8)0.0026 (7)0.0113 (7)0.0026 (7)
N1030.0339 (10)0.0215 (9)0.0303 (9)0.0042 (8)0.0166 (8)0.0015 (8)
C1040.0235 (10)0.0200 (10)0.0236 (9)0.0019 (8)0.0078 (8)0.0018 (8)
S1050.0394 (3)0.0207 (3)0.0304 (3)0.0028 (2)0.0197 (2)0.0005 (2)
S1060.0285 (3)0.0208 (3)0.0249 (2)0.0010 (2)0.0132 (2)0.0021 (2)
C1070.0610 (17)0.0215 (12)0.0393 (13)0.0018 (11)0.0288 (12)0.0005 (10)
C1080.0404 (14)0.0302 (13)0.0460 (14)0.0066 (11)0.0136 (12)0.0011 (11)
C1090.0392 (15)0.0336 (14)0.0690 (18)0.0103 (12)0.0293 (14)0.0146 (13)
C1100.0639 (18)0.0247 (13)0.0444 (14)0.0112 (12)0.0321 (13)0.0054 (11)
C1110.0584 (17)0.0292 (13)0.0305 (12)0.0087 (12)0.0118 (12)0.0007 (10)
C1120.0400 (14)0.0302 (13)0.0339 (12)0.0088 (11)0.0108 (10)0.0032 (10)
C1130.0424 (14)0.0195 (11)0.0324 (11)0.0063 (10)0.0197 (10)0.0059 (9)
C1140.0241 (11)0.0302 (12)0.0239 (10)0.0007 (9)0.0092 (8)0.0023 (9)
N1150.0214 (9)0.0290 (10)0.0219 (8)0.0015 (7)0.0082 (7)0.0018 (7)
C1160.0225 (11)0.0325 (12)0.0259 (10)0.0005 (9)0.0075 (8)0.0042 (9)
C1170.0338 (13)0.0418 (14)0.0364 (12)0.0005 (11)0.0200 (10)0.0087 (11)
C1180.0348 (13)0.0524 (16)0.0320 (11)0.0011 (12)0.0209 (10)0.0001 (11)
C1190.0296 (12)0.0406 (14)0.0294 (11)0.0029 (10)0.0153 (9)0.0083 (10)
C1200.0416 (14)0.0307 (13)0.0392 (12)0.0050 (11)0.0224 (11)0.0038 (10)
C2010.0290 (11)0.0194 (10)0.0249 (10)0.0003 (9)0.0094 (9)0.0011 (8)
N2020.0222 (9)0.0242 (9)0.0211 (8)0.0014 (7)0.0070 (7)0.0004 (7)
N2030.0241 (9)0.0275 (10)0.0227 (8)0.0016 (8)0.0037 (7)0.0023 (7)
C2040.0235 (11)0.0281 (12)0.0220 (9)0.0026 (9)0.0075 (8)0.0006 (9)
S2050.0252 (3)0.0250 (3)0.0281 (3)0.0023 (2)0.0067 (2)0.0013 (2)
S2060.0284 (3)0.0307 (3)0.0311 (3)0.0018 (2)0.0007 (2)0.0003 (2)
C2070.0326 (13)0.0326 (13)0.0344 (12)0.0023 (10)0.0040 (10)0.0010 (10)
C2080.0299 (12)0.0261 (12)0.0254 (10)0.0003 (9)0.0071 (9)0.0037 (9)
C2090.0369 (13)0.0387 (14)0.0304 (11)0.0020 (11)0.0143 (10)0.0012 (10)
C2100.0555 (16)0.0380 (14)0.0221 (10)0.0054 (12)0.0121 (11)0.0016 (10)
C2110.0409 (14)0.0349 (14)0.0288 (11)0.0107 (11)0.0010 (10)0.0073 (10)
C2120.0296 (13)0.0344 (14)0.0427 (13)0.0014 (10)0.0101 (10)0.0125 (11)
C2130.0335 (12)0.0288 (12)0.0275 (10)0.0028 (10)0.0102 (9)0.0037 (9)
C2140.0265 (11)0.0218 (11)0.0238 (9)0.0007 (9)0.0109 (8)0.0019 (8)
N2150.0233 (9)0.0230 (9)0.0208 (8)0.0007 (7)0.0098 (7)0.0018 (7)
C2160.0233 (11)0.0321 (12)0.0210 (9)0.0033 (9)0.0096 (8)0.0020 (9)
C2170.0235 (11)0.0385 (13)0.0251 (10)0.0017 (10)0.0052 (9)0.0061 (10)
C2180.0246 (11)0.0323 (13)0.0362 (12)0.0043 (10)0.0103 (9)0.0115 (10)
C2190.0306 (12)0.0227 (11)0.0327 (11)0.0018 (9)0.0127 (9)0.0026 (9)
C2200.0284 (12)0.0481 (15)0.0274 (11)0.0009 (11)0.0053 (9)0.0108 (11)
Ni10.02185 (14)0.01956 (14)0.02001 (12)0.00104 (11)0.00830 (10)0.00119 (10)
O3010.0684 (15)0.0540 (14)0.1051 (19)0.0185 (12)0.0496 (14)0.0284 (13)
Geometric parameters (Å, º) top
C101—N1021.286 (3)C201—C2141.454 (3)
C101—C1141.453 (3)C201—Ni12.854 (2)
C101—Ni12.854 (2)C201—H20110.958
C101—H10110.949N202—N2031.379 (2)
N102—N1031.386 (2)N202—Ni12.0197 (18)
N102—Ni12.0127 (18)N203—C2041.312 (3)
N103—C1041.305 (3)C204—S2051.708 (2)
C104—S1051.754 (2)C204—S2061.764 (2)
C104—S1061.714 (2)S205—Ni12.4211 (6)
S105—C1071.821 (2)S206—C2071.822 (3)
S106—Ni12.4259 (5)C207—C2081.514 (3)
C107—C1131.507 (3)C207—H20711.006
C107—H10720.970C207—H20720.992
C107—H10710.958C208—C2091.384 (3)
C108—C1091.395 (4)C208—C2131.382 (3)
C108—C1131.383 (3)C209—C2101.379 (3)
C108—H10810.941C209—H20910.954
C109—C1101.375 (4)C210—C2111.379 (4)
C109—H10910.935C210—H21010.936
C110—C1111.371 (4)C211—C2121.384 (4)
C110—H11010.949C211—H21110.947
C111—C1121.385 (3)C212—C2131.385 (3)
C111—H11110.960C212—H21210.946
C112—C1131.384 (3)C213—H21310.954
C112—H11210.956C214—N2151.357 (3)
C114—N1151.358 (3)C214—C2191.387 (3)
C114—C1191.385 (3)N215—C2161.338 (3)
N115—C1161.344 (3)N215—Ni12.1784 (17)
N115—Ni12.1787 (16)C216—C2171.399 (3)
C116—C1171.399 (3)C216—C2201.485 (3)
C116—C1201.490 (3)C217—C2181.366 (3)
C117—C1181.371 (4)C217—H21710.952
C117—H11710.937C218—C2191.387 (3)
C118—C1191.386 (3)C218—H21810.933
C118—H11810.947C219—H21910.944
C119—H11910.946C220—H22010.961
C120—H12030.964C220—H22030.963
C120—H12020.959C220—H22020.961
C120—H12010.962O301—H30110.913
C201—N2021.281 (3)O301—H30120.907
N102—C101—C114117.0 (2)S206—C207—H2071109.6
C114—C101—Ni178.89 (12)C208—C207—H2071112.0
N102—C101—H1011121.8S206—C207—H2072108.5
C114—C101—H1011121.1C208—C207—H2072110.9
Ni1—C101—H1011159.4H2071—C207—H2072110.5
C101—N102—N103116.68 (18)C207—C208—C209120.7 (2)
C101—N102—Ni1118.13 (15)C207—C208—C213120.1 (2)
N103—N102—Ni1124.68 (13)C209—C208—C213119.2 (2)
N102—N103—C104111.49 (17)C208—C209—C210120.5 (2)
N103—C104—S105116.56 (16)C208—C209—H2091120.0
N103—C104—S106129.35 (16)C210—C209—H2091119.5
S105—C104—S106114.09 (11)C209—C210—C211120.2 (2)
C104—S105—C107101.58 (10)C209—C210—H2101119.6
C104—S106—Ni193.07 (7)C211—C210—H2101120.2
S105—C107—C113108.07 (15)C210—C211—C212119.7 (2)
S105—C107—H1072109.2C210—C211—H2111120.6
C113—C107—H1072110.0C212—C211—H2111119.7
S105—C107—H1071109.0C211—C212—C213119.9 (2)
C113—C107—H1071110.8C211—C212—H2121120.4
H1072—C107—H1071109.7C213—C212—H2121119.6
C109—C108—C113120.3 (2)C212—C213—C208120.5 (2)
C109—C108—H1081119.7C212—C213—H2131120.5
C113—C108—H1081120.0C208—C213—H2131119.1
C108—C109—C110120.0 (3)C201—C214—N215115.87 (18)
C108—C109—H1091119.2C201—C214—C219121.1 (2)
C110—C109—H1091120.8N215—C214—C219122.99 (19)
C109—C110—C111120.1 (2)C214—N215—C216118.19 (18)
C109—C110—H1101120.5C214—N215—Ni1110.22 (13)
C111—C110—H1101119.4C216—N215—Ni1131.00 (15)
C110—C111—C112119.9 (2)N215—C216—C217121.3 (2)
C110—C111—H1111119.4N215—C216—C220117.78 (19)
C112—C111—H1111120.7C217—C216—C220120.91 (19)
C111—C112—C113120.9 (2)C216—C217—C218120.2 (2)
C111—C112—H1121118.7C216—C217—H2171119.2
C113—C112—H1121120.3C218—C217—H2171120.6
C107—C113—C112120.1 (2)C217—C218—C219119.1 (2)
C107—C113—C108121.2 (2)C217—C218—H2181120.2
C112—C113—C108118.7 (2)C219—C218—H2181120.6
C101—C114—N115115.90 (18)C218—C219—C214118.2 (2)
C101—C114—C119120.8 (2)C218—C219—H2191122.2
N115—C114—C119123.3 (2)C214—C219—H2191119.6
C114—N115—C116118.50 (18)C216—C220—H2201110.4
C114—N115—Ni1110.48 (13)C216—C220—H2203110.4
C116—N115—Ni1130.96 (15)H2201—C220—H2203110.2
N115—C116—C117120.6 (2)C216—C220—H2202108.9
N115—C116—C120118.15 (19)H2201—C220—H2202109.3
C117—C116—C120121.3 (2)H2203—C220—H2202107.4
C116—C117—C118120.5 (2)N115—Ni1—N21593.28 (6)
C116—C117—H1171117.9N115—Ni1—S106158.09 (5)
C118—C117—H1171121.6N215—Ni1—S10689.15 (4)
C117—C118—C119119.3 (2)N115—Ni1—S20592.82 (5)
C117—C118—H1181119.8N215—Ni1—S205158.24 (5)
C119—C118—H1181121.0S106—Ni1—S20592.92 (2)
C118—C119—C114117.9 (2)N115—Ni1—N202108.62 (7)
C118—C119—H1191122.3N215—Ni1—N20277.43 (7)
C114—C119—H1191119.9S106—Ni1—N20293.17 (5)
C116—C120—H1203109.1S205—Ni1—N20280.83 (5)
C116—C120—H1202110.4N115—Ni1—N10277.72 (7)
H1203—C120—H1202109.7N215—Ni1—N102110.44 (7)
C116—C120—H1201110.4S106—Ni1—N10281.03 (5)
H1203—C120—H1201108.1S205—Ni1—N10291.27 (5)
H1202—C120—H1201109.1N202—Ni1—N102169.99 (7)
N202—C201—C214116.97 (19)N115—Ni1—C201111.11 (6)
C214—C201—Ni178.68 (12)N215—Ni1—C20154.55 (6)
N202—C201—H2011120.8S106—Ni1—C20187.95 (4)
C214—C201—H2011122.2S205—Ni1—C201103.85 (5)
Ni1—C201—H2011158.4N202—Ni1—C20123.38 (6)
C201—N202—N203116.94 (18)N115—Ni1—C10154.55 (6)
C201—N202—Ni1117.90 (14)N215—Ni1—C101111.35 (6)
N203—N202—Ni1124.35 (14)S106—Ni1—C101104.43 (5)
N202—N203—C204112.84 (17)S205—Ni1—C10189.11 (5)
N203—C204—S205127.77 (16)N202—Ni1—C101160.18 (6)
N203—C204—S206109.85 (16)N102—Ni1—C201161.75 (7)
S205—C204—S206122.38 (13)N102—Ni1—C10123.42 (6)
C204—S205—Ni194.18 (7)C201—Ni1—C101161.74 (6)
C204—S206—C207104.73 (11)H3011—O301—H3012112.0
S206—C207—C208105.08 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O301—H3011···S2050.912.423.323 (3)173
O301—H3012···N203i0.912.042.919 (4)162
Symmetry code: (i) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ni(C15H14N3S2)2]·H2O
Mr677.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)16.2165 (5), 13.2474 (3), 15.5935 (3)
β (°) 111.404 (3)
V3)3118.86 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.37 × 0.12 × 0.06
Data collection
DiffractometerOxford Diffraction Gemini CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2002)
Tmin, Tmax0.89, 0.95
No. of measured, independent and
observed [I > 2σ(I)] reflections
20706, 7223, 6011
Rint0.032
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.087, 0.97
No. of reflections7199
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.74

Computer programs: CrysAlis CCD (Oxford Diffraction, 2002), CrysAlis RED (Oxford Diffraction, 2002), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Selected bond lengths (Å) top
N102—Ni12.0127 (18)N202—Ni12.0197 (18)
S106—Ni12.4259 (5)S205—Ni12.4211 (6)
N115—Ni12.1787 (16)N215—Ni12.1784 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O301—H3011···S2050.912.423.323 (3)173
O301—H3012···N203i0.912.042.919 (4)162
Symmetry code: (i) x+2, y+1/2, z+3/2.
 

Acknowledgements

Support for the project came from Universiti Putra Malaysia (UPM) under their Research University Grant scheme (RUGS No. 05-01-11-1243RU). SAO wishes to thank UPM for a Graduate Research Fellowship award.

References

First citationAli, M. A., Majumder, S. M. M. H., Butcher, R. J., Jasinski, J. P. & Jasinski, J. M. (1997). Polyhedron, 16, 2749–2754.  CSD CrossRef CAS Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKhoo, T.-J., Cowley, A. R., Watkin, D. J., Crouse, K. A. & Tarafder, M. T. H. (2005). Acta Cryst. E61, o2441–o2443.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPaulus, G., Crouse, K. A., Mohamed Tahir, M. I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o1370–o1371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRavoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871–876.  Web of Science CSD CrossRef CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m316-m317
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds