metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-methyl-N-{(2Z,4E)-4-[(4-methyl­phen­yl)imino]­pent-2-en-2-yl}anilinido)zinc

aDepartment of Chemistry, University of Vermont, Burlington, VT 05405, USA
*Correspondence e-mail: rory.waterman@uvm.edu

(Received 16 February 2012; accepted 21 February 2012; online 29 February 2012)

The title compound, [Zn(C19H21N2)2], appears to be the first example of a zinc complex supported by two β-diketiminate (nacnac) ligands. This complex crystallizes with a distorted tetra­hedrally coordinated ZnII atom that diposes the two nacnac ligands approximately orthogonally to one another [angle between the two N—Zn—N mean planes is 89.91 (10)°], with average Zn—N bond lengths of 1.992 (4) Å.

Related literature

For general background to β-diketiminate ligands, see: McGeachin (1968[McGeachin, S. G. (1968). Can. J. Chem. 46, 1903-1912.]); Parks & Holm (1968[Parks, J. E. & Holm, R. H. (1968). Inorg. Chem. 7, 1408-1416.]); Mindiola (2009[Mindiola, D. J. (2009). Angew. Chem. Int. Ed. 48, 6198-6200.]). For background to zinc complexes of this ligand, see: Coates et al. (2007[Coates, G., Allen, S. & Ajiro, H. (2007). Stereoselective Polymerization with Single-Site Catalysts, pp. 627-644. Boca Raton: CRC Press.]). The synthesis and spectroscopic characterization of the title compound, which appears to be a unique class of bis­(nacnac) zinc(II) species, was reported previously (Vaughan et al., 2012[Vaughan, B. A., Arsenault, E. M., Chan, S. M. & Waterman, R. (2012). J. Organomet. Chem. 696, 4327-4331.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C19H21N2)2]

  • Mr = 620.13

  • Orthorhombic, P b c a

  • a = 14.1266 (13) Å

  • b = 18.8197 (17) Å

  • c = 25.059 (2) Å

  • V = 6662.3 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 125 K

  • 0.49 × 0.46 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.693, Tmax = 0.746

  • 70818 measured reflections

  • 7068 independent reflections

  • 6050 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.111

  • S = 1.03

  • 7068 reflections

  • 388 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected bond lengths (Å)

Zn—N2 1.9877 (16)
Zn—N3 1.9894 (16)
Zn—N4 1.9924 (16)
Zn—N1 1.9971 (16)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The β-diketiminate ligand (nacnac) has become a ubiquitous figure in organometallic chemistry since the first such metal nacnac complexes were reported by McGeachin (1968) and Holm (Parks & Holm, 1968). Applications for these ligands range from structural inorganic/organometallic chemistry to bioinorganic systems and catalysis (Mindiola, 2009, and references therein).

Zinc complexes of this ligand type have been particularly important in the copolymerization reactions of carbon dioxide with epoxides, which generates biodegradable polymers (Coates et al., 2007). In the course of our exploration of zinc as a possible dehydrocoupling catalyst, we have prepared a bis(nacnac) derivative (Vaughan et al., 2012). Interestingly, a bis(nacnac) derivative is a structural type that is rare if not unknown among zinc complexes, though such complexes are known for virtually all other first-row metals.

Related literature top

For general background to β-diketiminate ligands, see: McGeachin (1968); Parks & Holm (1968); Mindiola (2009). For background to zinc complexes of this ligand, see: Coates et al. (2007). The synthesis and spectroscopic characterization of the title compound, which appears to be a unique class of bis(nacnac) zinc(II) species, was reported previously (Vaughan et al., 2012).

Experimental top

The title complex was prepared according to previously published methods (Vaughan et al., 2012).

Refinement top

All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on carbon were included in calculated positions with refinement via a riding model at bond lengths C–H = 0.95 or 0.98 with Uiso(H) = 1.2 or 1.5 times Ueq(C) of the aryl or methyl carbon atoms, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of bis(nacnac)Zn with hydrogen atoms omitted for clarity and thermal elipsoids drawn at the 50% probability level.
Bis(4-methyl-N-{(2Z,4E)-4-[(4-methylphenyl)imino]pent-2- en-2-yl}anilinido)zinc top
Crystal data top
[Zn(C19H21N2)2]F(000) = 2624
Mr = 620.13Dx = 1.237 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9735 reflections
a = 14.1266 (13) Åθ = 2.2–28.5°
b = 18.8197 (17) ŵ = 0.77 mm1
c = 25.059 (2) ÅT = 125 K
V = 6662.3 (11) Å3Block, colourless
Z = 80.49 × 0.46 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
7068 independent reflections
Radiation source: fine-focus sealed tube6050 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 26.7°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1717
Tmin = 0.693, Tmax = 0.746k = 2323
70818 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0575P)2 + 7.4637P]
where P = (Fo2 + 2Fc2)/3
7068 reflections(Δ/σ)max = 0.001
388 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Zn(C19H21N2)2]V = 6662.3 (11) Å3
Mr = 620.13Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.1266 (13) ŵ = 0.77 mm1
b = 18.8197 (17) ÅT = 125 K
c = 25.059 (2) Å0.49 × 0.46 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
7068 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
6050 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.746Rint = 0.023
70818 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.03Δρmax = 0.57 e Å3
7068 reflectionsΔρmin = 0.51 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Suitable crystals were mounted in a nylon loop with Paratone-N cryoprotectant oil and data collected on a Bruker APEX 2 CCD platform diffractometer. The structure was solved using direct methods and standard difference map techniques, and was refined by full-matrix least-squares procedures on F2 with SHELXTL Version 6.14 (Sheldrick, 2008).

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.625502 (15)0.088896 (12)0.330837 (9)0.02042 (9)
C10.43088 (14)0.11000 (11)0.36745 (8)0.0243 (4)
C190.35449 (15)0.13554 (13)0.40531 (9)0.0329 (5)
H19A0.38210.16850.43130.049*
H19B0.32710.09480.42410.049*
H19C0.30480.15990.38500.049*
C20.40112 (14)0.06242 (12)0.32796 (8)0.0254 (4)
H2A0.33660.04850.33030.031*
C30.45153 (14)0.03187 (10)0.28528 (8)0.0230 (4)
C390.39136 (14)0.00752 (11)0.24509 (9)0.0279 (4)
H39A0.43200.02690.21690.042*
H39B0.34530.02520.22930.042*
H39C0.35790.04640.26300.042*
C40.80460 (14)0.16495 (11)0.31656 (8)0.0248 (4)
C490.86911 (15)0.22029 (12)0.29269 (10)0.0338 (5)
H49A0.83460.24720.26550.051*
H49B0.92390.19690.27630.051*
H49C0.89080.25270.32080.051*
C50.84434 (14)0.12178 (11)0.35652 (8)0.0261 (4)
H5A0.90510.13620.36860.031*
C690.87307 (15)0.02499 (13)0.42119 (10)0.0347 (5)
H69A0.84130.01680.43620.052*
H69B0.88830.05840.45000.052*
H69C0.93150.01020.40330.052*
C60.80809 (14)0.06087 (11)0.38123 (8)0.0243 (4)
C110.54228 (14)0.18789 (11)0.40955 (8)0.0241 (4)
C120.60867 (15)0.17711 (12)0.45022 (8)0.0283 (4)
H12A0.63710.13170.45440.034*
C130.63336 (15)0.23190 (12)0.48437 (9)0.0303 (5)
H13A0.67720.22290.51230.036*
C140.59555 (15)0.29989 (12)0.47880 (8)0.0292 (4)
C150.53117 (15)0.31091 (11)0.43760 (8)0.0288 (4)
H15A0.50480.35690.43260.035*
C160.50465 (14)0.25604 (11)0.40349 (8)0.0274 (4)
H16A0.46040.26500.37570.033*
C210.58724 (13)0.00525 (11)0.23294 (8)0.0231 (4)
C220.63266 (14)0.06003 (12)0.23600 (9)0.0284 (4)
H22A0.63690.08380.26930.034*
C230.67207 (16)0.09096 (12)0.19069 (10)0.0342 (5)
H23A0.70230.13590.19350.041*
C240.66799 (15)0.05737 (14)0.14139 (9)0.0348 (5)
C250.62470 (16)0.00895 (14)0.13915 (9)0.0352 (5)
H25A0.62220.03340.10600.042*
C260.58512 (16)0.04030 (12)0.18400 (9)0.0311 (5)
H26A0.55650.08580.18130.037*
C310.68005 (14)0.20684 (10)0.26056 (8)0.0233 (4)
C320.70238 (17)0.19998 (12)0.20682 (9)0.0315 (5)
H32A0.74470.16380.19540.038*
C330.66256 (18)0.24637 (12)0.16971 (8)0.0325 (5)
H33A0.67860.24140.13310.039*
C340.60016 (15)0.29966 (11)0.18489 (9)0.0270 (4)
C350.57755 (15)0.30490 (11)0.23880 (9)0.0294 (4)
H35A0.53430.34040.25020.035*
C360.61673 (14)0.25949 (11)0.27606 (9)0.0267 (4)
H36A0.60020.26430.31260.032*
C410.69709 (13)0.03325 (11)0.39321 (8)0.0230 (4)
C420.62220 (14)0.03910 (11)0.42933 (8)0.0248 (4)
H42A0.58830.00220.43990.030*
C430.59704 (15)0.10500 (11)0.44979 (8)0.0263 (4)
H43A0.54630.10800.47460.032*
C440.64446 (14)0.16674 (11)0.43484 (8)0.0257 (4)
C450.71763 (15)0.16075 (11)0.39779 (8)0.0265 (4)
H45A0.75040.20220.38660.032*
C460.74335 (15)0.09514 (11)0.37702 (8)0.0263 (4)
H46A0.79300.09230.35150.032*
C1410.62410 (18)0.35953 (14)0.51580 (10)0.0396 (6)
H14A0.59040.40300.50580.059*
H14B0.69250.36750.51300.059*
H14C0.60800.34680.55260.059*
C2410.7100 (2)0.09070 (17)0.09201 (11)0.0519 (7)
H24A0.73700.13710.10110.078*
H24B0.75990.05980.07780.078*
H24C0.66040.09680.06500.078*
C3410.55746 (17)0.35055 (13)0.14505 (10)0.0375 (5)
H34A0.58100.33930.10920.056*
H34B0.57530.39930.15440.056*
H34C0.48840.34610.14570.056*
C4410.61540 (17)0.23809 (12)0.45672 (10)0.0350 (5)
H44A0.56320.23180.48200.053*
H44B0.66930.26000.47500.053*
H44C0.59480.26880.42740.053*
N10.52061 (11)0.13147 (9)0.37364 (7)0.0236 (3)
N20.54477 (11)0.03621 (9)0.27931 (7)0.0230 (3)
N30.71576 (12)0.15896 (9)0.30010 (7)0.0230 (3)
N40.72208 (11)0.03443 (9)0.37188 (6)0.0227 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.01501 (13)0.02317 (13)0.02307 (13)0.00119 (8)0.00082 (8)0.00197 (8)
C10.0198 (9)0.0299 (10)0.0233 (9)0.0006 (8)0.0001 (7)0.0043 (8)
C190.0205 (10)0.0491 (13)0.0291 (11)0.0017 (9)0.0029 (8)0.0036 (10)
C20.0169 (9)0.0295 (10)0.0299 (10)0.0031 (8)0.0006 (7)0.0022 (8)
C30.0207 (9)0.0222 (9)0.0261 (10)0.0023 (7)0.0022 (7)0.0056 (8)
C390.0226 (9)0.0297 (10)0.0313 (11)0.0050 (8)0.0034 (8)0.0003 (9)
C40.0230 (9)0.0235 (9)0.0279 (10)0.0034 (8)0.0025 (8)0.0032 (8)
C490.0268 (11)0.0334 (12)0.0411 (13)0.0096 (9)0.0005 (9)0.0050 (10)
C50.0187 (9)0.0283 (10)0.0312 (10)0.0034 (8)0.0034 (8)0.0025 (8)
C690.0251 (11)0.0418 (13)0.0373 (12)0.0036 (9)0.0103 (9)0.0068 (10)
C60.0194 (9)0.0290 (10)0.0245 (9)0.0002 (8)0.0024 (7)0.0013 (8)
C110.0190 (9)0.0295 (10)0.0239 (9)0.0020 (8)0.0036 (7)0.0006 (8)
C120.0244 (10)0.0327 (11)0.0278 (10)0.0005 (8)0.0002 (8)0.0019 (8)
C130.0253 (10)0.0397 (12)0.0258 (10)0.0031 (9)0.0015 (8)0.0008 (9)
C140.0269 (10)0.0350 (11)0.0259 (10)0.0072 (9)0.0058 (8)0.0037 (9)
C150.0284 (10)0.0285 (10)0.0295 (10)0.0007 (8)0.0054 (8)0.0003 (8)
C160.0227 (9)0.0341 (11)0.0253 (10)0.0015 (8)0.0010 (8)0.0014 (8)
C210.0167 (9)0.0270 (10)0.0257 (10)0.0040 (7)0.0022 (7)0.0007 (8)
C220.0255 (10)0.0301 (11)0.0296 (11)0.0010 (8)0.0028 (8)0.0008 (9)
C230.0276 (11)0.0345 (12)0.0404 (13)0.0052 (9)0.0007 (10)0.0064 (10)
C240.0212 (10)0.0495 (14)0.0336 (12)0.0019 (10)0.0004 (9)0.0101 (10)
C250.0310 (11)0.0491 (14)0.0255 (11)0.0031 (10)0.0011 (8)0.0049 (10)
C260.0299 (11)0.0323 (11)0.0309 (11)0.0001 (9)0.0006 (9)0.0049 (9)
C310.0210 (9)0.0221 (9)0.0269 (10)0.0041 (7)0.0002 (8)0.0017 (8)
C320.0378 (12)0.0265 (10)0.0302 (11)0.0035 (9)0.0053 (9)0.0001 (8)
C330.0417 (13)0.0313 (11)0.0246 (10)0.0011 (10)0.0003 (9)0.0012 (8)
C340.0249 (10)0.0252 (10)0.0309 (10)0.0062 (8)0.0054 (8)0.0036 (8)
C350.0245 (10)0.0272 (10)0.0364 (12)0.0004 (8)0.0004 (9)0.0010 (9)
C360.0251 (10)0.0279 (10)0.0270 (10)0.0006 (8)0.0024 (8)0.0002 (8)
C410.0188 (9)0.0288 (10)0.0213 (9)0.0012 (7)0.0043 (7)0.0033 (8)
C420.0219 (9)0.0280 (10)0.0246 (10)0.0009 (8)0.0005 (7)0.0017 (8)
C430.0230 (9)0.0335 (11)0.0224 (9)0.0044 (8)0.0024 (8)0.0004 (8)
C440.0249 (10)0.0292 (10)0.0230 (9)0.0047 (8)0.0025 (8)0.0021 (8)
C450.0252 (10)0.0285 (10)0.0258 (10)0.0006 (8)0.0009 (8)0.0007 (8)
C460.0218 (9)0.0327 (11)0.0243 (9)0.0005 (8)0.0023 (8)0.0030 (8)
C1410.0444 (14)0.0406 (13)0.0338 (12)0.0073 (10)0.0006 (10)0.0090 (10)
C2410.0374 (14)0.079 (2)0.0393 (14)0.0049 (13)0.0030 (11)0.0174 (14)
C3410.0361 (12)0.0378 (12)0.0385 (12)0.0003 (10)0.0072 (10)0.0095 (10)
C4410.0391 (12)0.0301 (11)0.0358 (12)0.0056 (9)0.0060 (10)0.0042 (9)
N10.0186 (8)0.0285 (9)0.0237 (8)0.0004 (7)0.0001 (6)0.0008 (7)
N20.0190 (8)0.0243 (8)0.0258 (8)0.0014 (6)0.0015 (6)0.0011 (7)
N30.0200 (8)0.0230 (8)0.0260 (8)0.0014 (6)0.0004 (6)0.0023 (7)
N40.0184 (8)0.0250 (8)0.0247 (8)0.0008 (6)0.0012 (6)0.0030 (7)
Geometric parameters (Å, º) top
Zn—N21.9877 (16)C22—C231.392 (3)
Zn—N31.9894 (16)C22—H22A0.9500
Zn—N41.9924 (16)C23—C241.389 (3)
Zn—N11.9971 (16)C23—H23A0.9500
C1—N11.339 (3)C24—C251.391 (4)
C1—C21.399 (3)C24—C2411.509 (3)
C1—C191.515 (3)C25—C261.387 (3)
C19—H19A0.9800C25—H25A0.9500
C19—H19B0.9800C26—H26A0.9500
C19—H19C0.9800C31—C321.389 (3)
C2—C31.408 (3)C31—C361.390 (3)
C2—H2A0.9500C31—N31.431 (2)
C3—N21.328 (3)C32—C331.394 (3)
C3—C391.512 (3)C32—H32A0.9500
C39—H39A0.9800C33—C341.388 (3)
C39—H39B0.9800C33—H33A0.9500
C39—H39C0.9800C34—C351.392 (3)
C4—N31.326 (3)C34—C3411.509 (3)
C4—C51.406 (3)C35—C361.381 (3)
C4—C491.508 (3)C35—H35A0.9500
C49—H49A0.9800C36—H36A0.9500
C49—H49B0.9800C41—C461.396 (3)
C49—H49C0.9800C41—C421.397 (3)
C5—C61.400 (3)C41—N41.426 (2)
C5—H5A0.9500C42—C431.388 (3)
C69—C61.517 (3)C42—H42A0.9500
C69—H69A0.9800C43—C441.393 (3)
C69—H69B0.9800C43—H43A0.9500
C69—H69C0.9800C44—C451.394 (3)
C6—N41.334 (3)C44—C4411.507 (3)
C11—C161.397 (3)C45—C461.388 (3)
C11—C121.400 (3)C45—H45A0.9500
C11—N11.425 (3)C46—H46A0.9500
C12—C131.385 (3)C141—H14A0.9800
C12—H12A0.9500C141—H14B0.9800
C13—C141.394 (3)C141—H14C0.9800
C13—H13A0.9500C241—H24A0.9800
C14—C151.392 (3)C241—H24B0.9800
C14—C1411.511 (3)C241—H24C0.9800
C15—C161.392 (3)C341—H34A0.9800
C15—H15A0.9500C341—H34B0.9800
C16—H16A0.9500C341—H34C0.9800
C21—C221.388 (3)C441—H44A0.9800
C21—C261.393 (3)C441—H44B0.9800
C21—N21.432 (3)C441—H44C0.9800
N2—Zn—N3116.55 (7)C26—C25—C24121.8 (2)
N2—Zn—N4118.13 (7)C26—C25—H25A119.1
N3—Zn—N495.85 (7)C24—C25—H25A119.1
N2—Zn—N197.08 (7)C25—C26—C21120.2 (2)
N3—Zn—N1114.68 (7)C25—C26—H26A119.9
N4—Zn—N1115.92 (7)C21—C26—H26A119.9
N1—C1—C2124.02 (18)C32—C31—C36118.89 (19)
N1—C1—C19120.38 (18)C32—C31—N3122.18 (18)
C2—C1—C19115.59 (18)C36—C31—N3118.82 (18)
C1—C19—H19A109.5C31—C32—C33119.8 (2)
C1—C19—H19B109.5C31—C32—H32A120.1
H19A—C19—H19B109.5C33—C32—H32A120.1
C1—C19—H19C109.5C34—C33—C32121.7 (2)
H19A—C19—H19C109.5C34—C33—H33A119.1
H19B—C19—H19C109.5C32—C33—H33A119.1
C1—C2—C3130.29 (19)C33—C34—C35117.58 (19)
C1—C2—H2A114.9C33—C34—C341122.1 (2)
C3—C2—H2A114.9C35—C34—C341120.4 (2)
N2—C3—C2124.21 (18)C36—C35—C34121.3 (2)
N2—C3—C39120.84 (18)C36—C35—H35A119.3
C2—C3—C39114.96 (17)C34—C35—H35A119.3
C3—C39—H39A109.5C35—C36—C31120.7 (2)
C3—C39—H39B109.5C35—C36—H36A119.7
H39A—C39—H39B109.5C31—C36—H36A119.7
C3—C39—H39C109.5C46—C41—C42118.52 (19)
H39A—C39—H39C109.5C46—C41—N4121.36 (17)
H39B—C39—H39C109.5C42—C41—N4120.06 (18)
N3—C4—C5123.39 (18)C43—C42—C41120.24 (19)
N3—C4—C49120.49 (19)C43—C42—H42A119.9
C5—C4—C49116.12 (18)C41—C42—H42A119.9
C4—C49—H49A109.5C42—C43—C44121.53 (19)
C4—C49—H49B109.5C42—C43—H43A119.2
H49A—C49—H49B109.5C44—C43—H43A119.2
C4—C49—H49C109.5C43—C44—C45117.93 (19)
H49A—C49—H49C109.5C43—C44—C441120.96 (19)
H49B—C49—H49C109.5C45—C44—C441121.09 (19)
C6—C5—C4129.93 (18)C46—C45—C44121.1 (2)
C6—C5—H5A115.0C46—C45—H45A119.5
C4—C5—H5A115.0C44—C45—H45A119.5
C6—C69—H69A109.5C45—C46—C41120.69 (19)
C6—C69—H69B109.5C45—C46—H46A119.7
H69A—C69—H69B109.5C41—C46—H46A119.7
C6—C69—H69C109.5C14—C141—H14A109.5
H69A—C69—H69C109.5C14—C141—H14B109.5
H69B—C69—H69C109.5H14A—C141—H14B109.5
N4—C6—C5124.14 (18)C14—C141—H14C109.5
N4—C6—C69120.07 (18)H14A—C141—H14C109.5
C5—C6—C69115.79 (18)H14B—C141—H14C109.5
C16—C11—C12117.86 (19)C24—C241—H24A109.5
C16—C11—N1122.26 (18)C24—C241—H24B109.5
C12—C11—N1119.72 (18)H24A—C241—H24B109.5
C13—C12—C11120.7 (2)C24—C241—H24C109.5
C13—C12—H12A119.6H24A—C241—H24C109.5
C11—C12—H12A119.6H24B—C241—H24C109.5
C12—C13—C14121.7 (2)C34—C341—H34A109.5
C12—C13—H13A119.2C34—C341—H34B109.5
C14—C13—H13A119.2H34A—C341—H34B109.5
C15—C14—C13117.5 (2)C34—C341—H34C109.5
C15—C14—C141121.3 (2)H34A—C341—H34C109.5
C13—C14—C141121.2 (2)H34B—C341—H34C109.5
C14—C15—C16121.4 (2)C44—C441—H44A109.5
C14—C15—H15A119.3C44—C441—H44B109.5
C16—C15—H15A119.3H44A—C441—H44B109.5
C15—C16—C11120.80 (19)C44—C441—H44C109.5
C15—C16—H16A119.6H44A—C441—H44C109.5
C11—C16—H16A119.6H44B—C441—H44C109.5
C22—C21—C26118.52 (19)C1—N1—C11120.08 (17)
C22—C21—N2120.61 (18)C1—N1—Zn121.26 (14)
C26—C21—N2120.86 (18)C11—N1—Zn118.60 (12)
C21—C22—C23120.7 (2)C3—N2—C21118.82 (16)
C21—C22—H22A119.7C3—N2—Zn121.77 (14)
C23—C22—H22A119.7C21—N2—Zn119.33 (12)
C24—C23—C22121.2 (2)C4—N3—C31119.71 (17)
C24—C23—H23A119.4C4—N3—Zn122.86 (14)
C22—C23—H23A119.4C31—N3—Zn117.35 (12)
C23—C24—C25117.5 (2)C6—N4—C41119.54 (16)
C23—C24—C241121.6 (2)C6—N4—Zn121.50 (14)
C25—C24—C241120.8 (2)C41—N4—Zn118.93 (12)
N1—C1—C2—C35.6 (4)C16—C11—N1—C160.2 (3)
C19—C1—C2—C3176.1 (2)C12—C11—N1—C1124.6 (2)
C1—C2—C3—N210.0 (4)C16—C11—N1—Zn116.98 (18)
C1—C2—C3—C39169.9 (2)C12—C11—N1—Zn58.2 (2)
N3—C4—C5—C69.5 (4)N2—Zn—N1—C110.99 (16)
C49—C4—C5—C6170.8 (2)N3—Zn—N1—C1134.55 (15)
C4—C5—C6—N43.7 (4)N4—Zn—N1—C1115.07 (16)
C4—C5—C6—C69176.9 (2)N2—Zn—N1—C11166.18 (14)
C16—C11—C12—C132.2 (3)N3—Zn—N1—C1142.63 (16)
N1—C11—C12—C13177.65 (18)N4—Zn—N1—C1167.75 (16)
C11—C12—C13—C141.8 (3)C2—C3—N2—C21177.49 (18)
C12—C13—C14—C150.3 (3)C39—C3—N2—C212.4 (3)
C12—C13—C14—C141179.1 (2)C2—C3—N2—Zn0.9 (3)
C13—C14—C15—C160.6 (3)C39—C3—N2—Zn179.02 (14)
C141—C14—C15—C16179.9 (2)C22—C21—N2—C3101.7 (2)
C14—C15—C16—C110.2 (3)C26—C21—N2—C379.2 (2)
C12—C11—C16—C151.3 (3)C22—C21—N2—Zn81.7 (2)
N1—C11—C16—C15176.55 (18)C26—C21—N2—Zn97.4 (2)
C26—C21—C22—C232.4 (3)N3—Zn—N2—C3129.59 (15)
N2—C21—C22—C23178.50 (19)N4—Zn—N2—C3117.06 (15)
C21—C22—C23—C240.6 (3)N1—Zn—N2—C37.41 (16)
C22—C23—C24—C251.2 (3)N3—Zn—N2—C2146.99 (16)
C22—C23—C24—C241179.6 (2)N4—Zn—N2—C2166.36 (16)
C23—C24—C25—C261.3 (3)N1—Zn—N2—C21169.16 (14)
C241—C24—C25—C26179.6 (2)C5—C4—N3—C31177.73 (18)
C24—C25—C26—C210.5 (3)C49—C4—N3—C311.9 (3)
C22—C21—C26—C252.3 (3)C5—C4—N3—Zn1.2 (3)
N2—C21—C26—C25178.56 (19)C49—C4—N3—Zn178.49 (15)
C36—C31—C32—C331.1 (3)C32—C31—N3—C476.7 (3)
N3—C31—C32—C33177.4 (2)C36—C31—N3—C4107.0 (2)
C31—C32—C33—C340.3 (3)C32—C31—N3—Zn106.6 (2)
C32—C33—C34—C350.7 (3)C36—C31—N3—Zn69.7 (2)
C32—C33—C34—C341179.4 (2)N2—Zn—N3—C4136.50 (16)
C33—C34—C35—C360.9 (3)N4—Zn—N3—C410.98 (17)
C341—C34—C35—C36179.1 (2)N1—Zn—N3—C4111.08 (16)
C34—C35—C36—C310.2 (3)N2—Zn—N3—C3146.87 (16)
C32—C31—C36—C350.8 (3)N4—Zn—N3—C31172.39 (14)
N3—C31—C36—C35177.29 (18)N1—Zn—N3—C3165.55 (15)
C46—C41—C42—C432.2 (3)C5—C6—N4—C41171.02 (19)
N4—C41—C42—C43179.36 (18)C69—C6—N4—C419.6 (3)
C41—C42—C43—C440.6 (3)C5—C6—N4—Zn11.2 (3)
C42—C43—C44—C451.0 (3)C69—C6—N4—Zn168.18 (16)
C42—C43—C44—C441179.0 (2)C46—C41—N4—C664.4 (3)
C43—C44—C45—C460.9 (3)C42—C41—N4—C6118.4 (2)
C441—C44—C45—C46179.0 (2)C46—C41—N4—Zn117.75 (18)
C44—C45—C46—C410.7 (3)C42—C41—N4—Zn59.4 (2)
C42—C41—C46—C452.2 (3)N2—Zn—N4—C6140.07 (15)
N4—C41—C46—C45179.40 (18)N3—Zn—N4—C615.72 (16)
C2—C1—N1—C11170.56 (19)N1—Zn—N4—C6105.39 (16)
C19—C1—N1—C1111.2 (3)N2—Zn—N4—C4142.16 (16)
C2—C1—N1—Zn6.6 (3)N3—Zn—N4—C41166.51 (14)
C19—C1—N1—Zn171.65 (15)N1—Zn—N4—C4172.39 (15)

Experimental details

Crystal data
Chemical formula[Zn(C19H21N2)2]
Mr620.13
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)125
a, b, c (Å)14.1266 (13), 18.8197 (17), 25.059 (2)
V3)6662.3 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.49 × 0.46 × 0.07
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.693, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
70818, 7068, 6050
Rint0.023
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.111, 1.03
No. of reflections7068
No. of parameters388
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.51

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn—N21.9877 (16)Zn—N41.9924 (16)
Zn—N31.9894 (16)Zn—N11.9971 (16)
 

Acknowledgements

This work was supported by the US National Science Foundation (NSF, grant No. CHE-0747612). X-ray facilities were provided by the NSF (grant No. CHE-1039436). BAV thanks the University of Vermont College of Arts and Sciences for an APEL grant.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoates, G., Allen, S. & Ajiro, H. (2007). Stereoselective Polymerization with Single-Site Catalysts, pp. 627-644. Boca Raton: CRC Press.  Google Scholar
First citationMcGeachin, S. G. (1968). Can. J. Chem. 46, 1903–1912.  CrossRef CAS Web of Science Google Scholar
First citationMindiola, D. J. (2009). Angew. Chem. Int. Ed. 48, 6198–6200.  Web of Science CrossRef CAS Google Scholar
First citationParks, J. E. & Holm, R. H. (1968). Inorg. Chem. 7, 1408–1416.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaughan, B. A., Arsenault, E. M., Chan, S. M. & Waterman, R. (2012). J. Organomet. Chem. 696, 4327–4331.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds