organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Hy­dr­oxy­meth­yl)pyridin-3-ol

aState Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: dc_wang@hotmail.com

(Received 31 December 2011; accepted 22 January 2012; online 17 February 2012)

In the crystal structure of the title compound, C6H7NO2, the mol­ecules are are linked by inter­molecular O—H⋯N and O—H⋯O hydrogen bonds; ππ stacking is observed between parallel pyridine rings of adjacent mol­ecules [centroid-to-centroid distance = 3.7649 (12) Å].

Related literature

For the synthesis of the title compound, see: Dabak (2002[Dabak, K. (2002). Turk. J. Chem. 26, 955-963.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7NO2

  • Mr = 125.13

  • Monoclinic, P 21 /n

  • a = 7.0430 (14) Å

  • b = 7.1280 (14) Å

  • c = 12.264 (3) Å

  • β = 100.30 (3)°

  • V = 605.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (XCAD4; Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]) Tmin = 0.969, Tmax = 0.990

  • 2263 measured reflections

  • 1089 independent reflections

  • 932 reflections with I > 2σ(I)

  • Rint = 0.028

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.136

  • S = 0.99

  • 1089 reflections

  • 85 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.82 1.85 2.6502 (17) 166
O2—H2A⋯Nii 0.82 1.92 2.7216 (17) 167
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is an important organic intermediate for the synthesis of 2-pyrimidine-oxy-N-aryl benzyl amine derivatives, an important compound for new pesticides. In the process of synthesis, we obtained the crystal of the intermediate and we report its crystal structure.

As illustrated in Fig. 1, the hydroxyl oxygen O1 and the hydroxymethyl carbon C6 are approximately coplanar with the pyridine ring (C1—C5/N) with the maximum deviation of -0.0227 Å. The crystal structure is stabilized by intermolecular N—H···O and O—H···O hydrogen bonds (Table 1), and is further stabilized by ππ stacking between pyridine rings [centroid–centroid distance = 3.7649 (12) Å]

Related literature top

For the synthesis of the title compound, see: Dabak (2002).

Experimental top

The synthesis is according to the literature (Dabak, 2002). The formaldehyde solution (12.6 ml, 0.156 mol) and sodium hydroxide (6.3 g, 0.158 mol) was added to a solution of 3-hydroxypyridine (15.0 g, 0.156 mol) in water (63 ml). The reaction mixture was heated at 373 K for 12 h and then allowed to cool to ambient temperature. Acetic acid (9.47 ml, 0.156 mol) was added and water was removed in vacuo and the solid obtained was stirred with acetone (200 ml). The extract was purified by silica gel column chromatography and the colourless crystals were obtained in a yield of 20.3%.

Refinement top

H atoms were placed at calculated positions and were treated in riding mode with C—H = 0.93 (aromatic), 0.97 Å (methylene) and O—H = 0.82 Å. Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.
2-(Hydroxymethyl)pyridin-3-ol top
Crystal data top
C6H7NO2F(000) = 264
Mr = 125.13Dx = 1.372 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 7.0430 (14) Åθ = 9–13°
b = 7.1280 (14) ŵ = 0.10 mm1
c = 12.264 (3) ÅT = 293 K
β = 100.30 (3)°Block, colourless
V = 605.8 (2) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
932 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 25.2°, θmin = 3.1°
ω/2θ scansh = 08
Absorption correction: ψ scan
(XCAD4; Harms & Wocadlo, 1995)
k = 88
Tmin = 0.969, Tmax = 0.990l = 1414
2263 measured reflections3 standard reflections every 200 reflections
1089 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.1P)2 + 0.069P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
1089 reflectionsΔρmax = 0.18 e Å3
85 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.67 (5)
Crystal data top
C6H7NO2V = 605.8 (2) Å3
Mr = 125.13Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.0430 (14) ŵ = 0.10 mm1
b = 7.1280 (14) ÅT = 293 K
c = 12.264 (3) Å0.30 × 0.20 × 0.10 mm
β = 100.30 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
932 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XCAD4; Harms & Wocadlo, 1995)
Rint = 0.028
Tmin = 0.969, Tmax = 0.9903 standard reflections every 200 reflections
2263 measured reflections intensity decay: 1%
1089 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 0.99Δρmax = 0.18 e Å3
1089 reflectionsΔρmin = 0.15 e Å3
85 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.59730 (19)0.28061 (17)0.05259 (10)0.0374 (4)
O10.21831 (16)0.3738 (2)0.20521 (9)0.0531 (5)
H1A0.22170.42250.26610.080*
C10.7372 (2)0.3911 (2)0.10511 (13)0.0418 (5)
H1B0.85480.39320.08070.050*
O20.27768 (19)0.02901 (16)0.08581 (9)0.0504 (5)
H2A0.32770.10990.05270.076*
C20.7152 (2)0.5019 (2)0.19373 (13)0.0436 (5)
H2B0.81600.57720.22840.052*
C30.5409 (2)0.4995 (2)0.23031 (13)0.0410 (5)
H3A0.52230.57310.29010.049*
C40.3939 (2)0.3855 (2)0.17644 (12)0.0358 (5)
C50.4270 (2)0.2764 (2)0.08702 (11)0.0340 (5)
C60.2761 (2)0.1456 (2)0.02825 (13)0.0421 (5)
H6A0.15000.20340.02250.050*
H6B0.29940.12280.04620.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0432 (8)0.0343 (7)0.0360 (7)0.0046 (5)0.0108 (5)0.0008 (5)
O10.0435 (8)0.0704 (9)0.0487 (8)0.0087 (6)0.0176 (5)0.0177 (6)
C10.0383 (9)0.0407 (9)0.0478 (10)0.0024 (7)0.0115 (7)0.0030 (7)
O20.0729 (9)0.0392 (7)0.0462 (7)0.0084 (6)0.0299 (6)0.0068 (5)
C20.0415 (9)0.0399 (9)0.0471 (10)0.0041 (7)0.0020 (7)0.0038 (6)
C30.0462 (9)0.0392 (8)0.0377 (9)0.0008 (7)0.0076 (7)0.0074 (6)
C40.0381 (9)0.0362 (8)0.0336 (8)0.0030 (6)0.0078 (6)0.0003 (6)
C50.0416 (9)0.0318 (8)0.0284 (8)0.0033 (6)0.0053 (6)0.0034 (5)
C60.0472 (10)0.0421 (9)0.0371 (8)0.0027 (7)0.0078 (7)0.0049 (6)
Geometric parameters (Å, º) top
N—C11.334 (2)C2—C31.381 (2)
N—C51.3412 (19)C2—H2B0.9300
O1—C41.3478 (19)C3—C41.387 (2)
O1—H1A0.8200C3—H3A0.9300
C1—C21.375 (2)C4—C51.397 (2)
C1—H1B0.9300C5—C61.499 (2)
O2—C61.430 (2)C6—H6A0.9700
O2—H2A0.8200C6—H6B0.9700
C1—N—C5119.08 (12)O1—C4—C3123.57 (14)
C4—O1—H1A109.5O1—C4—C5117.43 (13)
N—C1—C2122.91 (15)C3—C4—C5118.99 (15)
N—C1—H1B118.5N—C5—C4121.25 (13)
C2—C1—H1B118.5N—C5—C6117.37 (12)
C6—O2—H2A109.5C4—C5—C6121.35 (14)
C1—C2—C3118.82 (15)O2—C6—C5111.22 (13)
C1—C2—H2B120.6O2—C6—H6A109.4
C3—C2—H2B120.6C5—C6—H6A109.4
C2—C3—C4118.94 (14)O2—C6—H6B109.4
C2—C3—H3A120.5C5—C6—H6B109.4
C4—C3—H3A120.5H6A—C6—H6B108.0
C5—N—C1—C20.0 (2)O1—C4—C5—N179.61 (13)
N—C1—C2—C30.1 (2)C3—C4—C5—N0.1 (2)
C1—C2—C3—C40.0 (2)O1—C4—C5—C62.4 (2)
C2—C3—C4—O1179.62 (15)C3—C4—C5—C6177.80 (13)
C2—C3—C4—C50.1 (2)N—C5—C6—O295.53 (15)
C1—N—C5—C40.1 (2)C4—C5—C6—O282.49 (17)
C1—N—C5—C6177.96 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.821.852.6502 (17)166
O2—H2A···Nii0.821.922.7216 (17)167
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC6H7NO2
Mr125.13
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.0430 (14), 7.1280 (14), 12.264 (3)
β (°) 100.30 (3)
V3)605.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(XCAD4; Harms & Wocadlo, 1995)
Tmin, Tmax0.969, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
2263, 1089, 932
Rint0.028
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.136, 0.99
No. of reflections1089
No. of parameters85
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.15

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.821.852.6502 (17)166
O2—H2A···Nii0.821.922.7216 (17)167
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by the Center of Testing and Analysis, Nanjing University, China.

References

First citationDabak, K. (2002). Turk. J. Chem. 26, 955–963.  CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds