organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-{[4,6-Bis(octyl­amino)-1,3,5-triazin-2-yl]aza­nedi­yl}di­ethanol

aSchool of Chemical Engineering and Environment, North University of China, Taiyuan, People's Republic of China
*Correspondence e-mail: Huzhiyong@nuc.edu.cn

(Received 14 January 2012; accepted 29 January 2012; online 4 February 2012)

In the title compound, C23H46N6O2, the two hy­droxy groups are located on opposite sides of the triazine ring. One of the hy­droxy groups links with the triazine N atom via an intra­molecular O—H⋯N hydrogen bond. Inter­molecular O—H⋯N and N—H⋯O hydrogen bonding is observed in the crystal structure. ππ stacking is also observed between parallel triazine rings of adjacent mol­ecules, the centroid–centroid distance being 3.5944 (14) Å.

Related literature

For the properties of Gemini surfacta­nts, see: Zana & Xia (2003[Zana, R. & Xia, J. (2003). Gemini Surfactants: Synthesis, Interfacial and Solution-phase Behavior, and Applications. New York: Marcel Dekker.]); Menger & Keiper (2000[Menger, F. M. & Keiper, J. S. (2000). Angew. Chem. Int. Ed. 39, 1906-1920.]). For the synthesis, see: Li et al. (2010[Li, X., Hu, Z.-Y., Zhu, H.-L., Zhao, S.-F. & Cao, D.-L. (2010). J. Surfactants Deterg. 13, 353-359.]); Zhao et al. (2010[Zhao, S.-F., Zhu, H.-L., Li, X., Hu, Z.-Y. & Cao, D.-L. (2010). J. Colloid Interface Sci. 350, 480-485.]); Xue et al. (2011[Xue, C.-L., Zhu, H.-L., Zhang, T.-T., Cao, D.-L. & Hu, Z.-Y. (2011). Colloids Surf. A Physicochem. Eng. Asp. 375, 141-146.]).

[Scheme 1]

Experimental

Crystal data
  • C23H46N6O2

  • Mr = 438.66

  • Triclinic, [P \overline 1]

  • a = 8.333 (3) Å

  • b = 9.526 (3) Å

  • c = 17.182 (6) Å

  • α = 100.144 (7)°

  • β = 100.741 (5)°

  • γ = 102.109 (5)°

  • V = 1276.9 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 113 K

  • 0.24 × 0.22 × 0.14 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2000[Rigaku/MSC (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.982, Tmax = 0.990

  • 13414 measured reflections

  • 6014 independent reflections

  • 3623 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.092

  • S = 1.07

  • 6014 reflections

  • 292 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.84 1.95 2.7732 (13) 167
O2—H2⋯N3 0.84 2.00 2.8057 (14) 160
N5—H5⋯O1ii 0.89 (1) 1.95 (1) 2.7963 (15) 157 (1)
N6—H6⋯O2iii 0.90 (1) 2.20 (1) 2.9455 (14) 141 (1)
Symmetry codes: (i) -x, -y+1, -z; (ii) x-1, y, z; (iii) -x, -y+2, -z.

Data collection: CrystalClear (Rigaku/MSC, 2000[Rigaku/MSC (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, the majority of Gemini surfactants had been synthesized, because it shows much lower critical micelle concentration values, greater efficiency in lowering the surface tension of water, and interfacial tension at the oil/water interface than for the conventional surfactants (Zana & Xia, 2003; Menger & Keiper, 2000). The title compound, which can be prepared by the nucleophilic substitution reactions of 1-octylamine, diethanolamine and 2,4,6-trichloro-1,3,5-triazine. Similar this synthesis, see (Li et al., 2010; Zhao et al., 2010; Xue et al., 2011). Here the crystal structure of the title compound is reported.

In the title molecule (Fig.1), there are two octylamino groups, two ethanol groups and a central triazin ring. In the crystal structure, the neighboring molecules are connected through weak intermolecular N—H···O and O—H···N interactions

Related literature top

For the properties of Gemini surfactants, see: Zana & Xia (2003); Menger & Keiper (2000). For the synthesis, see: Li et al. (2010); Zhao et al. (2010); Xue et al. (2011).

Experimental top

The title compound was prepared according to literature method (Xue et al., 2011). Single crystals suitable for X-ray diffraction were obtained by evaporation of a solution of the title compound in toluene at room temperature.

Refinement top

H atoms were positioned geometrically and treated as riding, with C—H = 0.98 for methyl H and 0.99 Å for methylene H atoms, O—H = 0.84 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C) for methylene H atoms and 1.5Ueq(C,O) for methyl H and hydroxy H atoms. Imino H atoms were located in a difference Fourier map and refined isotroipically.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2000); cell refinement: CrystalClear (Rigaku/MSC, 2000); data reduction: CrystalClear (Rigaku/MSC, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound.
2,2'-{[4,6-Bis(octylamino)-1,3,5-triazin-2-yl]azanediyl}diethanol top
Crystal data top
C23H46N6O2Z = 2
Mr = 438.66F(000) = 484
Triclinic, P1Dx = 1.141 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.333 (3) ÅCell parameters from 4402 reflections
b = 9.526 (3) Åθ = 1.2–27.9°
c = 17.182 (6) ŵ = 0.08 mm1
α = 100.144 (7)°T = 113 K
β = 100.741 (5)°Prism, colorless
γ = 102.109 (5)°0.24 × 0.22 × 0.14 mm
V = 1276.9 (8) Å3
Data collection top
Rigaku Saturn724 CCD
diffractometer
6014 independent reflections
Radiation source: rotating anode3623 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.032
Detector resolution: 14.22 pixels mm-1θmax = 27.9°, θmin = 1.2°
ω and ϕ scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2000)
k = 1211
Tmin = 0.982, Tmax = 0.990l = 2222
13414 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.034P)2]
where P = (Fo2 + 2Fc2)/3
6014 reflections(Δ/σ)max = 0.003
292 parametersΔρmax = 0.22 e Å3
2 restraintsΔρmin = 0.35 e Å3
Crystal data top
C23H46N6O2γ = 102.109 (5)°
Mr = 438.66V = 1276.9 (8) Å3
Triclinic, P1Z = 2
a = 8.333 (3) ÅMo Kα radiation
b = 9.526 (3) ŵ = 0.08 mm1
c = 17.182 (6) ÅT = 113 K
α = 100.144 (7)°0.24 × 0.22 × 0.14 mm
β = 100.741 (5)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
6014 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2000)
3623 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.990Rint = 0.032
13414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0352 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.22 e Å3
6014 reflectionsΔρmin = 0.35 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.45621 (9)0.45821 (9)0.09768 (5)0.0232 (2)
H10.37540.41850.05720.035*
O20.37413 (10)1.04004 (9)0.07962 (5)0.0248 (2)
H20.28810.97380.05330.037*
N10.07742 (11)0.62558 (10)0.10758 (5)0.0164 (2)
N20.15593 (11)0.66811 (10)0.01779 (6)0.0161 (2)
N30.12763 (11)0.77449 (10)0.01128 (5)0.0156 (2)
N40.34670 (11)0.72741 (10)0.09900 (6)0.0168 (2)
N50.19488 (12)0.52780 (11)0.11208 (6)0.0186 (2)
N60.10013 (11)0.80796 (10)0.07507 (6)0.0170 (2)
C10.17873 (13)0.70736 (12)0.07153 (7)0.0153 (2)
C20.08806 (13)0.60962 (12)0.07829 (7)0.0154 (2)
C30.04067 (13)0.74848 (12)0.01343 (7)0.0153 (2)
C40.00887 (13)0.89922 (12)0.11373 (7)0.0171 (3)
H4A0.10420.85560.12160.021*
H4B0.05600.99860.07770.021*
C50.08616 (14)0.91258 (13)0.19511 (7)0.0208 (3)
H5A0.18130.95640.18710.025*
H5B0.13380.81310.23090.025*
C60.02670 (15)1.00745 (13)0.23645 (7)0.0232 (3)
H6A0.11740.95970.24740.028*
H6B0.08071.10430.19870.028*
C70.06691 (15)1.03229 (13)0.31604 (7)0.0247 (3)
H7A0.16331.07220.30550.030*
H7B0.01011.10810.33370.030*
C80.13314 (15)0.89670 (13)0.38531 (7)0.0250 (3)
H8A0.20970.82000.36810.030*
H8B0.03720.85740.39710.030*
C90.22769 (16)0.92779 (14)0.46281 (7)0.0271 (3)
H9A0.32470.96550.45100.032*
H9B0.15161.00610.47920.032*
C100.29184 (17)0.79495 (15)0.53305 (7)0.0326 (3)
H10A0.36680.71620.51650.039*
H10B0.19470.75800.54530.039*
C110.3879 (2)0.82560 (18)0.61002 (8)0.0474 (4)
H11A0.48660.85910.59910.071*
H11B0.42490.73530.65300.071*
H11C0.31410.90220.62760.071*
C120.13547 (14)0.45555 (13)0.17567 (7)0.0196 (3)
H12A0.04660.40900.16070.023*
H12B0.23010.37650.17950.023*
C130.06510 (14)0.56152 (13)0.25832 (7)0.0213 (3)
H13A0.16020.58780.27940.026*
H13B0.00680.65310.25120.026*
C140.03814 (15)0.50118 (13)0.32134 (7)0.0228 (3)
H14A0.03470.41290.33130.027*
H14B0.13090.47080.29990.027*
C150.11192 (15)0.61478 (13)0.40109 (7)0.0248 (3)
H15A0.18330.70270.39000.030*
H15B0.01790.64540.42120.030*
C160.21685 (15)0.56546 (13)0.46839 (7)0.0240 (3)
H16A0.31410.53830.44990.029*
H16B0.14740.47660.47950.029*
C170.28156 (15)0.68470 (14)0.54663 (7)0.0249 (3)
H17A0.35200.77240.53500.030*
H17B0.18360.71350.56350.030*
C180.38433 (16)0.64197 (14)0.61749 (7)0.0270 (3)
H18A0.48660.61890.60250.032*
H18B0.31670.55190.62830.032*
C190.43686 (17)0.76375 (15)0.69446 (8)0.0334 (3)
H19A0.50660.85230.68450.050*
H19B0.50180.73130.73850.050*
H19C0.33600.78610.71000.050*
C200.41197 (14)0.68357 (12)0.17361 (7)0.0182 (3)
H20A0.35210.71670.21530.022*
H20B0.53290.73510.19400.022*
C210.39391 (14)0.51959 (13)0.16401 (7)0.0199 (3)
H21A0.45600.50130.21470.024*
H21B0.27330.46940.15570.024*
C220.46880 (13)0.81199 (12)0.06247 (7)0.0172 (3)
H22A0.42150.79400.00330.021*
H22B0.57320.77690.07030.021*
C230.51254 (14)0.97586 (12)0.09878 (7)0.0202 (3)
H23A0.55000.99300.15860.024*
H23B0.60781.02550.07840.024*
H50.3060 (10)0.5149 (14)0.0952 (7)0.033 (4)*
H60.2096 (11)0.8076 (14)0.0843 (7)0.031 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0150 (4)0.0274 (5)0.0234 (5)0.0047 (3)0.0012 (3)0.0000 (4)
O20.0178 (4)0.0190 (5)0.0363 (6)0.0049 (3)0.0051 (4)0.0037 (4)
N10.0133 (5)0.0196 (5)0.0164 (5)0.0037 (4)0.0030 (4)0.0053 (4)
N20.0142 (5)0.0187 (5)0.0153 (5)0.0040 (4)0.0029 (4)0.0039 (4)
N30.0132 (5)0.0178 (5)0.0157 (5)0.0044 (4)0.0016 (4)0.0045 (4)
N40.0126 (5)0.0205 (5)0.0176 (5)0.0026 (4)0.0022 (4)0.0084 (4)
N50.0134 (5)0.0236 (6)0.0198 (6)0.0042 (4)0.0037 (4)0.0077 (5)
N60.0133 (5)0.0212 (6)0.0174 (5)0.0053 (4)0.0021 (4)0.0069 (4)
C10.0157 (6)0.0143 (6)0.0143 (6)0.0037 (4)0.0025 (5)0.0001 (5)
C20.0146 (6)0.0154 (6)0.0144 (6)0.0030 (4)0.0029 (5)0.0003 (5)
C30.0166 (6)0.0141 (6)0.0140 (6)0.0049 (4)0.0025 (5)0.0001 (5)
C40.0181 (6)0.0159 (6)0.0164 (6)0.0032 (4)0.0022 (5)0.0043 (5)
C50.0197 (6)0.0249 (7)0.0179 (7)0.0055 (5)0.0036 (5)0.0064 (5)
C60.0253 (7)0.0235 (7)0.0188 (7)0.0025 (5)0.0032 (5)0.0058 (5)
C70.0311 (7)0.0227 (7)0.0214 (7)0.0064 (5)0.0055 (5)0.0083 (6)
C80.0316 (7)0.0255 (7)0.0201 (7)0.0104 (5)0.0055 (5)0.0073 (6)
C90.0331 (7)0.0294 (7)0.0212 (7)0.0123 (6)0.0056 (6)0.0075 (6)
C100.0393 (8)0.0371 (8)0.0213 (7)0.0171 (6)0.0021 (6)0.0028 (6)
C110.0565 (10)0.0616 (11)0.0225 (8)0.0256 (8)0.0021 (7)0.0042 (8)
C120.0189 (6)0.0204 (6)0.0207 (7)0.0034 (5)0.0064 (5)0.0079 (5)
C130.0245 (6)0.0225 (7)0.0202 (7)0.0079 (5)0.0088 (5)0.0070 (5)
C140.0251 (6)0.0230 (7)0.0224 (7)0.0074 (5)0.0073 (5)0.0072 (6)
C150.0300 (7)0.0253 (7)0.0210 (7)0.0104 (5)0.0056 (5)0.0061 (6)
C160.0266 (7)0.0258 (7)0.0218 (7)0.0101 (5)0.0058 (5)0.0067 (6)
C170.0287 (7)0.0261 (7)0.0210 (7)0.0096 (5)0.0048 (5)0.0058 (6)
C180.0273 (7)0.0297 (7)0.0240 (7)0.0086 (5)0.0041 (5)0.0064 (6)
C190.0340 (8)0.0378 (9)0.0247 (8)0.0081 (6)0.0003 (6)0.0054 (7)
C200.0146 (6)0.0221 (7)0.0165 (6)0.0036 (5)0.0003 (5)0.0059 (5)
C210.0174 (6)0.0241 (7)0.0193 (7)0.0057 (5)0.0030 (5)0.0082 (5)
C220.0130 (5)0.0209 (6)0.0194 (6)0.0045 (4)0.0044 (5)0.0074 (5)
C230.0168 (6)0.0209 (7)0.0222 (7)0.0030 (5)0.0030 (5)0.0063 (5)
Geometric parameters (Å, º) top
O1—C211.4224 (14)C10—H10B0.9900
O1—H10.8400C11—H11A0.9800
O2—C231.4275 (13)C11—H11B0.9800
O2—H20.8400C11—H11C0.9800
N1—C11.3386 (14)C12—C131.5217 (16)
N1—C21.3433 (14)C12—H12A0.9900
N2—C31.3507 (14)C12—H12B0.9900
N2—C21.3521 (14)C13—C141.5240 (15)
N3—C31.3431 (14)C13—H13A0.9900
N3—C11.3583 (14)C13—H13B0.9900
N4—C11.3522 (14)C14—C151.5203 (17)
N4—C201.4619 (14)C14—H14A0.9900
N4—C221.4666 (14)C14—H14B0.9900
N5—C21.3407 (14)C15—C161.5196 (16)
N5—C121.4557 (14)C15—H15A0.9900
N5—H50.893 (8)C15—H15B0.9900
N6—C31.3497 (14)C16—C171.5242 (17)
N6—C41.4557 (14)C16—H16A0.9900
N6—H60.895 (8)C16—H16B0.9900
C4—C51.5135 (15)C17—C181.5211 (16)
C4—H4A0.9900C17—H17A0.9900
C4—H4B0.9900C17—H17B0.9900
C5—C61.5245 (16)C18—C191.5223 (18)
C5—H5A0.9900C18—H18A0.9900
C5—H5B0.9900C18—H18B0.9900
C6—C71.5259 (16)C19—H19A0.9800
C6—H6A0.9900C19—H19B0.9800
C6—H6B0.9900C19—H19C0.9800
C7—C81.5179 (17)C20—C211.5138 (17)
C7—H7A0.9900C20—H20A0.9900
C7—H7B0.9900C20—H20B0.9900
C8—C91.5257 (16)C21—H21A0.9900
C8—H8A0.9900C21—H21B0.9900
C8—H8B0.9900C22—C231.5141 (16)
C9—C101.5104 (18)C22—H22A0.9900
C9—H9A0.9900C22—H22B0.9900
C9—H9B0.9900C23—H23A0.9900
C10—C111.5213 (17)C23—H23B0.9900
C10—H10A0.9900
C21—O1—H1109.5N5—C12—H12A109.1
C23—O2—H2109.5C13—C12—H12A109.1
C1—N1—C2114.52 (10)N5—C12—H12B109.1
C3—N2—C2113.97 (9)C13—C12—H12B109.1
C3—N3—C1114.02 (9)H12A—C12—H12B107.8
C1—N4—C20120.28 (10)C12—C13—C14114.34 (10)
C1—N4—C22121.39 (9)C12—C13—H13A108.7
C20—N4—C22117.74 (9)C14—C13—H13A108.7
C2—N5—C12121.87 (9)C12—C13—H13B108.7
C2—N5—H5120.2 (8)C14—C13—H13B108.7
C12—N5—H5117.9 (8)H13A—C13—H13B107.6
C3—N6—C4123.16 (9)C15—C14—C13111.74 (10)
C3—N6—H6116.9 (8)C15—C14—H14A109.3
C4—N6—H6118.5 (8)C13—C14—H14A109.3
N1—C1—N4116.90 (10)C15—C14—H14B109.3
N1—C1—N3125.73 (10)C13—C14—H14B109.3
N4—C1—N3117.35 (10)H14A—C14—H14B107.9
N5—C2—N1116.81 (10)C16—C15—C14116.01 (10)
N5—C2—N2117.38 (9)C16—C15—H15A108.3
N1—C2—N2125.81 (10)C14—C15—H15A108.3
N3—C3—N6117.08 (10)C16—C15—H15B108.3
N3—C3—N2125.91 (10)C14—C15—H15B108.3
N6—C3—N2117.00 (9)H15A—C15—H15B107.4
N6—C4—C5111.51 (9)C15—C16—C17112.37 (10)
N6—C4—H4A109.3C15—C16—H16A109.1
C5—C4—H4A109.3C17—C16—H16A109.1
N6—C4—H4B109.3C15—C16—H16B109.1
C5—C4—H4B109.3C17—C16—H16B109.1
H4A—C4—H4B108.0H16A—C16—H16B107.9
C4—C5—C6112.08 (9)C18—C17—C16115.39 (11)
C4—C5—H5A109.2C18—C17—H17A108.4
C6—C5—H5A109.2C16—C17—H17A108.4
C4—C5—H5B109.2C18—C17—H17B108.4
C6—C5—H5B109.2C16—C17—H17B108.4
H5A—C5—H5B107.9H17A—C17—H17B107.5
C5—C6—C7113.74 (10)C17—C18—C19112.27 (11)
C5—C6—H6A108.8C17—C18—H18A109.1
C7—C6—H6A108.8C19—C18—H18A109.1
C5—C6—H6B108.8C17—C18—H18B109.1
C7—C6—H6B108.8C19—C18—H18B109.2
H6A—C6—H6B107.7H18A—C18—H18B107.9
C8—C7—C6115.39 (10)C18—C19—H19A109.5
C8—C7—H7A108.4C18—C19—H19B109.5
C6—C7—H7A108.4H19A—C19—H19B109.5
C8—C7—H7B108.4C18—C19—H19C109.5
C6—C7—H7B108.4H19A—C19—H19C109.5
H7A—C7—H7B107.5H19B—C19—H19C109.5
C7—C8—C9113.02 (10)N4—C20—C21114.49 (9)
C7—C8—H8A109.0N4—C20—H20A108.6
C9—C8—H8A109.0C21—C20—H20A108.6
C7—C8—H8B109.0N4—C20—H20B108.6
C9—C8—H8B109.0C21—C20—H20B108.6
H8A—C8—H8B107.8H20A—C20—H20B107.6
C10—C9—C8113.91 (11)O1—C21—C20112.63 (10)
C10—C9—H9A108.8O1—C21—H21A109.1
C8—C9—H9A108.8C20—C21—H21A109.1
C10—C9—H9B108.8O1—C21—H21B109.1
C8—C9—H9B108.8C20—C21—H21B109.1
H9A—C9—H9B107.7H21A—C21—H21B107.8
C9—C10—C11113.88 (11)N4—C22—C23112.52 (10)
C9—C10—H10A108.8N4—C22—H22A109.1
C11—C10—H10A108.8C23—C22—H22A109.1
C9—C10—H10B108.8N4—C22—H22B109.1
C11—C10—H10B108.8C23—C22—H22B109.1
H10A—C10—H10B107.7H22A—C22—H22B107.8
C10—C11—H11A109.5O2—C23—C22112.85 (9)
C10—C11—H11B109.5O2—C23—H23A109.0
H11A—C11—H11B109.5C22—C23—H23A109.0
C10—C11—H11C109.5O2—C23—H23B109.0
H11A—C11—H11C109.5C22—C23—H23B109.0
H11B—C11—H11C109.5H23A—C23—H23B107.8
N5—C12—C13112.69 (10)
C2—N1—C1—N4179.73 (10)C3—N6—C4—C5162.91 (10)
C2—N1—C1—N31.35 (16)N6—C4—C5—C6179.78 (10)
C20—N4—C1—N110.55 (15)C4—C5—C6—C7176.09 (10)
C22—N4—C1—N1178.45 (10)C5—C6—C7—C867.98 (15)
C20—N4—C1—N3167.96 (10)C6—C7—C8—C9179.15 (10)
C22—N4—C1—N33.03 (15)C7—C8—C9—C10178.89 (11)
C3—N3—C1—N12.26 (16)C8—C9—C10—C11179.31 (12)
C3—N3—C1—N4179.37 (10)C2—N5—C12—C1377.29 (14)
C12—N5—C2—N11.91 (16)N5—C12—C13—C14165.17 (10)
C12—N5—C2—N2177.83 (9)C12—C13—C14—C15177.18 (10)
C1—N1—C2—N5179.59 (10)C13—C14—C15—C16179.77 (10)
C1—N1—C2—N20.12 (16)C14—C15—C16—C17178.44 (11)
C3—N2—C2—N5179.72 (10)C15—C16—C17—C18178.60 (11)
C3—N2—C2—N10.01 (16)C16—C17—C18—C19177.13 (11)
C1—N3—C3—N6177.87 (9)C1—N4—C20—C2177.14 (13)
C1—N3—C3—N22.11 (16)C22—N4—C20—C21111.54 (11)
C4—N6—C3—N31.14 (16)N4—C20—C21—O150.37 (13)
C4—N6—C3—N2178.88 (10)C1—N4—C22—C2385.59 (12)
C2—N2—C3—N31.08 (16)C20—N4—C22—C2385.63 (12)
C2—N2—C3—N6178.90 (9)N4—C22—C23—O267.59 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.841.952.7732 (13)167
O2—H2···N30.842.002.8057 (14)160
N5—H5···O1ii0.89 (1)1.95 (1)2.7963 (15)157 (1)
N6—H6···O2iii0.90 (1)2.20 (1)2.9455 (14)141 (1)
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC23H46N6O2
Mr438.66
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)8.333 (3), 9.526 (3), 17.182 (6)
α, β, γ (°)100.144 (7), 100.741 (5), 102.109 (5)
V3)1276.9 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.24 × 0.22 × 0.14
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2000)
Tmin, Tmax0.982, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
13414, 6014, 3623
Rint0.032
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.07
No. of reflections6014
No. of parameters292
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.35

Computer programs: CrystalClear (Rigaku/MSC, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.841.952.7732 (13)166.5
O2—H2···N30.842.002.8057 (14)160.1
N5—H5···O1ii0.893 (8)1.952 (9)2.7963 (15)157.3 (12)
N6—H6···O2iii0.895 (8)2.197 (10)2.9455 (14)140.7 (11)
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x, y+2, z.
 

Acknowledgements

The authors thank Shanxi Province for financial support.

References

First citationLi, X., Hu, Z.-Y., Zhu, H.-L., Zhao, S.-F. & Cao, D.-L. (2010). J. Surfactants Deterg. 13, 353–359.  Web of Science CrossRef CAS Google Scholar
First citationMenger, F. M. & Keiper, J. S. (2000). Angew. Chem. Int. Ed. 39, 1906–1920.  CrossRef Google Scholar
First citationRigaku/MSC (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, C.-L., Zhu, H.-L., Zhang, T.-T., Cao, D.-L. & Hu, Z.-Y. (2011). Colloids Surf. A Physicochem. Eng. Asp. 375, 141–146.  Web of Science CrossRef CAS Google Scholar
First citationZana, R. & Xia, J. (2003). Gemini Surfactants: Synthesis, Interfacial and Solution-phase Behavior, and Applications. New York: Marcel Dekker.  Google Scholar
First citationZhao, S.-F., Zhu, H.-L., Li, X., Hu, Z.-Y. & Cao, D.-L. (2010). J. Colloid Interface Sci. 350, 480–485.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds