organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o625-o626

9-(3-Fluoro­phen­­oxy­carbon­yl)-10-methyl­acridinium tri­fluoro­methane­sulfonate monohydrate

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl

(Received 19 January 2012; accepted 24 January 2012; online 4 February 2012)

In the crystal structure of the title mol­ecular salt, C21H15FNO2+·CF3SO3·H2O, the cations form inversion dimers through ππ inter­actions between the acridine ring systems. These dimers are linked via C—H⋯O and C—F⋯π inter­actions to adjacent anions, and by C—H⋯π and C—F⋯π inter­actions to neighbouring cations. The water mol­ecule links two sites of the cation by C—H⋯O inter­actions and two adjacent anions by O—H⋯O hydrogen bonds. The mean planes of the acridine and benzene ring systems are oriented at a dihedral angle of 15.1 (1)°. The carboxyl group is twisted at an angle of 84.5 (1)° relative to the acridine skeleton. The mean planes of the acridine ring systems are parallel in the crystal.

Related literature

For general background to the chemiluminogenic features of 9-phen­oxy­carbonyl-10-methyl­acridinium trifluoro­methane­sulfonates, see: King et al. (2007[King, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O'Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem. 79, 4169-4176.]); Krzymiński et al. (2011[Krzymiński, K., Ożóg, A., Malecha, P., Roshal, A. D., Wróblewska, A., Zadykowicz, B. & Błażejowski, J. (2011). J. Org. Chem. 76, 1072-1085.]); Roda et al. (2003[Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. 75, 462-470A.]). For related structures, see: Trzybiński et al. (2010[Trzybiński, D., Krzymiński, K. & Błażejowski, J. (2010). Acta Cryst. E66, o2769-o2770.]). For inter­molecular inter­actions, see: Aakeröy et al. (1992[Aakeröy, C. B., Seddon, K. R. & Leslie, M. (1992). Struct. Chem. 3, 63-65.]); Dorn et al. (2005[Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633-641.]); Hunter et al. (2001[Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651-669.]); Novoa et al. (2006[Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding - New Insights, edited by S. Grabowski, pp. 193-244. Heidelberg: Springer.]); Takahashi et al. (2001[Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421-2430.]). For the synthesis, see: Sato (1996[Sato, N. (1996). Tetrahedron Lett. 37, 8519-8522.]); Trzybiński et al. (2010[Trzybiński, D., Krzymiński, K. & Błażejowski, J. (2010). Acta Cryst. E66, o2769-o2770.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15FNO2+·CF3O3S·H2O

  • Mr = 499.44

  • Triclinic, [P \overline 1]

  • a = 9.5144 (10) Å

  • b = 11.5654 (11) Å

  • c = 11.9680 (12) Å

  • α = 109.975 (9)°

  • β = 97.838 (8)°

  • γ = 113.197 (9)°

  • V = 1080.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 295 K

  • 0.40 × 0.15 × 0.10 mm

Data collection
  • Oxford Gemini R Ultra Ruby CCD diffractometer

  • 9148 measured reflections

  • 3769 independent reflections

  • 1647 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.129

  • S = 0.81

  • 3769 reflections

  • 314 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O29i 0.85 (3) 2.24 (3) 3.071 (5) 172 (4)
O1W—H2W⋯O28 0.89 (3) 1.99 (3) 2.873 (5) 176 (8)
C1—H1⋯O1W 0.93 2.51 3.365 (7) 152
C3—H3⋯O29ii 0.93 2.60 3.298 (5) 133
C19—H19⋯O1W 0.93 2.60 3.415 (7) 145
C25—H25A⋯O27iii 0.96 2.53 3.424 (5) 155
C25—H25CCg4ii 0.96 2.64 3.527 (4) 154
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x+1, y, z; (iii) x+1, y, z-1.

Table 2
C—F⋯π inter­actions (Å,°)

Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively.

X I J IJ XJ XIJ
C20 F24 Cg2iv 3.743 (3) 4.139 (5) 97.6 (2)
C20 F24 Cg2v 3.854 (4) 4.188 (5) 94.9 (3)
C30 F31 Cg1v 3.665 (4) 4.519 (6) 123.6 (3)
C30 F31 Cg3v 3.910 (4) 4.049 (6) 86.7 (3)
C30 F33 Cg3v 3.654 (4) 4.049 (6) 97.7 (3)
Symmetry codes: (iv) x − 1, y, z; (v) −x + 1, −y + 2, −z + 1.

Table 3
ππ inter­actions (Å,°)

Cg1, Cg2 and Cg3 are as defined in Table 2. CgICgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgIPerp is the perpendicular distance of CgI from ring J. CgIOffset is the distance between CgI and the perpendicular projection of CgJ on ring I.

I J CgICgJ Dihedral angle CgIPerp CgIOffset
1 1vi 3.990 (2) 0 3.591 (2) 1.739 (2)
1 3vi 3.645 (2) 2.08 (17) 3.557 (2) 0.796 (2)
2 3vi 3.907 (2) 3.85 (19) 3.431 (2) 1.863 (2)
3 1vi 3.645 (2) 2.08 (17) 3.546 (2) 0.844 (2)
3 2vi 3.907 (2) 3.85 (19) 3.548 (2) 1.629 (2)
Symmetry code: (vi) −x + 1, −y + 1, −z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

9-Phenoxycarbonyl-10-methylacridinium cations react with oxidants (e.g. H2O2) in alkaline media, as a result of which electronically excited 10-methyl-9-acridinone molecules are generated (Krzymiński et al., 2011). This phenomenon forms the basis for the use of these entities as chemiluminogenic indicators or fragments of chemiluminescent labels (Roda et al., 2003; King et al., 2007; Krzymiński et al., 2011). It has been noted that the conversion efficiency of the above-mentioned cations to 10-methyl-9-acridinone molecules, and consequently the chemiluminescence quantum yield, crucial in analytical applications, depends on the structure of the phenoxycarbonyl fragment (Krzymiński et al., 2011). For these reasons we have been synthesizing 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates variously substituted in the phenyl fragment in order to select derivatives optimal for analytical applications. Here we present the structure of one of the compounds of this series.

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium and phenyl moieties are typical of 9-phenoxycarbonyl-10-methylacridinium derivatives (Trzybiński et al., 2010). With respective average deviations from planarity of 0.0397 (3) Å and 0.0066 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 15.1 (1)° [in 9-(4-fluorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate this angle is equal to 74.1 (1)° (Trzybiński et al., 2010)]. The carboxyl group is twisted at an angle of 84.5 (1)° relative to the acridine skeleton [in 9-(4-fluorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate this angle is 4.4 (1)° (Trzybiński et al., 2010)]. The mean planes of the adjacent acridine moieties are parallel [remain at an angle of 0.0 (1)°)] in the lattice.

In the crystal structure, the inversely oriented cations form dimers through ππ contacts involving all three rings of the acridine aromatic system (Table 3, Fig. 2). These dimers are linked by C—H···O (Table 1, Fig. 2) and C—F···π (Table 2, Fig. 2) interactions to adjacent anions and by C—H···π (Table 1, Fig. 2) and C—F···π (Table 2, Fig. 2) interactions to neighbouring cations. Each cation is involved in two C—H···O interactions with a water molecule, which in turn is engaged in O—H···O hydrogen bonds involving O atoms of two adjacent anions (Table 1, Figs. 1 and 2). The O—H···O (Aakeröy et al., 1992) and C—H···O (Novoa et al., 2006) interactions are of the hydrogen bond type. The C—H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the C—F···π (Dorn et al., 2005) and the ππ (Hunter et al., 2001) interactions. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

Related literature top

For general background to the chemiluminogenic features of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: King et al. (2007); Krzymiński et al. (2011); Roda et al. (2003). For related structures, see: Trzybiński et al. (2010). For intermolecular interactions, see: Aakeröy et al. (1992); Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Trzybiński et al. (2010).

Experimental top

3-Fluorophenylacridine-9-carboxylate was obtained by esterification of 9-(chlorocarbonyl)acridine (synthesized in the reaction of acridine-9-carboxylic acid with a tenfold excess of thionyl chloride) with 3-fluorophenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15 h) (Sato, 1996). The product was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 1/1 v/v) and subsequently quaternarized with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane. The crude 3-(fluorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with a 20 v/v excess of diethyl ether (Trzybiński et al., 2010). Light-yellow crystals suitable for X-ray investigations were grown from methanol/water solution (1/1 v/v) (m.p. 497–498 K).

Refinement top

The H atoms of the water molecule were located on a Fourier difference map, restrained by DFIX command 0.85 for O—H distances and by DFIX 1.39 for H···H distance, and refined as riding with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic H atoms and x = 1.5 for the methyl H atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids. The O—H···O and C—H···O hydrogen bonds are represented by dashed lines.
[Figure 2] Fig. 2. The arrangement of the ions and H2O molecules in the crystal structure, viewed along b-direction. The O—H···O and C—H···O interactions are represented by dashed lines, the C—H···π, C—F···π and ππ contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x + 1, y, z; (iii) x + 1, y, z - 1; (iv) x - 1, y, z; (v) -x + 1, -y + 2, -z + 1; (vi) -x + 1, -y + 1, -z.]
9-(3-Fluorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate monohydrate top
Crystal data top
C21H15FNO2+·CF3O3S·H2OZ = 2
Mr = 499.44F(000) = 512
Triclinic, P1Dx = 1.535 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5144 (10) ÅCell parameters from 2551 reflections
b = 11.5654 (11) Åθ = 3.1–29.0°
c = 11.9680 (12) ŵ = 0.23 mm1
α = 109.975 (9)°T = 295 K
β = 97.838 (8)°Prism, light yellow
γ = 113.197 (9)°0.40 × 0.15 × 0.10 mm
V = 1080.3 (2) Å3
Data collection top
Oxford Gemini R Ultra Ruby CCD
diffractometer
1647 reflections with I > 2σ(I)
Radiation source: Enhanced (Mo) X-ray SourceRint = 0.050
Graphite monochromatorθmax = 25.1°, θmin = 3.1°
Detector resolution: 10.4002 pixels mm-1h = 1111
ω scansk = 1313
9148 measured reflectionsl = 1314
3769 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 0.81 w = 1/[σ2(Fo2) + (0.0706P)2]
where P = (Fo2 + 2Fc2)/3
3769 reflections(Δ/σ)max = 0.003
314 parametersΔρmax = 0.27 e Å3
3 restraintsΔρmin = 0.28 e Å3
Crystal data top
C21H15FNO2+·CF3O3S·H2Oγ = 113.197 (9)°
Mr = 499.44V = 1080.3 (2) Å3
Triclinic, P1Z = 2
a = 9.5144 (10) ÅMo Kα radiation
b = 11.5654 (11) ŵ = 0.23 mm1
c = 11.9680 (12) ÅT = 295 K
α = 109.975 (9)°0.40 × 0.15 × 0.10 mm
β = 97.838 (8)°
Data collection top
Oxford Gemini R Ultra Ruby CCD
diffractometer
1647 reflections with I > 2σ(I)
9148 measured reflectionsRint = 0.050
3769 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0513 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 0.81Δρmax = 0.27 e Å3
3769 reflectionsΔρmin = 0.28 e Å3
314 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6064 (4)0.6768 (4)0.3644 (3)0.0694 (10)
H10.52260.69300.38420.083*
O1W0.2866 (5)0.6414 (4)0.4672 (4)0.1503 (14)
H1W0.229 (7)0.553 (3)0.420 (5)0.225*
H2W0.258 (8)0.655 (6)0.535 (4)0.225*
C20.6940 (5)0.6521 (4)0.4419 (3)0.0774 (11)
H20.66940.64940.51390.093*
C30.8221 (5)0.6303 (4)0.4147 (4)0.0780 (11)
H30.88360.61550.47030.094*
C40.8587 (4)0.6302 (4)0.3100 (3)0.0669 (9)
H40.94410.61470.29380.080*
C50.7416 (4)0.6647 (3)0.0808 (3)0.0610 (9)
H50.82790.65140.09820.073*
C60.6469 (5)0.6792 (4)0.1633 (3)0.0701 (10)
H60.66880.67480.23760.084*
C70.5172 (4)0.7005 (4)0.1417 (3)0.0712 (10)
H70.45350.70950.20110.085*
C80.4848 (4)0.7081 (3)0.0346 (3)0.0619 (9)
H80.39840.72280.02000.074*
C90.5504 (4)0.7021 (3)0.1689 (3)0.0519 (8)
N100.8010 (3)0.6524 (3)0.1173 (2)0.0524 (7)
C110.6393 (4)0.6788 (3)0.2530 (3)0.0539 (8)
C120.7684 (4)0.6534 (3)0.2251 (3)0.0521 (8)
C130.5797 (3)0.6941 (3)0.0564 (3)0.0502 (8)
C140.7103 (4)0.6698 (3)0.0315 (3)0.0501 (8)
C150.4158 (5)0.7316 (4)0.1978 (3)0.0609 (9)
O160.4730 (3)0.8678 (2)0.2685 (2)0.0703 (7)
O170.2782 (3)0.6459 (3)0.1585 (3)0.0872 (8)
C180.3576 (4)0.9124 (3)0.2952 (3)0.0613 (9)
C190.3045 (4)0.9060 (4)0.3932 (3)0.0672 (9)
H190.33890.86930.44260.081*
C200.1975 (4)0.9564 (4)0.4164 (4)0.0749 (10)
C210.1428 (5)1.0080 (4)0.3448 (4)0.0842 (12)
H210.06871.03950.36240.101*
C220.1981 (5)1.0130 (4)0.2468 (4)0.0915 (13)
H220.16131.04780.19660.110*
C230.3089 (5)0.9664 (4)0.2211 (4)0.0816 (11)
H230.34920.97160.15540.098*
F240.1452 (3)0.9541 (3)0.5144 (2)0.1166 (9)
C250.9405 (4)0.6317 (4)0.0943 (3)0.0695 (10)
H25A0.95600.64130.01970.104*
H25B0.92040.54010.08430.104*
H25C1.03550.70050.16420.104*
S260.08915 (12)0.70895 (10)0.76540 (9)0.0699 (3)
O270.1099 (3)0.6733 (3)0.8669 (2)0.0903 (8)
O280.1777 (3)0.6826 (3)0.6828 (2)0.1036 (9)
O290.0729 (3)0.6712 (3)0.7054 (2)0.0931 (8)
C300.1857 (6)0.8973 (5)0.8431 (4)0.0860 (12)
F310.1788 (4)0.9507 (3)0.7638 (3)0.1385 (10)
F320.3375 (3)0.9479 (3)0.9058 (3)0.1292 (9)
F330.1148 (4)0.9392 (3)0.9240 (3)0.1307 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.066 (3)0.071 (3)0.065 (2)0.030 (2)0.023 (2)0.025 (2)
O1W0.182 (4)0.113 (3)0.147 (3)0.046 (3)0.105 (3)0.056 (3)
C20.093 (3)0.077 (3)0.058 (2)0.037 (3)0.021 (2)0.029 (2)
C30.084 (3)0.074 (3)0.070 (3)0.039 (2)0.009 (2)0.030 (2)
C40.062 (2)0.070 (3)0.068 (2)0.034 (2)0.015 (2)0.028 (2)
C50.056 (2)0.059 (2)0.063 (2)0.023 (2)0.021 (2)0.0251 (19)
C60.075 (3)0.069 (3)0.066 (2)0.029 (2)0.024 (2)0.034 (2)
C70.069 (3)0.073 (3)0.074 (3)0.033 (2)0.013 (2)0.039 (2)
C80.054 (2)0.063 (2)0.073 (2)0.030 (2)0.018 (2)0.031 (2)
C90.0383 (19)0.041 (2)0.063 (2)0.0149 (17)0.0100 (18)0.0155 (17)
N100.0393 (16)0.0494 (17)0.0600 (17)0.0198 (14)0.0128 (14)0.0170 (14)
C110.049 (2)0.047 (2)0.055 (2)0.0186 (18)0.0146 (18)0.0156 (17)
C120.046 (2)0.047 (2)0.053 (2)0.0194 (18)0.0093 (17)0.0160 (17)
C130.0399 (19)0.046 (2)0.058 (2)0.0177 (17)0.0096 (17)0.0199 (17)
C140.0427 (19)0.043 (2)0.057 (2)0.0176 (17)0.0115 (17)0.0187 (17)
C150.052 (2)0.062 (3)0.069 (2)0.029 (2)0.019 (2)0.026 (2)
O160.0491 (15)0.0527 (17)0.0950 (18)0.0241 (14)0.0246 (14)0.0159 (14)
O170.0458 (17)0.0675 (18)0.120 (2)0.0229 (16)0.0242 (16)0.0149 (16)
C180.047 (2)0.050 (2)0.075 (2)0.0228 (19)0.019 (2)0.0160 (19)
C190.053 (2)0.062 (2)0.070 (2)0.023 (2)0.017 (2)0.017 (2)
C200.063 (2)0.078 (3)0.067 (3)0.029 (2)0.029 (2)0.015 (2)
C210.076 (3)0.075 (3)0.101 (3)0.047 (3)0.030 (3)0.024 (3)
C220.088 (3)0.091 (3)0.115 (4)0.054 (3)0.042 (3)0.049 (3)
C230.084 (3)0.079 (3)0.099 (3)0.043 (3)0.050 (3)0.044 (3)
F240.1057 (19)0.148 (2)0.0961 (18)0.0634 (18)0.0560 (16)0.0400 (16)
C250.053 (2)0.084 (3)0.077 (2)0.042 (2)0.023 (2)0.029 (2)
S260.0717 (7)0.0774 (7)0.0647 (6)0.0376 (6)0.0255 (6)0.0312 (5)
O270.104 (2)0.111 (2)0.0891 (19)0.0613 (19)0.0385 (17)0.0646 (18)
O280.124 (2)0.117 (2)0.099 (2)0.073 (2)0.067 (2)0.0466 (18)
O290.0619 (18)0.116 (2)0.0755 (18)0.0298 (17)0.0063 (14)0.0341 (17)
C300.084 (3)0.096 (3)0.093 (3)0.050 (3)0.028 (3)0.048 (3)
F310.149 (3)0.122 (2)0.169 (3)0.059 (2)0.039 (2)0.101 (2)
F320.0778 (19)0.102 (2)0.152 (2)0.0157 (16)0.0044 (17)0.0420 (18)
F330.152 (3)0.104 (2)0.129 (2)0.077 (2)0.047 (2)0.0220 (17)
Geometric parameters (Å, º) top
C1—C21.340 (4)C11—C121.427 (4)
C1—C111.416 (4)C13—C141.425 (4)
C1—H10.9300C15—O171.187 (4)
O1W—H1W0.86 (2)C15—O161.335 (4)
O1W—H2W0.874 (19)O16—C181.415 (3)
C2—C31.396 (5)C18—C191.352 (4)
C2—H20.9300C18—C231.373 (5)
C3—C41.345 (4)C19—C201.375 (4)
C3—H30.9300C19—H190.9300
C4—C121.404 (4)C20—F241.339 (4)
C4—H40.9300C20—C211.354 (5)
C5—C61.343 (4)C21—C221.359 (5)
C5—C141.404 (4)C21—H210.9300
C5—H50.9300C22—C231.385 (5)
C6—C71.390 (4)C22—H220.9300
C6—H60.9300C23—H230.9300
C7—C81.342 (4)C25—H25A0.9600
C7—H70.9300C25—H25B0.9600
C8—C131.412 (4)C25—H25C0.9600
C8—H80.9300S26—O281.415 (2)
C9—C131.391 (4)S26—O271.423 (2)
C9—C111.391 (4)S26—O291.427 (2)
C9—C151.504 (4)S26—C301.806 (5)
N10—C121.365 (4)C30—F311.304 (4)
N10—C141.369 (4)C30—F321.315 (4)
N10—C251.484 (3)C30—F331.320 (4)
C2—C1—C11121.1 (3)C5—C14—C13118.5 (3)
C2—C1—H1119.4O17—C15—O16125.6 (3)
C11—C1—H1119.4O17—C15—C9124.2 (3)
H1W—O1W—H2W105 (3)O16—C15—C9110.2 (3)
C1—C2—C3120.1 (3)C15—O16—C18116.3 (3)
C1—C2—H2120.0C19—C18—C23122.6 (3)
C3—C2—H2120.0C19—C18—O16120.1 (3)
C4—C3—C2121.6 (3)C23—C18—O16117.2 (3)
C4—C3—H3119.2C18—C19—C20116.8 (3)
C2—C3—H3119.2C18—C19—H19121.6
C3—C4—C12120.3 (3)C20—C19—H19121.6
C3—C4—H4119.8F24—C20—C21118.8 (3)
C12—C4—H4119.8F24—C20—C19118.2 (4)
C6—C5—C14119.9 (3)C21—C20—C19123.0 (4)
C6—C5—H5120.0C20—C21—C22118.8 (3)
C14—C5—H5120.0C20—C21—H21120.6
C5—C6—C7122.4 (3)C22—C21—H21120.6
C5—C6—H6118.8C21—C22—C23120.4 (4)
C7—C6—H6118.8C21—C22—H22119.8
C8—C7—C6119.4 (3)C23—C22—H22119.8
C8—C7—H7120.3C18—C23—C22118.2 (4)
C6—C7—H7120.3C18—C23—H23120.9
C7—C8—C13121.2 (3)C22—C23—H23120.9
C7—C8—H8119.4N10—C25—H25A109.5
C13—C8—H8119.4N10—C25—H25B109.5
C13—C9—C11121.5 (3)H25A—C25—H25B109.5
C13—C9—C15119.1 (3)N10—C25—H25C109.5
C11—C9—C15119.4 (3)H25A—C25—H25C109.5
C12—N10—C14122.5 (2)H25B—C25—H25C109.5
C12—N10—C25117.7 (2)O28—S26—O27115.73 (15)
C14—N10—C25119.8 (3)O28—S26—O29114.66 (17)
C9—C11—C1123.2 (3)O27—S26—O29115.01 (16)
C9—C11—C12118.6 (3)O28—S26—C30102.91 (19)
C1—C11—C12118.2 (3)O27—S26—C30102.55 (19)
N10—C12—C4121.9 (3)O29—S26—C30103.36 (18)
N10—C12—C11119.4 (3)F31—C30—F32109.0 (4)
C4—C12—C11118.7 (3)F31—C30—F33107.7 (3)
C9—C13—C8122.8 (3)F32—C30—F33107.5 (4)
C9—C13—C14118.6 (3)F31—C30—S26111.8 (3)
C8—C13—C14118.6 (3)F32—C30—S26110.4 (3)
N10—C14—C5122.2 (3)F33—C30—S26110.3 (3)
N10—C14—C13119.3 (3)
C11—C1—C2—C31.2 (6)C6—C5—C14—C131.7 (5)
C1—C2—C3—C41.6 (6)C9—C13—C14—N101.2 (4)
C2—C3—C4—C120.5 (6)C8—C13—C14—N10178.4 (3)
C14—C5—C6—C70.6 (5)C9—C13—C14—C5178.6 (3)
C5—C6—C7—C80.4 (5)C8—C13—C14—C51.8 (4)
C6—C7—C8—C130.3 (5)C13—C9—C15—O1781.3 (5)
C13—C9—C11—C1175.7 (3)C11—C9—C15—O1796.5 (4)
C15—C9—C11—C12.1 (5)C13—C9—C15—O1695.9 (3)
C13—C9—C11—C123.3 (5)C11—C9—C15—O1686.3 (4)
C15—C9—C11—C12178.9 (3)O17—C15—O16—C181.8 (5)
C2—C1—C11—C9179.1 (3)C9—C15—O16—C18175.4 (3)
C2—C1—C11—C120.1 (5)C15—O16—C18—C1985.5 (4)
C14—N10—C12—C4177.5 (3)C15—O16—C18—C2397.1 (4)
C25—N10—C12—C42.5 (4)C23—C18—C19—C200.1 (5)
C14—N10—C12—C112.5 (4)O16—C18—C19—C20177.4 (3)
C25—N10—C12—C11177.4 (3)C18—C19—C20—F24178.7 (3)
C3—C4—C12—N10179.2 (3)C18—C19—C20—C211.3 (6)
C3—C4—C12—C110.8 (5)F24—C20—C21—C22178.7 (3)
C9—C11—C12—N100.1 (4)C19—C20—C21—C221.3 (6)
C1—C11—C12—N10178.9 (3)C20—C21—C22—C230.2 (6)
C9—C11—C12—C4179.8 (3)C19—C18—C23—C221.5 (6)
C1—C11—C12—C41.1 (4)O16—C18—C23—C22178.9 (3)
C11—C9—C13—C8175.7 (3)C21—C22—C23—C181.6 (6)
C15—C9—C13—C82.0 (5)O28—S26—C30—F3159.7 (3)
C11—C9—C13—C143.9 (4)O27—S26—C30—F31179.8 (3)
C15—C9—C13—C14178.4 (3)O29—S26—C30—F3160.0 (3)
C7—C8—C13—C9179.6 (3)O28—S26—C30—F3261.8 (3)
C7—C8—C13—C140.8 (5)O27—S26—C30—F3258.7 (3)
C12—N10—C14—C5178.2 (3)O29—S26—C30—F32178.6 (3)
C25—N10—C14—C51.9 (4)O28—S26—C30—F33179.5 (3)
C12—N10—C14—C132.0 (4)O27—S26—C30—F3360.0 (3)
C25—N10—C14—C13178.0 (3)O29—S26—C30—F3359.8 (3)
C6—C5—C14—N10178.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O29i0.85 (3)2.24 (3)3.071 (5)172 (4)
O1W—H2W···O280.89 (3)1.99 (3)2.873 (5)176 (8)
C1—H1···O1W0.932.513.365 (7)152
C3—H3···O29ii0.932.603.298 (5)133
C19—H19···O1W0.932.603.415 (7)145
C25—H25A···O27iii0.962.533.424 (5)155
C25—H25C···Cg4ii0.962.643.527 (4)154
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y, z1.

Experimental details

Crystal data
Chemical formulaC21H15FNO2+·CF3O3S·H2O
Mr499.44
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.5144 (10), 11.5654 (11), 11.9680 (12)
α, β, γ (°)109.975 (9), 97.838 (8), 113.197 (9)
V3)1080.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.40 × 0.15 × 0.10
Data collection
DiffractometerOxford Gemini R Ultra Ruby CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9148, 3769, 1647
Rint0.050
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.129, 0.81
No. of reflections3769
No. of parameters314
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.28

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O29i0.85 (3)2.24 (3)3.071 (5)172 (4)
O1W—H2W···O280.89 (3)1.99 (3)2.873 (5)176 (8)
C1—H1···O1W0.932.513.365 (7)152
C3—H3···O29ii0.932.603.298 (5)133
C19—H19···O1W0.932.603.415 (7)145
C25—H25A···O27iii0.962.533.424 (5)155
C25—H25C···Cg4ii0.962.643.527 (4)154
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y, z1.
C—F···π interactions (Å,°) top
XIJI···JX···JXI···J
C20F24Cg2iv3.743 (3)4.139 (5)97.6 (2)
C20F24Cg2v3.854 (4)4.188 (5)94.9 (3)
C30F31Cg1v3.665 (4)4.519 (6)123.6 (3)
C30F31Cg3v3.910 (4)4.049 (6)86.7 (3)
C30F33Cg3v3.654 (4)4.049 (6)97.7 (3)
Symmetry codes: (iv) x - 1, y, z; (v) -x + 1, -y + 2, -z + 1. Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively.
ππ interactions (Å,°) top
IJCgI···CgJDihedral angleCgIPerpCgIOffset
11vi3.990 (2)03.591 (2)1.739 (2)
13vi3.645 (2)2.08 (17)3.557 (2)0.796 (2)
23vi3.907 (2)3.85 (19)3.431 (2)1.863 (2)
31vi3.645 (2)2.08 (17)3.546 (2)0.844 (2)
32vi3.907 (2)3.85 (19)3.548 (2)1.629 (2)
Symmetry codes: (vi) -x + 1, -y + 1, -z. Notes: Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgIPerp is the perpendicular distance of CgI from ring J. CgIOffset is the distance between CgI and the perpendicular projection of CgJ on ring I.
 

Acknowledgements

This study was financed by the State Funds for Scientific Research through National Center for Science grant No. N N204 375 740 (contract No. 3757/B/H03/2011/40). DT acknowledges financial support from the European Social Fund within the project `Educators for the elite – integrated training program for PhD students, post-docs and professors as academic teachers at the University of Gdansk' and the Human Capital Operational Program Action 4.1.1, `Improving the quality on offer at tertiary educational institutions'. This publication reflects the views only of the authors: the sponsors cannot be held responsible for any use which may be made of the information contained therein.

References

First citationAakeröy, C. B., Seddon, K. R. & Leslie, M. (1992). Struct. Chem. 3, 63–65.  Google Scholar
First citationDorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.  Web of Science CrossRef Google Scholar
First citationKing, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O'Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem. 79, 4169–4176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrzymiński, K., Ożóg, A., Malecha, P., Roshal, A. D., Wróblewska, A., Zadykowicz, B. & Błażejowski, J. (2011). J. Org. Chem. 76, 1072–1085.  Web of Science PubMed Google Scholar
First citationNovoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. Heidelberg: Springer.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRoda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. 75, 462–470A.  Web of Science CrossRef Google Scholar
First citationSato, N. (1996). Tetrahedron Lett. 37, 8519–8522.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.  Web of Science CrossRef CAS Google Scholar
First citationTrzybiński, D., Krzymiński, K. & Błażejowski, J. (2010). Acta Cryst. E66, o2769–o2770.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o625-o626
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds