organic compounds
9-(3-Fluorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate monohydrate
aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl
In the 21H15FNO2+·CF3SO3−·H2O, the cations form inversion dimers through π–π interactions between the acridine ring systems. These dimers are linked via C—H⋯O and C—F⋯π interactions to adjacent anions, and by C—H⋯π and C—F⋯π interactions to neighbouring cations. The water molecule links two sites of the cation by C—H⋯O interactions and two adjacent anions by O—H⋯O hydrogen bonds. The mean planes of the acridine and benzene ring systems are oriented at a dihedral angle of 15.1 (1)°. The carboxyl group is twisted at an angle of 84.5 (1)° relative to the acridine skeleton. The mean planes of the acridine ring systems are parallel in the crystal.
of the title molecular salt, CRelated literature
For general background to the chemiluminogenic features of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: King et al. (2007); Krzymiński et al. (2011); Roda et al. (2003). For related structures, see: Trzybiński et al. (2010). For intermolecular interactions, see: Aakeröy et al. (1992); Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Trzybiński et al. (2010).
Experimental
Crystal data
|
Data collection
|
Refinement
|
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812003054/xu5452sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812003054/xu5452Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812003054/xu5452Isup3.cml
3-Fluorophenylacridine-9-carboxylate was obtained by esterification of 9-(chlorocarbonyl)acridine (synthesized in the reaction of acridine-9-carboxylic acid with a tenfold excess of thionyl chloride) with 3-fluorophenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15 h) (Sato, 1996). The product was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 1/1 v/v) and subsequently quaternarized with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane. The crude 3-(fluorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with a 20 v/v excess of diethyl ether (Trzybiński et al., 2010). Light-yellow crystals suitable for X-ray investigations were grown from methanol/water solution (1/1 v/v) (m.p. 497–498 K).
The H atoms of the water molecule were located on a Fourier difference map, restrained by DFIX command 0.85 for O—H distances and by DFIX 1.39 for H···H distance, and refined as riding with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic H atoms and x = 1.5 for the methyl H atoms.
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids. The O—H···O and C—H···O hydrogen bonds are represented by dashed lines. | |
Fig. 2. The arrangement of the ions and H2O molecules in the crystal structure, viewed along b-direction. The O—H···O and C—H···O interactions are represented by dashed lines, the C—H···π, C—F···π and π—π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x + 1, y, z; (iii) x + 1, y, z - 1; (iv) x - 1, y, z; (v) -x + 1, -y + 2, -z + 1; (vi) -x + 1, -y + 1, -z.] |
C21H15FNO2+·CF3O3S−·H2O | Z = 2 |
Mr = 499.44 | F(000) = 512 |
Triclinic, P1 | Dx = 1.535 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.5144 (10) Å | Cell parameters from 2551 reflections |
b = 11.5654 (11) Å | θ = 3.1–29.0° |
c = 11.9680 (12) Å | µ = 0.23 mm−1 |
α = 109.975 (9)° | T = 295 K |
β = 97.838 (8)° | Prism, light yellow |
γ = 113.197 (9)° | 0.40 × 0.15 × 0.10 mm |
V = 1080.3 (2) Å3 |
Oxford Gemini R Ultra Ruby CCD diffractometer | 1647 reflections with I > 2σ(I) |
Radiation source: Enhanced (Mo) X-ray Source | Rint = 0.050 |
Graphite monochromator | θmax = 25.1°, θmin = 3.1° |
Detector resolution: 10.4002 pixels mm-1 | h = −11→11 |
ω scans | k = −13→13 |
9148 measured reflections | l = −13→14 |
3769 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.129 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.81 | w = 1/[σ2(Fo2) + (0.0706P)2] where P = (Fo2 + 2Fc2)/3 |
3769 reflections | (Δ/σ)max = 0.003 |
314 parameters | Δρmax = 0.27 e Å−3 |
3 restraints | Δρmin = −0.28 e Å−3 |
C21H15FNO2+·CF3O3S−·H2O | γ = 113.197 (9)° |
Mr = 499.44 | V = 1080.3 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.5144 (10) Å | Mo Kα radiation |
b = 11.5654 (11) Å | µ = 0.23 mm−1 |
c = 11.9680 (12) Å | T = 295 K |
α = 109.975 (9)° | 0.40 × 0.15 × 0.10 mm |
β = 97.838 (8)° |
Oxford Gemini R Ultra Ruby CCD diffractometer | 1647 reflections with I > 2σ(I) |
9148 measured reflections | Rint = 0.050 |
3769 independent reflections |
R[F2 > 2σ(F2)] = 0.051 | 3 restraints |
wR(F2) = 0.129 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.81 | Δρmax = 0.27 e Å−3 |
3769 reflections | Δρmin = −0.28 e Å−3 |
314 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6064 (4) | 0.6768 (4) | 0.3644 (3) | 0.0694 (10) | |
H1 | 0.5226 | 0.6930 | 0.3842 | 0.083* | |
O1W | 0.2866 (5) | 0.6414 (4) | 0.4672 (4) | 0.1503 (14) | |
H1W | 0.229 (7) | 0.553 (3) | 0.420 (5) | 0.225* | |
H2W | 0.258 (8) | 0.655 (6) | 0.535 (4) | 0.225* | |
C2 | 0.6940 (5) | 0.6521 (4) | 0.4419 (3) | 0.0774 (11) | |
H2 | 0.6694 | 0.6494 | 0.5139 | 0.093* | |
C3 | 0.8221 (5) | 0.6303 (4) | 0.4147 (4) | 0.0780 (11) | |
H3 | 0.8836 | 0.6155 | 0.4703 | 0.094* | |
C4 | 0.8587 (4) | 0.6302 (4) | 0.3100 (3) | 0.0669 (9) | |
H4 | 0.9441 | 0.6147 | 0.2938 | 0.080* | |
C5 | 0.7416 (4) | 0.6647 (3) | −0.0808 (3) | 0.0610 (9) | |
H5 | 0.8279 | 0.6514 | −0.0982 | 0.073* | |
C6 | 0.6469 (5) | 0.6792 (4) | −0.1633 (3) | 0.0701 (10) | |
H6 | 0.6688 | 0.6748 | −0.2376 | 0.084* | |
C7 | 0.5172 (4) | 0.7005 (4) | −0.1417 (3) | 0.0712 (10) | |
H7 | 0.4535 | 0.7095 | −0.2011 | 0.085* | |
C8 | 0.4848 (4) | 0.7081 (3) | −0.0346 (3) | 0.0619 (9) | |
H8 | 0.3984 | 0.7228 | −0.0200 | 0.074* | |
C9 | 0.5504 (4) | 0.7021 (3) | 0.1689 (3) | 0.0519 (8) | |
N10 | 0.8010 (3) | 0.6524 (3) | 0.1173 (2) | 0.0524 (7) | |
C11 | 0.6393 (4) | 0.6788 (3) | 0.2530 (3) | 0.0539 (8) | |
C12 | 0.7684 (4) | 0.6534 (3) | 0.2251 (3) | 0.0521 (8) | |
C13 | 0.5797 (3) | 0.6941 (3) | 0.0564 (3) | 0.0502 (8) | |
C14 | 0.7103 (4) | 0.6698 (3) | 0.0315 (3) | 0.0501 (8) | |
C15 | 0.4158 (5) | 0.7316 (4) | 0.1978 (3) | 0.0609 (9) | |
O16 | 0.4730 (3) | 0.8678 (2) | 0.2685 (2) | 0.0703 (7) | |
O17 | 0.2782 (3) | 0.6459 (3) | 0.1585 (3) | 0.0872 (8) | |
C18 | 0.3576 (4) | 0.9124 (3) | 0.2952 (3) | 0.0613 (9) | |
C19 | 0.3045 (4) | 0.9060 (4) | 0.3932 (3) | 0.0672 (9) | |
H19 | 0.3389 | 0.8693 | 0.4426 | 0.081* | |
C20 | 0.1975 (4) | 0.9564 (4) | 0.4164 (4) | 0.0749 (10) | |
C21 | 0.1428 (5) | 1.0080 (4) | 0.3448 (4) | 0.0842 (12) | |
H21 | 0.0687 | 1.0395 | 0.3624 | 0.101* | |
C22 | 0.1981 (5) | 1.0130 (4) | 0.2468 (4) | 0.0915 (13) | |
H22 | 0.1613 | 1.0478 | 0.1966 | 0.110* | |
C23 | 0.3089 (5) | 0.9664 (4) | 0.2211 (4) | 0.0816 (11) | |
H23 | 0.3492 | 0.9716 | 0.1554 | 0.098* | |
F24 | 0.1452 (3) | 0.9541 (3) | 0.5144 (2) | 0.1166 (9) | |
C25 | 0.9405 (4) | 0.6317 (4) | 0.0943 (3) | 0.0695 (10) | |
H25A | 0.9560 | 0.6413 | 0.0197 | 0.104* | |
H25B | 0.9204 | 0.5401 | 0.0843 | 0.104* | |
H25C | 1.0355 | 0.7005 | 0.1642 | 0.104* | |
S26 | 0.08915 (12) | 0.70895 (10) | 0.76540 (9) | 0.0699 (3) | |
O27 | 0.1099 (3) | 0.6733 (3) | 0.8669 (2) | 0.0903 (8) | |
O28 | 0.1777 (3) | 0.6826 (3) | 0.6828 (2) | 0.1036 (9) | |
O29 | −0.0729 (3) | 0.6712 (3) | 0.7054 (2) | 0.0931 (8) | |
C30 | 0.1857 (6) | 0.8973 (5) | 0.8431 (4) | 0.0860 (12) | |
F31 | 0.1788 (4) | 0.9507 (3) | 0.7638 (3) | 0.1385 (10) | |
F32 | 0.3375 (3) | 0.9479 (3) | 0.9058 (3) | 0.1292 (9) | |
F33 | 0.1148 (4) | 0.9392 (3) | 0.9240 (3) | 0.1307 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.066 (3) | 0.071 (3) | 0.065 (2) | 0.030 (2) | 0.023 (2) | 0.025 (2) |
O1W | 0.182 (4) | 0.113 (3) | 0.147 (3) | 0.046 (3) | 0.105 (3) | 0.056 (3) |
C2 | 0.093 (3) | 0.077 (3) | 0.058 (2) | 0.037 (3) | 0.021 (2) | 0.029 (2) |
C3 | 0.084 (3) | 0.074 (3) | 0.070 (3) | 0.039 (2) | 0.009 (2) | 0.030 (2) |
C4 | 0.062 (2) | 0.070 (3) | 0.068 (2) | 0.034 (2) | 0.015 (2) | 0.028 (2) |
C5 | 0.056 (2) | 0.059 (2) | 0.063 (2) | 0.023 (2) | 0.021 (2) | 0.0251 (19) |
C6 | 0.075 (3) | 0.069 (3) | 0.066 (2) | 0.029 (2) | 0.024 (2) | 0.034 (2) |
C7 | 0.069 (3) | 0.073 (3) | 0.074 (3) | 0.033 (2) | 0.013 (2) | 0.039 (2) |
C8 | 0.054 (2) | 0.063 (2) | 0.073 (2) | 0.030 (2) | 0.018 (2) | 0.031 (2) |
C9 | 0.0383 (19) | 0.041 (2) | 0.063 (2) | 0.0149 (17) | 0.0100 (18) | 0.0155 (17) |
N10 | 0.0393 (16) | 0.0494 (17) | 0.0600 (17) | 0.0198 (14) | 0.0128 (14) | 0.0170 (14) |
C11 | 0.049 (2) | 0.047 (2) | 0.055 (2) | 0.0186 (18) | 0.0146 (18) | 0.0156 (17) |
C12 | 0.046 (2) | 0.047 (2) | 0.053 (2) | 0.0194 (18) | 0.0093 (17) | 0.0160 (17) |
C13 | 0.0399 (19) | 0.046 (2) | 0.058 (2) | 0.0177 (17) | 0.0096 (17) | 0.0199 (17) |
C14 | 0.0427 (19) | 0.043 (2) | 0.057 (2) | 0.0176 (17) | 0.0115 (17) | 0.0187 (17) |
C15 | 0.052 (2) | 0.062 (3) | 0.069 (2) | 0.029 (2) | 0.019 (2) | 0.026 (2) |
O16 | 0.0491 (15) | 0.0527 (17) | 0.0950 (18) | 0.0241 (14) | 0.0246 (14) | 0.0159 (14) |
O17 | 0.0458 (17) | 0.0675 (18) | 0.120 (2) | 0.0229 (16) | 0.0242 (16) | 0.0149 (16) |
C18 | 0.047 (2) | 0.050 (2) | 0.075 (2) | 0.0228 (19) | 0.019 (2) | 0.0160 (19) |
C19 | 0.053 (2) | 0.062 (2) | 0.070 (2) | 0.023 (2) | 0.017 (2) | 0.017 (2) |
C20 | 0.063 (2) | 0.078 (3) | 0.067 (3) | 0.029 (2) | 0.029 (2) | 0.015 (2) |
C21 | 0.076 (3) | 0.075 (3) | 0.101 (3) | 0.047 (3) | 0.030 (3) | 0.024 (3) |
C22 | 0.088 (3) | 0.091 (3) | 0.115 (4) | 0.054 (3) | 0.042 (3) | 0.049 (3) |
C23 | 0.084 (3) | 0.079 (3) | 0.099 (3) | 0.043 (3) | 0.050 (3) | 0.044 (3) |
F24 | 0.1057 (19) | 0.148 (2) | 0.0961 (18) | 0.0634 (18) | 0.0560 (16) | 0.0400 (16) |
C25 | 0.053 (2) | 0.084 (3) | 0.077 (2) | 0.042 (2) | 0.023 (2) | 0.029 (2) |
S26 | 0.0717 (7) | 0.0774 (7) | 0.0647 (6) | 0.0376 (6) | 0.0255 (6) | 0.0312 (5) |
O27 | 0.104 (2) | 0.111 (2) | 0.0891 (19) | 0.0613 (19) | 0.0385 (17) | 0.0646 (18) |
O28 | 0.124 (2) | 0.117 (2) | 0.099 (2) | 0.073 (2) | 0.067 (2) | 0.0466 (18) |
O29 | 0.0619 (18) | 0.116 (2) | 0.0755 (18) | 0.0298 (17) | 0.0063 (14) | 0.0341 (17) |
C30 | 0.084 (3) | 0.096 (3) | 0.093 (3) | 0.050 (3) | 0.028 (3) | 0.048 (3) |
F31 | 0.149 (3) | 0.122 (2) | 0.169 (3) | 0.059 (2) | 0.039 (2) | 0.101 (2) |
F32 | 0.0778 (19) | 0.102 (2) | 0.152 (2) | 0.0157 (16) | −0.0044 (17) | 0.0420 (18) |
F33 | 0.152 (3) | 0.104 (2) | 0.129 (2) | 0.077 (2) | 0.047 (2) | 0.0220 (17) |
C1—C2 | 1.340 (4) | C11—C12 | 1.427 (4) |
C1—C11 | 1.416 (4) | C13—C14 | 1.425 (4) |
C1—H1 | 0.9300 | C15—O17 | 1.187 (4) |
O1W—H1W | 0.86 (2) | C15—O16 | 1.335 (4) |
O1W—H2W | 0.874 (19) | O16—C18 | 1.415 (3) |
C2—C3 | 1.396 (5) | C18—C19 | 1.352 (4) |
C2—H2 | 0.9300 | C18—C23 | 1.373 (5) |
C3—C4 | 1.345 (4) | C19—C20 | 1.375 (4) |
C3—H3 | 0.9300 | C19—H19 | 0.9300 |
C4—C12 | 1.404 (4) | C20—F24 | 1.339 (4) |
C4—H4 | 0.9300 | C20—C21 | 1.354 (5) |
C5—C6 | 1.343 (4) | C21—C22 | 1.359 (5) |
C5—C14 | 1.404 (4) | C21—H21 | 0.9300 |
C5—H5 | 0.9300 | C22—C23 | 1.385 (5) |
C6—C7 | 1.390 (4) | C22—H22 | 0.9300 |
C6—H6 | 0.9300 | C23—H23 | 0.9300 |
C7—C8 | 1.342 (4) | C25—H25A | 0.9600 |
C7—H7 | 0.9300 | C25—H25B | 0.9600 |
C8—C13 | 1.412 (4) | C25—H25C | 0.9600 |
C8—H8 | 0.9300 | S26—O28 | 1.415 (2) |
C9—C13 | 1.391 (4) | S26—O27 | 1.423 (2) |
C9—C11 | 1.391 (4) | S26—O29 | 1.427 (2) |
C9—C15 | 1.504 (4) | S26—C30 | 1.806 (5) |
N10—C12 | 1.365 (4) | C30—F31 | 1.304 (4) |
N10—C14 | 1.369 (4) | C30—F32 | 1.315 (4) |
N10—C25 | 1.484 (3) | C30—F33 | 1.320 (4) |
C2—C1—C11 | 121.1 (3) | C5—C14—C13 | 118.5 (3) |
C2—C1—H1 | 119.4 | O17—C15—O16 | 125.6 (3) |
C11—C1—H1 | 119.4 | O17—C15—C9 | 124.2 (3) |
H1W—O1W—H2W | 105 (3) | O16—C15—C9 | 110.2 (3) |
C1—C2—C3 | 120.1 (3) | C15—O16—C18 | 116.3 (3) |
C1—C2—H2 | 120.0 | C19—C18—C23 | 122.6 (3) |
C3—C2—H2 | 120.0 | C19—C18—O16 | 120.1 (3) |
C4—C3—C2 | 121.6 (3) | C23—C18—O16 | 117.2 (3) |
C4—C3—H3 | 119.2 | C18—C19—C20 | 116.8 (3) |
C2—C3—H3 | 119.2 | C18—C19—H19 | 121.6 |
C3—C4—C12 | 120.3 (3) | C20—C19—H19 | 121.6 |
C3—C4—H4 | 119.8 | F24—C20—C21 | 118.8 (3) |
C12—C4—H4 | 119.8 | F24—C20—C19 | 118.2 (4) |
C6—C5—C14 | 119.9 (3) | C21—C20—C19 | 123.0 (4) |
C6—C5—H5 | 120.0 | C20—C21—C22 | 118.8 (3) |
C14—C5—H5 | 120.0 | C20—C21—H21 | 120.6 |
C5—C6—C7 | 122.4 (3) | C22—C21—H21 | 120.6 |
C5—C6—H6 | 118.8 | C21—C22—C23 | 120.4 (4) |
C7—C6—H6 | 118.8 | C21—C22—H22 | 119.8 |
C8—C7—C6 | 119.4 (3) | C23—C22—H22 | 119.8 |
C8—C7—H7 | 120.3 | C18—C23—C22 | 118.2 (4) |
C6—C7—H7 | 120.3 | C18—C23—H23 | 120.9 |
C7—C8—C13 | 121.2 (3) | C22—C23—H23 | 120.9 |
C7—C8—H8 | 119.4 | N10—C25—H25A | 109.5 |
C13—C8—H8 | 119.4 | N10—C25—H25B | 109.5 |
C13—C9—C11 | 121.5 (3) | H25A—C25—H25B | 109.5 |
C13—C9—C15 | 119.1 (3) | N10—C25—H25C | 109.5 |
C11—C9—C15 | 119.4 (3) | H25A—C25—H25C | 109.5 |
C12—N10—C14 | 122.5 (2) | H25B—C25—H25C | 109.5 |
C12—N10—C25 | 117.7 (2) | O28—S26—O27 | 115.73 (15) |
C14—N10—C25 | 119.8 (3) | O28—S26—O29 | 114.66 (17) |
C9—C11—C1 | 123.2 (3) | O27—S26—O29 | 115.01 (16) |
C9—C11—C12 | 118.6 (3) | O28—S26—C30 | 102.91 (19) |
C1—C11—C12 | 118.2 (3) | O27—S26—C30 | 102.55 (19) |
N10—C12—C4 | 121.9 (3) | O29—S26—C30 | 103.36 (18) |
N10—C12—C11 | 119.4 (3) | F31—C30—F32 | 109.0 (4) |
C4—C12—C11 | 118.7 (3) | F31—C30—F33 | 107.7 (3) |
C9—C13—C8 | 122.8 (3) | F32—C30—F33 | 107.5 (4) |
C9—C13—C14 | 118.6 (3) | F31—C30—S26 | 111.8 (3) |
C8—C13—C14 | 118.6 (3) | F32—C30—S26 | 110.4 (3) |
N10—C14—C5 | 122.2 (3) | F33—C30—S26 | 110.3 (3) |
N10—C14—C13 | 119.3 (3) | ||
C11—C1—C2—C3 | 1.2 (6) | C6—C5—C14—C13 | −1.7 (5) |
C1—C2—C3—C4 | −1.6 (6) | C9—C13—C14—N10 | 1.2 (4) |
C2—C3—C4—C12 | 0.5 (6) | C8—C13—C14—N10 | −178.4 (3) |
C14—C5—C6—C7 | 0.6 (5) | C9—C13—C14—C5 | −178.6 (3) |
C5—C6—C7—C8 | 0.4 (5) | C8—C13—C14—C5 | 1.8 (4) |
C6—C7—C8—C13 | −0.3 (5) | C13—C9—C15—O17 | 81.3 (5) |
C13—C9—C11—C1 | −175.7 (3) | C11—C9—C15—O17 | −96.5 (4) |
C15—C9—C11—C1 | 2.1 (5) | C13—C9—C15—O16 | −95.9 (3) |
C13—C9—C11—C12 | 3.3 (5) | C11—C9—C15—O16 | 86.3 (4) |
C15—C9—C11—C12 | −178.9 (3) | O17—C15—O16—C18 | −1.8 (5) |
C2—C1—C11—C9 | 179.1 (3) | C9—C15—O16—C18 | 175.4 (3) |
C2—C1—C11—C12 | 0.1 (5) | C15—O16—C18—C19 | 85.5 (4) |
C14—N10—C12—C4 | 177.5 (3) | C15—O16—C18—C23 | −97.1 (4) |
C25—N10—C12—C4 | −2.5 (4) | C23—C18—C19—C20 | 0.1 (5) |
C14—N10—C12—C11 | −2.5 (4) | O16—C18—C19—C20 | 177.4 (3) |
C25—N10—C12—C11 | 177.4 (3) | C18—C19—C20—F24 | −178.7 (3) |
C3—C4—C12—N10 | −179.2 (3) | C18—C19—C20—C21 | 1.3 (6) |
C3—C4—C12—C11 | 0.8 (5) | F24—C20—C21—C22 | 178.7 (3) |
C9—C11—C12—N10 | −0.1 (4) | C19—C20—C21—C22 | −1.3 (6) |
C1—C11—C12—N10 | 178.9 (3) | C20—C21—C22—C23 | −0.2 (6) |
C9—C11—C12—C4 | 179.8 (3) | C19—C18—C23—C22 | −1.5 (6) |
C1—C11—C12—C4 | −1.1 (4) | O16—C18—C23—C22 | −178.9 (3) |
C11—C9—C13—C8 | 175.7 (3) | C21—C22—C23—C18 | 1.6 (6) |
C15—C9—C13—C8 | −2.0 (5) | O28—S26—C30—F31 | 59.7 (3) |
C11—C9—C13—C14 | −3.9 (4) | O27—S26—C30—F31 | −179.8 (3) |
C15—C9—C13—C14 | 178.4 (3) | O29—S26—C30—F31 | −60.0 (3) |
C7—C8—C13—C9 | 179.6 (3) | O28—S26—C30—F32 | −61.8 (3) |
C7—C8—C13—C14 | −0.8 (5) | O27—S26—C30—F32 | 58.7 (3) |
C12—N10—C14—C5 | −178.2 (3) | O29—S26—C30—F32 | 178.6 (3) |
C25—N10—C14—C5 | 1.9 (4) | O28—S26—C30—F33 | 179.5 (3) |
C12—N10—C14—C13 | 2.0 (4) | O27—S26—C30—F33 | −60.0 (3) |
C25—N10—C14—C13 | −178.0 (3) | O29—S26—C30—F33 | 59.8 (3) |
C6—C5—C14—N10 | 178.5 (3) |
Cg4 is the centroid of the C18–C23 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O29i | 0.85 (3) | 2.24 (3) | 3.071 (5) | 172 (4) |
O1W—H2W···O28 | 0.89 (3) | 1.99 (3) | 2.873 (5) | 176 (8) |
C1—H1···O1W | 0.93 | 2.51 | 3.365 (7) | 152 |
C3—H3···O29ii | 0.93 | 2.60 | 3.298 (5) | 133 |
C19—H19···O1W | 0.93 | 2.60 | 3.415 (7) | 145 |
C25—H25A···O27iii | 0.96 | 2.53 | 3.424 (5) | 155 |
C25—H25C···Cg4ii | 0.96 | 2.64 | 3.527 (4) | 154 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x+1, y, z; (iii) x+1, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | C21H15FNO2+·CF3O3S−·H2O |
Mr | 499.44 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 295 |
a, b, c (Å) | 9.5144 (10), 11.5654 (11), 11.9680 (12) |
α, β, γ (°) | 109.975 (9), 97.838 (8), 113.197 (9) |
V (Å3) | 1080.3 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.23 |
Crystal size (mm) | 0.40 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Oxford Gemini R Ultra Ruby CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9148, 3769, 1647 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.129, 0.81 |
No. of reflections | 3769 |
No. of parameters | 314 |
No. of restraints | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.27, −0.28 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg4 is the centroid of the C18–C23 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O29i | 0.85 (3) | 2.24 (3) | 3.071 (5) | 172 (4) |
O1W—H2W···O28 | 0.89 (3) | 1.99 (3) | 2.873 (5) | 176 (8) |
C1—H1···O1W | 0.93 | 2.51 | 3.365 (7) | 152 |
C3—H3···O29ii | 0.93 | 2.60 | 3.298 (5) | 133 |
C19—H19···O1W | 0.93 | 2.60 | 3.415 (7) | 145 |
C25—H25A···O27iii | 0.96 | 2.53 | 3.424 (5) | 155 |
C25—H25C···Cg4ii | 0.96 | 2.64 | 3.527 (4) | 154 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x+1, y, z; (iii) x+1, y, z−1. |
X | I | J | I···J | X···J | X—I···J |
C20 | F24 | Cg2iv | 3.743 (3) | 4.139 (5) | 97.6 (2) |
C20 | F24 | Cg2v | 3.854 (4) | 4.188 (5) | 94.9 (3) |
C30 | F31 | Cg1v | 3.665 (4) | 4.519 (6) | 123.6 (3) |
C30 | F31 | Cg3v | 3.910 (4) | 4.049 (6) | 86.7 (3) |
C30 | F33 | Cg3v | 3.654 (4) | 4.049 (6) | 97.7 (3) |
Symmetry codes: (iv) x - 1, y, z; (v) -x + 1, -y + 2, -z + 1. Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. |
I | J | CgI···CgJ | Dihedral angle | CgIPerp | CgIOffset |
1 | 1vi | 3.990 (2) | 0 | 3.591 (2) | 1.739 (2) |
1 | 3vi | 3.645 (2) | 2.08 (17) | 3.557 (2) | 0.796 (2) |
2 | 3vi | 3.907 (2) | 3.85 (19) | 3.431 (2) | 1.863 (2) |
3 | 1vi | 3.645 (2) | 2.08 (17) | 3.546 (2) | 0.844 (2) |
3 | 2vi | 3.907 (2) | 3.85 (19) | 3.548 (2) | 1.629 (2) |
Symmetry codes: (vi) -x + 1, -y + 1, -z. Notes: Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgIPerp is the perpendicular distance of CgI from ring J. CgIOffset is the distance between CgI and the perpendicular projection of CgJ on ring I. |
Acknowledgements
This study was financed by the State Funds for Scientific Research through National Center for Science grant No. N N204 375 740 (contract No. 3757/B/H03/2011/40). DT acknowledges financial support from the European Social Fund within the project `Educators for the elite – integrated training program for PhD students, post-docs and professors as academic teachers at the University of Gdansk' and the Human Capital Operational Program Action 4.1.1, `Improving the quality on offer at tertiary educational institutions'. This publication reflects the views only of the authors: the sponsors cannot be held responsible for any use which may be made of the information contained therein.
References
Aakeröy, C. B., Seddon, K. R. & Leslie, M. (1992). Struct. Chem. 3, 63–65. Google Scholar
Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669. Web of Science CrossRef Google Scholar
King, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O'Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem. 79, 4169–4176. Web of Science CrossRef PubMed CAS Google Scholar
Krzymiński, K., Ożóg, A., Malecha, P., Roshal, A. D., Wróblewska, A., Zadykowicz, B. & Błażejowski, J. (2011). J. Org. Chem. 76, 1072–1085. Web of Science PubMed Google Scholar
Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. Heidelberg: Springer. Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. 75, 462–470A. Web of Science CrossRef Google Scholar
Sato, N. (1996). Tetrahedron Lett. 37, 8519–8522. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430. Web of Science CrossRef CAS Google Scholar
Trzybiński, D., Krzymiński, K. & Błażejowski, J. (2010). Acta Cryst. E66, o2769–o2770. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
9-Phenoxycarbonyl-10-methylacridinium cations react with oxidants (e.g. H2O2) in alkaline media, as a result of which electronically excited 10-methyl-9-acridinone molecules are generated (Krzymiński et al., 2011). This phenomenon forms the basis for the use of these entities as chemiluminogenic indicators or fragments of chemiluminescent labels (Roda et al., 2003; King et al., 2007; Krzymiński et al., 2011). It has been noted that the conversion efficiency of the above-mentioned cations to 10-methyl-9-acridinone molecules, and consequently the chemiluminescence quantum yield, crucial in analytical applications, depends on the structure of the phenoxycarbonyl fragment (Krzymiński et al., 2011). For these reasons we have been synthesizing 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates variously substituted in the phenyl fragment in order to select derivatives optimal for analytical applications. Here we present the structure of one of the compounds of this series.
In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium and phenyl moieties are typical of 9-phenoxycarbonyl-10-methylacridinium derivatives (Trzybiński et al., 2010). With respective average deviations from planarity of 0.0397 (3) Å and 0.0066 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 15.1 (1)° [in 9-(4-fluorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate this angle is equal to 74.1 (1)° (Trzybiński et al., 2010)]. The carboxyl group is twisted at an angle of 84.5 (1)° relative to the acridine skeleton [in 9-(4-fluorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate this angle is 4.4 (1)° (Trzybiński et al., 2010)]. The mean planes of the adjacent acridine moieties are parallel [remain at an angle of 0.0 (1)°)] in the lattice.
In the crystal structure, the inversely oriented cations form dimers through π–π contacts involving all three rings of the acridine aromatic system (Table 3, Fig. 2). These dimers are linked by C—H···O (Table 1, Fig. 2) and C—F···π (Table 2, Fig. 2) interactions to adjacent anions and by C—H···π (Table 1, Fig. 2) and C—F···π (Table 2, Fig. 2) interactions to neighbouring cations. Each cation is involved in two C—H···O interactions with a water molecule, which in turn is engaged in O—H···O hydrogen bonds involving O atoms of two adjacent anions (Table 1, Figs. 1 and 2). The O—H···O (Aakeröy et al., 1992) and C—H···O (Novoa et al., 2006) interactions are of the hydrogen bond type. The C—H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the C—F···π (Dorn et al., 2005) and the π–π (Hunter et al., 2001) interactions. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.