metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[di­aqua­(1,10-phenanthroline-κ2N,N′)(μ3-4-sulfonato­benzene-1,2-di­carboxyl­ato-κ4O1:O2,O2′:O4)dysprosium(III)] dihydrate]

aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 24 January 2012; accepted 27 January 2012; online 4 February 2012)

The 4-sulfophthalate trianion in the polymeric title complex, {[Dy(C8H3O7S)(C12H8N2)(H2O)2]·2H2O}n, bridges three water/phenanthroline-coordinated DyIII atoms to form a three-dimensional network architecture. The metal atom is further chelated by a carboxyl­ate group and is covalently bonded to a monodentate carboxyl­ate group and to a monodentate sulfonate group in a distorted square-anti­prismatic geometry. The coordinating and the solvent water mol­ecules are hydrogen bonded to the network. In the crystal, one solvent water mol­ecule is disordered over two positions [major component = 59 (3)%].

Related literature

For the isostructural ErIII complex, see: Zhang et al. (2012[Zhang, K.-L., Lin, J.-G. & Ng, S. W. (2012). Acta Cryst. E68, m226.]).

[Scheme 1]

Experimental

Crystal data
  • [Dy(C8H3O7S)(C12H8N2)(H2O)2]·2H2O

  • Mr = 657.93

  • Monoclinic, P 21 /n

  • a = 14.3852 (7) Å

  • b = 9.6487 (5) Å

  • c = 17.4280 (9) Å

  • β = 105.770 (1)°

  • V = 2327.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.36 mm−1

  • T = 293 K

  • 0.50 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.473, Tmax = 1.000

  • 6452 measured reflections

  • 4022 independent reflections

  • 3864 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.093

  • S = 1.20

  • 4022 reflections

  • 353 parameters

  • 33 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.97 e Å−3

  • Δρmin = −1.85 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O5i 0.84 (1) 1.98 (1) 2.817 (6) 175 (7)
O1w—H12⋯O7ii 0.84 (1) 1.94 (2) 2.760 (6) 166 (6)
O2w—H21⋯O2 0.84 (1) 1.96 (3) 2.744 (7) 156 (7)
O2w—H22⋯O3w 0.84 (1) 1.83 (2) 2.66 (1) 169 (7)
O3W—H31⋯O7iii 0.84 (1) 2.05 (1) 2.81 (1) 151 (2)
O3w′—H33⋯O7iii 0.84 (1) 2.05 (1) 2.74 (2) 139 (2)
O4w—H41⋯O2iv 0.84 (1) 2.11 (5) 2.897 (8) 155 (11)
O4w—H41⋯O2iv 0.84 (1) 2.11 (5) 2.897 (8) 155 (11)
O4w—H42⋯O3v 0.84 (1) 2.04 (6) 2.787 (9) 148 (11)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) -x+1, -y+1, -z; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x, y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The deprotonated 4-sulfophthalic acid trianion forms a number of coordination polymers as its carboxyl and sulfo groups are capable of a variety of bonding modes. Among these, the 1,10-phenanthroline-coordinated europium derivative exists as a monoaqua coordination polymer adopting a chain motif. The ErIII analog is instead a diaqua coordination polymer adopting a three-dimensional network motif. The title DyIII analog is isostructural with the ErIII derivative (Zhang et al., 2012). The 4-sulfophthalate trianion bridges three water/phenanthroline-coordinated DyIII atoms to form a three-dimensional network architecture (Scheme I, Fig. 1). The metal atom is chelated by a carboxyl group and is covalently bonded to a unidentate carboxyl as well as to a unidentate sulfo group in a square antiprismatic geometry. The lattice water molecules are hydrogen-bonded to the network. Other O–H···O hydrogen bonds are also present (Table 1).

Related literature top

For the isostructural ErIII complex, see: Zhang et al. (2012).

Experimental top

4-Sulfophthalic acid (0.080 g), 1,10-phenanthroline (0.057 g), erbium trichloride hexahydrate (0.113 g) and water (10 ml) were placed in a 25 -ml Teflon-lined stainless-steel Parr bomb. The vessel was heated at 443 K for 3 days. Red crystals were obtained when the vessel was cooled to room temperature slowly in about 30% yield.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The water H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.84±0.01 and H···H 1.37±0.01 Å; their temperature factors were tied by a factor of 1.5 times.

The O3w water molecule is disordered over tw sites in a 0.59 (3): 0.4135 ratio. The disorder components share a common H atom, which forms a hydrogen bond to an acceptor atom.

The anisotropic temperature factors of the lattice water O atoms were tightly restrained to be nearly isotropic.

The final difference Fourier map had a peak at 0.90 Å from Dy1 and a hole at 0.86 Å from this heavy atom.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the formula unit of polymeric [Dy(H2O)2(C12H8N2)(C8H3O7S)]n.2nH2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder is not shown.
Poly[[diaqua(1,10-phenanthroline-κ2N,N')(µ3-4- sulfonatobenzene-1,2-dicarboxylato- κ4O1:O2,O2':O4)dysprosium(III)] dihydrate] top
Crystal data top
[Dy(C8H3O7S)(C12H8N2)(H2O)2]·2H2OF(000) = 1292
Mr = 657.93Dx = 1.877 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5412 reflections
a = 14.3852 (7) Åθ = 2.2–25.1°
b = 9.6487 (5) ŵ = 3.36 mm1
c = 17.4280 (9) ÅT = 293 K
β = 105.770 (1)°Block, red
V = 2327.9 (2) Å30.50 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
4022 independent reflections
Radiation source: fine-focus sealed tube3864 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 25.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1716
Tmin = 0.473, Tmax = 1.000k = 119
6452 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.0378P)2 + 10.2868P]
where P = (Fo2 + 2Fc2)/3
4022 reflections(Δ/σ)max = 0.001
353 parametersΔρmax = 0.97 e Å3
33 restraintsΔρmin = 1.85 e Å3
Crystal data top
[Dy(C8H3O7S)(C12H8N2)(H2O)2]·2H2OV = 2327.9 (2) Å3
Mr = 657.93Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.3852 (7) ŵ = 3.36 mm1
b = 9.6487 (5) ÅT = 293 K
c = 17.4280 (9) Å0.50 × 0.30 × 0.20 mm
β = 105.770 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4022 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3864 reflections with I > 2σ(I)
Tmin = 0.473, Tmax = 1.000Rint = 0.023
6452 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03733 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.0378P)2 + 10.2868P]
where P = (Fo2 + 2Fc2)/3
4022 reflectionsΔρmax = 0.97 e Å3
353 parametersΔρmin = 1.85 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Dy10.604921 (17)0.47289 (2)0.259769 (14)0.02131 (11)
S10.36749 (10)0.32357 (16)0.16213 (8)0.0313 (3)
O10.4682 (3)0.3307 (4)0.2104 (2)0.0319 (9)
O20.3258 (3)0.4612 (5)0.1434 (3)0.0473 (12)
O30.3103 (4)0.2348 (6)0.1978 (3)0.0562 (14)
O40.4063 (4)0.4842 (4)0.1216 (3)0.0452 (12)
O50.3528 (3)0.3141 (4)0.2043 (2)0.0292 (8)
O60.2670 (3)0.0319 (4)0.1959 (2)0.0303 (9)
O70.4245 (3)0.0030 (5)0.1685 (3)0.0400 (10)
O1w0.6545 (3)0.2479 (4)0.2389 (3)0.0390 (10)
H110.7126 (15)0.224 (6)0.256 (4)0.059*
H120.622 (4)0.180 (4)0.217 (4)0.059*
O2w0.4682 (3)0.6129 (5)0.2456 (3)0.0432 (11)
H210.422 (4)0.589 (7)0.207 (3)0.065*
H220.465 (5)0.6988 (19)0.253 (4)0.065*
O3w0.4836 (11)0.8837 (11)0.2752 (11)0.069 (4)0.59 (3)
H310.492 (4)0.911 (11)0.2318 (17)0.103*0.59 (3)
H320.523 (10)0.923 (16)0.313 (2)0.103*0.59 (3)
O3w'0.4379 (15)0.8711 (16)0.2234 (15)0.062 (6)0.41 (3)
H330.492 (4)0.911 (11)0.2318 (17)0.093*0.41 (3)
H340.417 (10)0.85 (3)0.174 (3)0.093*0.41 (3)
O4w0.3507 (5)1.0315 (7)0.3158 (4)0.0733 (18)
H410.304 (5)0.986 (11)0.323 (6)0.110*
H420.335 (7)1.064 (12)0.269 (3)0.110*
N10.5893 (4)0.3636 (5)0.3864 (3)0.0321 (11)
N20.6436 (4)0.6324 (5)0.3796 (3)0.0334 (11)
C10.5629 (5)0.2329 (7)0.3899 (4)0.0439 (16)
H10.54720.18160.34300.053*
C20.5574 (6)0.1671 (8)0.4602 (5)0.057 (2)
H20.53860.07490.45980.068*
C30.5804 (5)0.2422 (9)0.5294 (4)0.0536 (19)
H30.57770.20060.57690.064*
C40.6079 (4)0.3812 (8)0.5291 (4)0.0409 (16)
C50.6328 (5)0.4680 (10)0.5983 (4)0.054 (2)
H50.62930.43170.64690.065*
C60.6607 (5)0.5984 (10)0.5956 (4)0.055 (2)
H60.67640.65080.64210.066*
C70.6673 (5)0.6603 (8)0.5226 (4)0.0426 (16)
C80.6981 (6)0.7960 (9)0.5163 (5)0.060 (2)
H80.71650.85140.56160.072*
C90.7016 (6)0.8474 (9)0.4453 (5)0.064 (2)
H90.72250.93770.44140.076*
C100.6732 (5)0.7635 (7)0.3775 (4)0.0464 (17)
H100.67510.80040.32860.056*
C110.6409 (4)0.5806 (7)0.4521 (3)0.0324 (13)
C120.6114 (4)0.4385 (7)0.4552 (3)0.0306 (12)
C130.3692 (4)0.2467 (6)0.0699 (3)0.0288 (12)
C140.3764 (4)0.3288 (6)0.0069 (3)0.0292 (12)
H140.38350.42420.01360.035*
C150.3730 (4)0.2696 (6)0.0663 (3)0.0268 (11)
C160.3638 (4)0.1247 (6)0.0757 (3)0.0245 (11)
C170.3649 (4)0.0425 (6)0.0092 (3)0.0305 (12)
H170.36520.05350.01340.037*
C180.3655 (4)0.1044 (7)0.0627 (3)0.0340 (13)
H180.36350.04980.10610.041*
C190.3777 (4)0.3615 (6)0.1346 (3)0.0295 (12)
C200.3526 (4)0.0487 (6)0.1538 (3)0.0274 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy10.02671 (16)0.01852 (16)0.01882 (15)0.00121 (9)0.00642 (10)0.00062 (9)
S10.0288 (7)0.0446 (9)0.0204 (7)0.0047 (6)0.0065 (5)0.0014 (6)
O10.029 (2)0.032 (2)0.028 (2)0.0017 (16)0.0031 (16)0.0001 (17)
O20.045 (3)0.057 (3)0.037 (3)0.019 (2)0.005 (2)0.004 (2)
O30.055 (3)0.083 (4)0.036 (3)0.033 (3)0.023 (2)0.012 (3)
O40.084 (4)0.027 (2)0.027 (2)0.014 (2)0.019 (2)0.0056 (18)
O50.042 (2)0.024 (2)0.0197 (19)0.0047 (16)0.0042 (16)0.0012 (15)
O60.024 (2)0.028 (2)0.035 (2)0.0025 (15)0.0009 (17)0.0058 (16)
O70.035 (2)0.037 (2)0.049 (3)0.0041 (19)0.012 (2)0.009 (2)
O1w0.033 (2)0.024 (2)0.058 (3)0.0032 (17)0.010 (2)0.011 (2)
O2w0.042 (3)0.029 (2)0.057 (3)0.0053 (19)0.012 (2)0.000 (2)
O3w0.082 (8)0.048 (5)0.084 (9)0.005 (5)0.035 (7)0.004 (5)
O3w'0.066 (9)0.043 (7)0.081 (10)0.012 (6)0.027 (7)0.011 (6)
O4w0.078 (4)0.077 (4)0.077 (4)0.001 (3)0.042 (3)0.010 (3)
N10.040 (3)0.032 (3)0.025 (2)0.003 (2)0.009 (2)0.001 (2)
N20.041 (3)0.032 (3)0.029 (3)0.005 (2)0.011 (2)0.009 (2)
C10.060 (4)0.037 (4)0.037 (4)0.006 (3)0.018 (3)0.005 (3)
C20.069 (5)0.048 (4)0.059 (5)0.006 (4)0.027 (4)0.021 (4)
C30.055 (4)0.073 (5)0.038 (4)0.007 (4)0.022 (3)0.024 (4)
C40.031 (3)0.066 (5)0.026 (3)0.008 (3)0.009 (2)0.008 (3)
C50.047 (4)0.095 (7)0.021 (3)0.015 (4)0.010 (3)0.006 (3)
C60.046 (4)0.083 (6)0.031 (4)0.008 (4)0.004 (3)0.021 (4)
C70.034 (3)0.062 (5)0.032 (3)0.006 (3)0.009 (3)0.012 (3)
C80.071 (5)0.066 (5)0.045 (4)0.015 (4)0.019 (4)0.032 (4)
C90.084 (6)0.049 (5)0.065 (5)0.017 (4)0.032 (5)0.033 (4)
C100.067 (5)0.036 (4)0.042 (4)0.016 (3)0.024 (3)0.012 (3)
C110.030 (3)0.044 (4)0.023 (3)0.002 (3)0.007 (2)0.008 (3)
C120.023 (3)0.045 (3)0.023 (3)0.006 (2)0.006 (2)0.001 (2)
C130.027 (3)0.038 (3)0.021 (3)0.003 (2)0.005 (2)0.002 (2)
C140.038 (3)0.026 (3)0.024 (3)0.003 (2)0.008 (2)0.001 (2)
C150.032 (3)0.024 (3)0.023 (3)0.003 (2)0.006 (2)0.003 (2)
C160.021 (3)0.028 (3)0.021 (3)0.000 (2)0.000 (2)0.002 (2)
C170.031 (3)0.026 (3)0.030 (3)0.002 (2)0.002 (2)0.007 (2)
C180.033 (3)0.042 (4)0.027 (3)0.004 (3)0.007 (2)0.010 (3)
C190.038 (3)0.025 (3)0.027 (3)0.001 (2)0.011 (2)0.001 (2)
C200.030 (3)0.021 (3)0.031 (3)0.001 (2)0.007 (2)0.001 (2)
Geometric parameters (Å, º) top
Dy1—O6i2.249 (4)N2—C111.368 (8)
Dy1—O2w2.343 (4)C1—C21.401 (9)
Dy1—O1w2.344 (4)C1—H10.9300
Dy1—O12.360 (4)C2—C31.368 (12)
Dy1—O4ii2.406 (4)C2—H20.9300
Dy1—O5ii2.418 (4)C3—C41.399 (11)
Dy1—N12.511 (5)C3—H30.9300
Dy1—N22.532 (5)C4—C121.415 (8)
S1—O31.440 (5)C4—C51.432 (10)
S1—O21.458 (5)C5—C61.325 (12)
S1—O11.466 (4)C5—H50.9300
S1—C131.776 (6)C6—C71.432 (11)
O4—C191.253 (7)C6—H60.9300
O4—Dy1ii2.406 (4)C7—C81.396 (11)
O5—C191.256 (7)C7—C111.411 (8)
O5—Dy1ii2.418 (4)C8—C91.346 (12)
O6—C201.260 (7)C8—H80.9300
O6—Dy1iii2.249 (4)C9—C101.400 (10)
O7—C201.236 (7)C9—H90.9300
O1w—H110.840 (10)C10—H100.9300
O1w—H120.839 (10)C11—C121.441 (9)
O2w—H210.840 (10)C13—C181.378 (9)
O2w—H220.840 (10)C13—C141.380 (8)
O3w—H310.838 (10)C14—C151.386 (8)
O3w—H320.838 (11)C14—H140.9300
O3w—H330.838 (10)C15—C161.410 (8)
O3w'—H310.842 (10)C15—C191.502 (7)
O3w'—H330.842 (10)C16—C171.399 (8)
O3w'—H340.840 (10)C16—C201.516 (8)
O4w—H410.842 (10)C17—C181.386 (9)
O4w—H420.842 (10)C17—H170.9300
N1—C11.323 (8)C18—H180.9300
N1—C121.361 (7)C19—Dy1ii2.769 (6)
N2—C101.338 (8)
O6i—Dy1—O2w144.11 (16)C3—C2—H2120.9
O6i—Dy1—O1w72.76 (14)C1—C2—H2120.9
O2w—Dy1—O1w143.10 (16)C2—C3—C4120.3 (6)
O6i—Dy1—O1142.83 (14)C2—C3—H3119.8
O2w—Dy1—O172.81 (16)C4—C3—H3119.8
O1w—Dy1—O170.34 (14)C3—C4—C12117.3 (6)
O6i—Dy1—O4ii97.40 (17)C3—C4—C5124.3 (6)
O2w—Dy1—O4ii88.24 (18)C12—C4—C5118.4 (7)
O1w—Dy1—O4ii86.81 (16)C6—C5—C4122.3 (7)
O1—Dy1—O4ii84.97 (15)C6—C5—H5118.9
O6i—Dy1—O5ii78.73 (14)C4—C5—H5118.9
O2w—Dy1—O5ii76.29 (15)C5—C6—C7121.5 (7)
O1w—Dy1—O5ii127.22 (15)C5—C6—H6119.3
O1—Dy1—O5ii128.57 (13)C7—C6—H6119.3
O4ii—Dy1—O5ii53.80 (13)C8—C7—C11117.3 (6)
O6i—Dy1—N191.24 (15)C8—C7—C6124.1 (7)
O2w—Dy1—N193.53 (17)C11—C7—C6118.6 (7)
O1w—Dy1—N181.44 (17)C9—C8—C7120.6 (7)
O1—Dy1—N179.13 (15)C9—C8—H8119.7
O4ii—Dy1—N1162.68 (15)C7—C8—H8119.7
O5ii—Dy1—N1143.20 (14)C8—C9—C10119.2 (8)
O6i—Dy1—N275.75 (16)C8—C9—H9120.4
O2w—Dy1—N274.13 (17)C10—C9—H9120.4
O1w—Dy1—N2133.09 (17)N2—C10—C9123.0 (7)
O1—Dy1—N2128.97 (15)N2—C10—H10118.5
O4ii—Dy1—N2131.39 (15)C9—C10—H10118.5
O5ii—Dy1—N277.89 (15)N2—C11—C7122.4 (6)
N1—Dy1—N265.32 (16)N2—C11—C12117.7 (5)
O3—S1—O2113.0 (3)C7—C11—C12119.9 (6)
O3—S1—O1111.8 (3)N1—C12—C4122.4 (6)
O2—S1—O1111.6 (3)N1—C12—C11118.2 (5)
O3—S1—C13107.0 (3)C4—C12—C11119.3 (6)
O2—S1—C13106.5 (3)C18—C13—C14120.5 (5)
O1—S1—C13106.5 (3)C18—C13—S1119.3 (4)
S1—O1—Dy1146.3 (3)C14—C13—S1120.2 (5)
C19—O4—Dy1ii92.9 (3)C13—C14—C15120.3 (5)
C19—O5—Dy1ii92.3 (3)C13—C14—H14119.9
C20—O6—Dy1iii163.8 (4)C15—C14—H14119.9
Dy1—O1w—H11121 (4)C14—C15—C16119.6 (5)
Dy1—O1w—H12130 (4)C14—C15—C19119.3 (5)
H11—O1w—H12109.6 (18)C16—C15—C19121.1 (5)
Dy1—O2w—H21113 (5)C17—C16—C15119.1 (5)
Dy1—O2w—H22129 (5)C17—C16—C20116.3 (5)
H21—O2w—H22109 (2)C15—C16—C20124.6 (5)
H31—O3w—H32110 (2)C18—C17—C16120.0 (5)
H32—O3w—H33110 (2)C18—C17—H17120.0
H31—O3w'—H34109 (2)C16—C17—H17120.0
H33—O3w'—H34109 (2)C13—C18—C17120.2 (5)
H41—O4w—H42109 (2)C13—C18—H18119.9
C1—N1—C12117.8 (5)C17—C18—H18119.9
C1—N1—Dy1122.4 (4)O4—C19—O5120.9 (5)
C12—N1—Dy1119.7 (4)O4—C19—C15119.8 (5)
C10—N2—C11117.4 (5)O5—C19—C15119.3 (5)
C10—N2—Dy1123.5 (4)O4—C19—Dy1ii60.2 (3)
C11—N2—Dy1118.9 (4)O5—C19—Dy1ii60.8 (3)
N1—C1—C2123.9 (7)C15—C19—Dy1ii177.4 (4)
N1—C1—H1118.1O7—C20—O6124.6 (5)
C2—C1—H1118.1O7—C20—C16119.4 (5)
C3—C2—C1118.3 (7)O6—C20—C16115.7 (5)
O3—S1—O1—Dy1140.2 (4)C8—C9—C10—N20.8 (13)
O2—S1—O1—Dy112.6 (6)C10—N2—C11—C70.4 (9)
C13—S1—O1—Dy1103.2 (5)Dy1—N2—C11—C7176.0 (4)
O6i—Dy1—O1—S1155.1 (4)C10—N2—C11—C12178.5 (6)
O2w—Dy1—O1—S130.2 (4)Dy1—N2—C11—C122.8 (7)
O1w—Dy1—O1—S1147.9 (5)C8—C7—C11—N20.8 (10)
O4ii—Dy1—O1—S159.5 (5)C6—C7—C11—N2179.0 (6)
O5ii—Dy1—O1—S125.5 (5)C8—C7—C11—C12178.0 (6)
N1—Dy1—O1—S1127.4 (5)C6—C7—C11—C122.2 (9)
N2—Dy1—O1—S182.0 (5)C1—N1—C12—C40.5 (9)
O6i—Dy1—N1—C1106.3 (5)Dy1—N1—C12—C4177.3 (4)
O2w—Dy1—N1—C1109.3 (5)C1—N1—C12—C11179.5 (6)
O1w—Dy1—N1—C133.9 (5)Dy1—N1—C12—C111.7 (7)
O1—Dy1—N1—C137.6 (5)C3—C4—C12—N10.0 (9)
O4ii—Dy1—N1—C113.9 (9)C5—C4—C12—N1179.8 (6)
O5ii—Dy1—N1—C1179.0 (4)C3—C4—C12—C11179.0 (6)
N2—Dy1—N1—C1179.9 (6)C5—C4—C12—C110.8 (8)
O6i—Dy1—N1—C1271.5 (4)N2—C11—C12—N10.8 (8)
O2w—Dy1—N1—C1272.9 (4)C7—C11—C12—N1178.1 (5)
O1w—Dy1—N1—C12143.9 (4)N2—C11—C12—C4179.8 (5)
O1—Dy1—N1—C12144.6 (4)C7—C11—C12—C41.0 (8)
O4ii—Dy1—N1—C12168.3 (5)O3—S1—C13—C1831.9 (6)
O5ii—Dy1—N1—C121.2 (6)O2—S1—C13—C18153.0 (5)
N2—Dy1—N1—C122.2 (4)O1—S1—C13—C1887.8 (5)
O6i—Dy1—N2—C1079.8 (5)O3—S1—C13—C14149.5 (5)
O2w—Dy1—N2—C1080.5 (5)O2—S1—C13—C1428.5 (5)
O1w—Dy1—N2—C10128.8 (5)O1—S1—C13—C1490.7 (5)
O1—Dy1—N2—C10131.8 (5)C18—C13—C14—C154.6 (9)
O4ii—Dy1—N2—C107.5 (6)S1—C13—C14—C15176.8 (4)
O5ii—Dy1—N2—C101.5 (5)C13—C14—C15—C161.0 (9)
N1—Dy1—N2—C10177.9 (6)C13—C14—C15—C19178.0 (5)
O6i—Dy1—N2—C1195.5 (4)C14—C15—C16—C174.3 (8)
O2w—Dy1—N2—C11104.2 (4)C19—C15—C16—C17176.6 (5)
O1w—Dy1—N2—C1146.6 (5)C14—C15—C16—C20175.7 (5)
O1—Dy1—N2—C1152.9 (5)C19—C15—C16—C203.3 (8)
O4ii—Dy1—N2—C11177.1 (4)C15—C16—C17—C186.2 (8)
O5ii—Dy1—N2—C11176.8 (4)C20—C16—C17—C18173.8 (5)
N1—Dy1—N2—C112.6 (4)C14—C13—C18—C172.7 (9)
C12—N1—C1—C20.6 (10)S1—C13—C18—C17178.7 (4)
Dy1—N1—C1—C2177.2 (6)C16—C17—C18—C132.8 (9)
N1—C1—C2—C30.1 (12)Dy1ii—O4—C19—O53.1 (6)
C1—C2—C3—C40.5 (12)Dy1ii—O4—C19—C15177.0 (5)
C2—C3—C4—C120.5 (10)Dy1ii—O5—C19—O43.1 (6)
C2—C3—C4—C5179.7 (7)Dy1ii—O5—C19—C15177.0 (5)
C3—C4—C5—C6178.4 (7)C14—C15—C19—O416.2 (9)
C12—C4—C5—C61.4 (10)C16—C15—C19—O4164.7 (6)
C4—C5—C6—C70.2 (11)C14—C15—C19—O5163.7 (5)
C5—C6—C7—C8178.6 (8)C16—C15—C19—O515.3 (8)
C5—C6—C7—C111.6 (10)Dy1iii—O6—C20—O7166.1 (10)
C11—C7—C8—C90.4 (12)Dy1iii—O6—C20—C166.8 (16)
C6—C7—C8—C9179.4 (8)C17—C16—C20—O782.9 (7)
C7—C8—C9—C100.3 (13)C15—C16—C20—O797.1 (7)
C11—N2—C10—C90.5 (11)C17—C16—C20—O690.4 (6)
Dy1—N2—C10—C9174.9 (6)C15—C16—C20—O689.6 (7)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O5i0.84 (1)1.98 (1)2.817 (6)175 (7)
O1w—H12···O7iv0.84 (1)1.94 (2)2.760 (6)166 (6)
O2w—H21···O20.84 (1)1.96 (3)2.744 (7)156 (7)
O2w—H22···O3w0.84 (1)1.83 (2)2.66 (1)169 (7)
O3w—H31···O7ii0.84 (1)2.05 (1)2.81 (1)151 (2)
O3w—H33···O7ii0.84 (1)2.05 (1)2.74 (2)139 (2)
O4w—H41···O2v0.84 (1)2.11 (5)2.897 (8)155 (11)
O4w—H41···O2v0.84 (1)2.11 (5)2.897 (8)155 (11)
O4w—H42···O3vi0.84 (1)2.04 (6)2.787 (9)148 (11)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z; (iv) x+1, y, z; (v) x+1/2, y+1/2, z+1/2; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Dy(C8H3O7S)(C12H8N2)(H2O)2]·2H2O
Mr657.93
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.3852 (7), 9.6487 (5), 17.4280 (9)
β (°) 105.770 (1)
V3)2327.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.36
Crystal size (mm)0.50 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.473, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6452, 4022, 3864
Rint0.023
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.093, 1.20
No. of reflections4022
No. of parameters353
No. of restraints33
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0378P)2 + 10.2868P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.97, 1.85

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O5i0.84 (1)1.98 (1)2.817 (6)175 (7)
O1w—H12···O7ii0.84 (1)1.94 (2)2.760 (6)166 (6)
O2w—H21···O20.84 (1)1.96 (3)2.744 (7)156 (7)
O2w—H22···O3w0.84 (1)1.83 (2)2.66 (1)169 (7)
O3w—H31···O7iii0.84 (1)2.05 (1)2.81 (1)151 (2)
O3w'—H33···O7iii0.84 (1)2.05 (1)2.74 (2)139 (2)
O4w—H41···O2iv0.84 (1)2.11 (5)2.897 (8)155 (11)
O4w—H41···O2iv0.84 (1)2.11 (5)2.897 (8)155 (11)
O4w—H42···O3v0.84 (1)2.04 (6)2.787 (9)148 (11)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1/2, y+1/2, z+1/2; (v) x, y+1, z.
 

Acknowledgements

We thank the Priority Academic Development Program of Jiangsu Higher Education Institution and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, K.-L., Lin, J.-G. & Ng, S. W. (2012). Acta Cryst. E68, m226.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds