organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-(Phenyl­methyl­ene)dinaphthalen-2-ol

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chenxinyuanseu@yahoo.com.cn

(Received 30 January 2012; accepted 31 January 2012; online 4 February 2012)

In the title compound, C27H20O2, the phenyl ring is oriented with respect to the naphthalene ring systems at 57.87 (6) and 85.12 (6)°. The two naphthalene ring systems make a dihedral angle of 70.10 (4)°. In the mol­ecule, the hy­droxy groups are involved in a strong intra­molecular O—H⋯O hydrogen bond. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds occur. A weak C—H⋯π inter­action is also observed in the crystal.

Related literature

For the structures and ferroelectric properties of related compounds, see: Devi & Bhuyan (2004[Devi, I. & Bhuyan, P. J. (2004). Tetrahedron Lett. 45, 8625-8627.]); Fu, Zhang, Cai, Ge et al. (2011[Fu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011). Adv. Mater. 23, 5658-5662.]); Fu, Zhang, Cai, Zhang, Ge, Xiong & Huang (2011[Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G. & Huang, S. P. D. (2011). J. Am. Chem. Soc. 133, 12780-12786.]); Fu, Zhang, Cai, Zhang, Ge, Xiong, Huang & Nakamura (2011[Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G., Huang, S. P. D. & Nakamura, T. (2011). Angew. Chem. Int. Ed. 50, 11947-11951.]); Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. P. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.], 2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.], 2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]).

[Scheme 1]

Experimental

Crystal data
  • C27H20O2

  • Mr = 376.43

  • Monoclinic, P 21 /c

  • a = 12.066 (2) Å

  • b = 8.6178 (17) Å

  • c = 21.386 (6) Å

  • β = 122.02 (2)°

  • V = 1885.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.10 × 0.03 × 0.03 mm

Data collection
  • Rigaku Mercury2 (2 × 2 bin mode) diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 19010 measured reflections

  • 4317 independent reflections

  • 2997 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.142

  • S = 1.06

  • 4317 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C22–C27 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.93 2.49 3.335 (2) 151
O2—H2⋯O1 0.86 1.85 2.691 (2) 165
C19—H19⋯Cgii 0.93 2.71 3.478 (3) 140
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x, -y, -z+2.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Simple organic compounds containing strong intramolecular H-bonds have attracted an attention as materials which display ferroelectric-paraelectric phase transitions (Fu, Zhang, Cai, Ge et al., 2011; Fu, Zhang, Cai, Zhang, Ge, Xiong & Huang, 2011; Fu, Zhang, Cai, Zhang, Ge, Xiong, Huang & Nakamura, 2011). With the purpose of obtaining phase transition crystals of organic compounds, various organic molecules have been studied and a series of new materials have been elaborated (Fu et al. 2007; Fu & Xiong 2008; Fu et al. 2008; Fu et al. 2009). Herewith we present the synthesis and crystal structure of the title compound, 1,1'-(phenylmethylene)dinaphthalen-2-ol.

In the title compound (Fig. 1) bond lengths and angles have normal values (Devi & Bhuyan 2004). The dihedral angle between the naphthalene ring systemes and the benzene ring are 57.87 (6)° and 85.12 (6)°, respectively. The H atoms of hydroxy groups were involved in intramolecular O—H···O hydrogen bonds. The weak intermolecular C—H···π interaction is present in the crystal structure with the C19···Cg = 3.478 (2)Å (Cg is the centroid of the C22 to C27 benzene ring) (Table 1).

Related literature top

For the structures and ferroelectric properties of related compounds, see: Devi & Bhuyan (2004); Fu, Zhang, Cai, Ge et al. (2011); Fu, Zhang, Cai, Zhang, Ge, Xiong & Huang (2011); Fu, Zhang, Cai, Zhang, Ge, Xiong, Huang & Nakamura (2011); Fu et al. (2007, 2008, 2009); Fu & Xiong (2008).

Experimental top

A dry 50 ml flask was charged with benzaldehyde (10 mmol) and naphthalen-2-ol (20 mmol). The mixture was stirred at 373 K for 12 h and then added ethanol (15 ml), after heated under reflux for 1 h, the precipitate was filtrated out and washed with ethanol for 3 times to give the title compound. Colourless crystals suitable for X-ray diffraction were obtained by slow evaporation of a dichloromethane solution.

Refinement top

hydroxy H atoms were placed in chemical sensible positions and refined in a riding mode with Uiso(H) = 1.5Ueq(O). Other H atoms were situated into the idealized positions and treated as riding with C–H = 0.93 Å (aromatic) and 0.98 Å (methine), Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit with the atomic numbering scheme. The displacement ellipsoids were drawn at the 30% probability level.
1,1'-(Phenylmethylene)dinaphthalen-2-ol top
Crystal data top
C27H20O2F(000) = 792
Mr = 376.43Dx = 1.326 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4317 reflections
a = 12.066 (2) Åθ = 3.1–27.5°
b = 8.6178 (17) ŵ = 0.08 mm1
c = 21.386 (6) ÅT = 298 K
β = 122.02 (2)°Block, colourless
V = 1885.4 (7) Å30.10 × 0.03 × 0.03 mm
Z = 4
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
4317 independent reflections
Radiation source: fine-focus sealed tube2997 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD profile fitting scansh = 1515
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.910, Tmax = 1.000l = 2727
19010 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0564P)2 + 0.4682P]
where P = (Fo2 + 2Fc2)/3
4317 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C27H20O2V = 1885.4 (7) Å3
Mr = 376.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.066 (2) ŵ = 0.08 mm1
b = 8.6178 (17) ÅT = 298 K
c = 21.386 (6) Å0.10 × 0.03 × 0.03 mm
β = 122.02 (2)°
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
4317 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2997 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.063
19010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.06Δρmax = 0.40 e Å3
4317 reflectionsΔρmin = 0.42 e Å3
262 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.19967 (17)0.11950 (19)0.93766 (9)0.0305 (4)
C20.30035 (19)0.1805 (2)0.93322 (11)0.0368 (4)
C30.2816 (2)0.2632 (2)0.87169 (12)0.0482 (5)
H30.35310.30200.87130.058*
C40.1591 (2)0.2861 (3)0.81308 (12)0.0514 (6)
H40.14660.34370.77310.062*
C50.0501 (2)0.2236 (2)0.81202 (10)0.0419 (5)
C60.0781 (3)0.2448 (3)0.75021 (12)0.0569 (6)
H60.09030.30330.71050.068*
C70.1830 (2)0.1820 (3)0.74762 (11)0.0568 (6)
H70.26670.19990.70720.068*
C80.1651 (2)0.0898 (3)0.80619 (11)0.0466 (5)
H80.23700.04350.80360.056*
C90.04327 (19)0.0671 (2)0.86700 (10)0.0389 (5)
H90.03400.00490.90500.047*
C100.06952 (18)0.1356 (2)0.87383 (9)0.0327 (4)
C110.22543 (16)0.03527 (19)1.00723 (9)0.0283 (4)
H110.13780.02070.99860.034*
C120.29752 (17)0.1300 (2)1.07956 (9)0.0302 (4)
C130.42859 (17)0.1136 (2)1.13304 (10)0.0354 (4)
C140.4834 (2)0.1812 (2)1.20371 (10)0.0444 (5)
H140.57110.16441.23920.053*
C150.4102 (2)0.2700 (2)1.22052 (11)0.0444 (5)
H150.44730.31081.26780.053*
C160.27814 (19)0.3010 (2)1.16688 (10)0.0361 (4)
C170.2019 (2)0.3980 (2)1.18281 (12)0.0465 (5)
H170.23960.44181.22950.056*
C180.0746 (2)0.4288 (3)1.13131 (12)0.0507 (6)
H180.02540.49181.14290.061*
C190.0184 (2)0.3647 (2)1.06077 (12)0.0437 (5)
H190.06840.38661.02530.052*
C200.08900 (18)0.2701 (2)1.04312 (10)0.0347 (4)
H200.04940.22970.99570.042*
C210.22122 (17)0.23241 (19)1.09552 (9)0.0303 (4)
C220.27635 (16)0.1314 (2)1.01420 (9)0.0294 (4)
C230.28219 (18)0.2027 (2)0.95793 (10)0.0351 (4)
H230.26200.14630.91610.042*
C240.3181 (2)0.3583 (2)0.96341 (12)0.0453 (5)
H240.32040.40500.92490.054*
C250.3501 (2)0.4432 (2)1.02521 (12)0.0484 (5)
H250.37530.54651.02900.058*
C260.3445 (2)0.3740 (2)1.08149 (12)0.0475 (5)
H260.36580.43071.12340.057*
C270.3074 (2)0.2203 (2)1.07578 (10)0.0402 (5)
H270.30310.17521.11400.048*
O10.42620 (13)0.15738 (17)0.99198 (8)0.0499 (4)
H10.46720.13200.96700.075*
O20.51565 (12)0.02732 (16)1.12482 (7)0.0460 (4)
H20.49610.05681.08190.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0414 (10)0.0237 (8)0.0308 (9)0.0014 (7)0.0222 (8)0.0012 (7)
C20.0456 (11)0.0305 (9)0.0414 (11)0.0003 (8)0.0279 (10)0.0019 (8)
C30.0693 (15)0.0397 (12)0.0542 (13)0.0073 (10)0.0454 (13)0.0003 (10)
C40.0827 (17)0.0401 (12)0.0431 (12)0.0011 (11)0.0412 (13)0.0074 (10)
C50.0634 (13)0.0340 (10)0.0317 (10)0.0081 (9)0.0274 (10)0.0015 (8)
C60.0753 (17)0.0580 (15)0.0297 (11)0.0189 (13)0.0226 (12)0.0096 (10)
C70.0533 (14)0.0715 (16)0.0290 (11)0.0184 (12)0.0105 (10)0.0018 (11)
C80.0426 (11)0.0582 (13)0.0333 (11)0.0039 (10)0.0162 (9)0.0108 (10)
C90.0433 (11)0.0429 (11)0.0280 (9)0.0030 (9)0.0173 (9)0.0009 (8)
C100.0443 (11)0.0271 (9)0.0275 (9)0.0066 (8)0.0196 (8)0.0015 (7)
C110.0296 (9)0.0277 (9)0.0277 (9)0.0001 (7)0.0152 (8)0.0000 (7)
C120.0355 (10)0.0264 (9)0.0287 (9)0.0024 (7)0.0170 (8)0.0004 (7)
C130.0334 (10)0.0337 (10)0.0351 (10)0.0006 (8)0.0155 (8)0.0007 (8)
C140.0385 (11)0.0471 (12)0.0332 (10)0.0039 (9)0.0093 (9)0.0028 (9)
C150.0515 (13)0.0429 (12)0.0295 (10)0.0084 (9)0.0152 (10)0.0102 (9)
C160.0487 (11)0.0281 (9)0.0334 (10)0.0058 (8)0.0231 (9)0.0035 (8)
C170.0659 (15)0.0395 (11)0.0441 (12)0.0063 (10)0.0360 (11)0.0115 (9)
C180.0610 (14)0.0445 (12)0.0611 (14)0.0049 (10)0.0421 (13)0.0086 (11)
C190.0437 (11)0.0408 (11)0.0500 (12)0.0047 (9)0.0271 (10)0.0020 (10)
C200.0392 (10)0.0316 (9)0.0333 (10)0.0015 (8)0.0193 (9)0.0012 (8)
C210.0373 (10)0.0252 (9)0.0307 (9)0.0029 (7)0.0196 (8)0.0006 (7)
C220.0288 (9)0.0277 (9)0.0289 (9)0.0015 (7)0.0133 (7)0.0014 (7)
C230.0395 (10)0.0323 (10)0.0331 (9)0.0019 (8)0.0189 (8)0.0029 (8)
C240.0576 (13)0.0359 (11)0.0475 (12)0.0006 (9)0.0315 (11)0.0102 (9)
C250.0534 (13)0.0270 (10)0.0588 (14)0.0034 (9)0.0256 (11)0.0006 (10)
C260.0599 (14)0.0343 (11)0.0427 (12)0.0020 (10)0.0233 (11)0.0090 (9)
C270.0543 (12)0.0340 (10)0.0333 (10)0.0010 (9)0.0239 (10)0.0001 (8)
O10.0423 (8)0.0567 (9)0.0561 (9)0.0003 (7)0.0299 (7)0.0031 (8)
O20.0362 (7)0.0510 (9)0.0452 (8)0.0079 (6)0.0179 (7)0.0002 (7)
Geometric parameters (Å, º) top
C1—C21.373 (3)C14—H140.9300
C1—C101.441 (2)C15—C161.410 (3)
C1—C111.532 (2)C15—H150.9300
C2—O11.379 (2)C16—C171.411 (3)
C2—C31.405 (3)C16—C211.428 (2)
C3—C41.353 (3)C17—C181.360 (3)
C3—H30.9300C17—H170.9300
C4—C51.410 (3)C18—C191.399 (3)
C4—H40.9300C18—H180.9300
C5—C61.416 (3)C19—C201.369 (3)
C5—C101.432 (3)C19—H190.9300
C6—C71.351 (3)C20—C211.418 (3)
C6—H60.9300C20—H200.9300
C7—C81.400 (3)C22—C231.386 (2)
C7—H70.9300C22—C271.392 (2)
C8—C91.365 (3)C23—C241.395 (3)
C8—H80.9300C23—H230.9300
C9—C101.418 (3)C24—C251.375 (3)
C9—H90.9300C24—H240.9300
C11—C221.538 (2)C25—C261.377 (3)
C11—C121.546 (2)C25—H250.9300
C11—H110.9800C26—C271.383 (3)
C12—C131.383 (3)C26—H260.9300
C12—C211.441 (2)C27—H270.9300
C13—O21.372 (2)O1—H10.9272
C13—C141.415 (3)O2—H20.8564
C14—C151.353 (3)
C2—C1—C10117.24 (16)C15—C14—H14119.5
C2—C1—C11121.17 (16)C13—C14—H14119.5
C10—C1—C11121.58 (15)C14—C15—C16120.43 (18)
C1—C2—O1117.96 (17)C14—C15—H15119.8
C1—C2—C3123.37 (19)C16—C15—H15119.8
O1—C2—C3118.66 (17)C15—C16—C17121.06 (18)
C4—C3—C2119.7 (2)C15—C16—C21119.10 (17)
C4—C3—H3120.1C17—C16—C21119.83 (19)
C2—C3—H3120.1C18—C17—C16121.39 (19)
C3—C4—C5120.69 (19)C18—C17—H17119.3
C3—C4—H4119.7C16—C17—H17119.3
C5—C4—H4119.7C17—C18—C19119.35 (19)
C4—C5—C6120.9 (2)C17—C18—H18120.3
C4—C5—C10119.55 (19)C19—C18—H18120.3
C6—C5—C10119.6 (2)C20—C19—C18121.0 (2)
C7—C6—C5121.5 (2)C20—C19—H19119.5
C7—C6—H6119.2C18—C19—H19119.5
C5—C6—H6119.2C19—C20—C21121.51 (18)
C6—C7—C8119.6 (2)C19—C20—H20119.2
C6—C7—H7120.2C21—C20—H20119.2
C8—C7—H7120.2C20—C21—C16116.85 (17)
C9—C8—C7120.7 (2)C20—C21—C12123.08 (16)
C9—C8—H8119.6C16—C21—C12120.08 (17)
C7—C8—H8119.6C23—C22—C27117.70 (17)
C8—C9—C10121.91 (19)C23—C22—C11122.13 (16)
C8—C9—H9119.0C27—C22—C11119.94 (16)
C10—C9—H9119.0C22—C23—C24120.67 (18)
C9—C10—C5116.57 (17)C22—C23—H23119.7
C9—C10—C1124.20 (16)C24—C23—H23119.7
C5—C10—C1119.23 (17)C25—C24—C23120.60 (19)
C1—C11—C22113.67 (14)C25—C24—H24119.7
C1—C11—C12115.99 (14)C23—C24—H24119.7
C22—C11—C12114.36 (14)C24—C25—C26119.39 (19)
C1—C11—H11103.6C24—C25—H25120.3
C22—C11—H11103.6C26—C25—H25120.3
C12—C11—H11103.6C25—C26—C27120.10 (19)
C13—C12—C21117.47 (16)C25—C26—H26120.0
C13—C12—C11124.31 (16)C27—C26—H26120.0
C21—C12—C11117.99 (15)C26—C27—C22121.53 (18)
O2—C13—C12124.56 (17)C26—C27—H27119.2
O2—C13—C14113.82 (16)C22—C27—H27119.2
C12—C13—C14121.56 (18)C2—O1—H1100.1
C15—C14—C13121.02 (18)C13—O2—H2100.5
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C22–C27 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.932.493.335 (2)151
O2—H2···O10.861.852.691 (2)165
C19—H19···Cgii0.932.713.478 (3)140
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC27H20O2
Mr376.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.066 (2), 8.6178 (17), 21.386 (6)
β (°) 122.02 (2)
V3)1885.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.10 × 0.03 × 0.03
Data collection
DiffractometerRigaku Mercury2 (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
19010, 4317, 2997
Rint0.063
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.142, 1.06
No. of reflections4317
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.42

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C22–C27 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.932.493.335 (2)151
O2—H2···O10.861.852.691 (2)165
C19—H19···Cgii0.932.713.478 (3)140
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+2.
 

Acknowledgements

This work was supported by a Start-up Grant of Southeast University, China.

References

First citationDevi, I. & Bhuyan, P. J. (2004). Tetrahedron Lett. 45, 8625–8627.  Web of Science CrossRef CAS Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. P. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011). Adv. Mater. 23, 5658–5662.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G. & Huang, S. P. D. (2011). J. Am. Chem. Soc. 133, 12780–12786.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G., Huang, S. P. D. & Nakamura, T. (2011). Angew. Chem. Int. Ed. 50, 11947–11951.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds