organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o710-o711

Di­methyl 6-bromo-2-methyl-1,2-di­hydro­quinoline-2,4-di­carboxyl­ate

aDepartment of Chemistry, Çankırı Karatekin University, TR-18100, Çankırı, Turkey, bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt/Main, Germany, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 6 February 2012; accepted 8 February 2012; online 17 February 2012)

In the title compound, C14H14BrNO4, the dihydro­pyridine ring adopts a screw-boat conformation. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into inversion R22(10) dimers.

Related literature

For the synthesis of 1,2-dihydro­quinolines, see: Hu et al. (2011[Hu, X.-Y., Zhang, J.-C., Wei, W. & Ji, J.-X. (2011). Tetrahedron Lett. 52, 2903-2905.]); Yadav et al. (2007[Yadav, J. S., Reddy, B. V. S., Premalatha, K. & Murty, M. S. R. (2007). J. Mol. Catal. A Chem. 271, 161-163.], 2008[Yadav, J. S., Reddy, B. V. S., Yadav, N. N., Gupta, M. K. & Sridhar, B. (2008). J. Org. Chem. 73, 6857-6859.]); Waldmann et al. (2008[Waldmann, H., Karunakar, G. V. & Kumar, K. (2008). Org. Lett. 10, 2159-2162.]); Zhang & Ji (2011[Zhang, J.-C. & Ji, J.-X. (2011). ACS Catalysis, 1, 1360-1363.]). For the biological activity of dihydro­quinolines, see: Craig & Pearson (1971[Craig, J. C. & Pearson, P. E. (1971). J. Med. Chem. 14, 1221-1222.]); Muren & Weissman (1971[Muren, J. F. & Weissman, A. (1971). J. Med. Chem. 14, 49-53.]); Hamann et al. (1998[Hamann, L. G., Higuchi, R. I., Zhi, L., Edwards, J. P., Wang, X. N., Marschke, K. B., Kong, J. W., Farmer, L. J. & Jones, T. K. (1998). J. Med. Chem. 41, 623-639.]); He et al. (2003[He, L., Chang, H.-X., Chou, T.-C., Savaraj, N. & Cheng, C.-C. (2003). Eur. J. Med. Chem. 38, 101-107.]); LaMontagne et al. (1989[LaMontagne, M. P., Blumbergs, B. & Smith, D. C. (1989). J. Med. Chem. 32, 1728-1732.]). For related structures, see: Gültekin et al. (2010[Gültekin, Z., Frey, W., Tercan, B. & Hökelek, T. (2010). Acta Cryst. E66, o2891-o2892.], 2011a[Gültekin, Z., Frey, W., Tercan, B. & Hökelek, T. (2011a). Acta Cryst. E67, o672-o673.],b[Gültekin, Z., Frey, W. & Hökelek, T. (2011b). Acta Cryst. E67, o576.], 2012[Gültekin, Z., Bolte, M. & Hökelek, T. (2012). Acta Cryst. E68, o606.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14BrNO4

  • Mr = 340.16

  • Triclinic, [P \overline 1]

  • a = 7.8273 (9) Å

  • b = 10.4827 (11) Å

  • c = 10.5029 (12) Å

  • α = 115.837 (9)°

  • β = 105.655 (9)°

  • γ = 96.889 (8)°

  • V = 718.25 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.87 mm−1

  • T = 173 K

  • 0.33 × 0.32 × 0.22 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.451, Tmax = 0.571

  • 7423 measured reflections

  • 2692 independent reflections

  • 2267 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.153

  • S = 1.21

  • 2692 reflections

  • 189 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.90 (8) 2.12 (8) 3.013 (6) 176 (7)
Symmetry code: (i) -x+1, -y, -z.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,2-Dihydroquinoline derivatives have been considerably important for the preparation of biologically important compounds (Craig & Pearson, 1971; Muren & Weissman, 1971). Many methods have been reported in the literature for the preparation of 1,2-dihydroquinolines (Yadav et al., 2007, 2008). The most convenient method is the condensation of aromatic amines with ketones using a catalytic amount of a Lewis acid or Brønsted acid (Hu et al., 2011; Waldmann et al., 2008; Zhang & Ji, 2011). Dihydroquinolines are also powerful intermediates for the preparation of quinolines and many quinolines display biological effects (Hamann et al., 1998; LaMontagne et al., 1989; He et al., 2003).

The structures of some 1,2-dihydroquinoline derivatives, C16H19NO4 (Gültekin et al., 2010), C14H15NO4 (Gültekin et al., 2011a), C17H21NO7 (Gültekin et al., 2011b) and C16H17NO5 (Gültekin et al., 2012) have also been determined.

In the title compound, (I), (Fig. 1), the ring A (C2–C4/C9/C10/N1) is not planar, but adopting a screw-boat confromation with puckering parameters (Cremer & Pople, 1975) QT = 0.339 (5)Å, ϕ = -162.6(1.5)° and θ = 129.2(1.1)°.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric R22(10) dimers (Bernstein et al., 1995) (Fig. 2).

Related literature top

For the synthesis of 1,2-dihydroquinolines, see: Hu et al. (2011); Yadav et al. (2007, 2008); Waldmann et al. (2008); Zhang & Ji (2011). For the biological activity of dihydroquinolines, see: Craig & Pearson (1971); Muren & Weissman (1971); Hamann et al. (1998); He et al. (2003); LaMontagne et al. (1989). For related structures, see: Gültekin et al. (2010, 2011a,b, 2012). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring-puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was synthesized by the literature method (Waldmann et al., 2008). p-bromo aniline (100 mg, 1 eq) was dissolved in acetonitrile (1.5 ml), and then Bi(OTf)3 (5 mol%, 0.05 eq) and methyl pyruvate (2.2 eq) were added to the mixture. The mixture was heated by microwave irradiation for 7 h until the starting material was completely consumed as monitored by TLC. The resultant residue was directly purified by flash chromatography on silica (EtOAc:Cylohexane 1:2). Recrystallization over pentane and ethyl acetate (70:30) gave a yellow crystalline solid (yield: 81%), Rf 0.5 (2:1 Cyclohexane/EtOAc) m.p. 379–381 K.

Refinement top

Amino H atom was located in a difference map and refined isotropically, the C-bound H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.2 for aromatic and k = 1.5 for methyl H atoms, respectively.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines.
Dimethyl 6-bromo-2-methyl-1,2-dihydroquinoline-2,4-dicarboxylate top
Crystal data top
C14H14BrNO4Z = 2
Mr = 340.16F(000) = 344
Triclinic, P1Dx = 1.573 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8273 (9) ÅCell parameters from 6851 reflections
b = 10.4827 (11) Åθ = 3.5–25.9°
c = 10.5029 (12) ŵ = 2.87 mm1
α = 115.837 (9)°T = 173 K
β = 105.655 (9)°Block, yellow
γ = 96.889 (8)°0.33 × 0.32 × 0.22 mm
V = 718.25 (17) Å3
Data collection top
Stoe IPDS II two-circle
diffractometer
2692 independent reflections
Radiation source: fine-focus sealed tube2267 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 25.6°, θmin = 3.5°
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
h = 99
Tmin = 0.451, Tmax = 0.571k = 1212
7423 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0648P)2 + 1.4243P]
where P = (Fo2 + 2Fc2)/3
S = 1.21(Δ/σ)max < 0.001
2692 reflectionsΔρmax = 0.96 e Å3
189 parametersΔρmin = 0.46 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.038 (5)
Crystal data top
C14H14BrNO4γ = 96.889 (8)°
Mr = 340.16V = 718.25 (17) Å3
Triclinic, P1Z = 2
a = 7.8273 (9) ÅMo Kα radiation
b = 10.4827 (11) ŵ = 2.87 mm1
c = 10.5029 (12) ÅT = 173 K
α = 115.837 (9)°0.33 × 0.32 × 0.22 mm
β = 105.655 (9)°
Data collection top
Stoe IPDS II two-circle
diffractometer
2692 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
2267 reflections with I > 2σ(I)
Tmin = 0.451, Tmax = 0.571Rint = 0.045
7423 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.21Δρmax = 0.96 e Å3
2692 reflectionsΔρmin = 0.46 e Å3
189 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.98733 (9)0.36331 (7)0.80285 (6)0.0521 (3)
O10.3080 (4)0.0758 (4)0.0556 (4)0.0340 (8)
O20.2146 (4)0.2722 (4)0.0660 (4)0.0309 (7)
O30.7138 (6)0.6908 (4)0.6183 (4)0.0453 (9)
O40.6368 (5)0.7295 (4)0.4208 (4)0.0400 (8)
N10.6748 (5)0.2278 (4)0.1501 (4)0.0280 (8)
H10.678 (13)0.138 (5)0.085 (9)0.11 (3)*
C20.5298 (6)0.2890 (5)0.1017 (5)0.0262 (9)
C30.5671 (6)0.4450 (5)0.2227 (5)0.0256 (9)
H30.52450.51160.19500.031*
C40.6599 (6)0.4919 (5)0.3699 (5)0.0249 (9)
C50.8118 (6)0.4208 (5)0.5664 (5)0.0308 (10)
H50.80930.50730.64510.037*
C60.8886 (6)0.3213 (6)0.5976 (5)0.0326 (10)
C70.8965 (7)0.1930 (6)0.4853 (6)0.0368 (11)
H70.95160.12880.50960.044*
C80.8212 (6)0.1596 (5)0.3345 (5)0.0305 (10)
H80.82430.07200.25770.037*
C90.7412 (5)0.2573 (5)0.2986 (5)0.0239 (9)
C100.7378 (6)0.3919 (5)0.4170 (5)0.0237 (9)
C110.5237 (7)0.2779 (6)0.0504 (5)0.0374 (11)
H11A0.50220.17670.12360.056*
H11B0.63930.33480.03690.056*
H11C0.42600.31530.08560.056*
C120.3391 (6)0.1982 (5)0.0735 (5)0.0250 (9)
C130.0293 (6)0.1986 (6)0.0410 (6)0.0375 (11)
H13A0.04410.26720.05600.056*
H13B0.03540.16230.11130.056*
H13C0.02560.11770.06080.056*
C140.6766 (6)0.6451 (5)0.4849 (5)0.0296 (10)
C150.6353 (10)0.8756 (7)0.5235 (8)0.0572 (16)
H15A0.60720.92870.46920.086*
H15B0.75430.92660.60290.086*
H15C0.54340.86860.56680.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0640 (4)0.0637 (5)0.0362 (3)0.0183 (3)0.0110 (3)0.0345 (3)
O10.0334 (17)0.0248 (17)0.0434 (19)0.0079 (14)0.0182 (14)0.0139 (15)
O20.0225 (15)0.0373 (18)0.0417 (18)0.0120 (13)0.0114 (13)0.0257 (15)
O30.060 (2)0.035 (2)0.0338 (19)0.0175 (18)0.0171 (17)0.0102 (16)
O40.054 (2)0.0290 (18)0.050 (2)0.0216 (16)0.0250 (18)0.0240 (16)
N10.0270 (19)0.032 (2)0.0267 (18)0.0135 (16)0.0107 (15)0.0142 (17)
C20.024 (2)0.033 (2)0.026 (2)0.0108 (18)0.0100 (17)0.0169 (19)
C30.022 (2)0.029 (2)0.033 (2)0.0087 (17)0.0116 (17)0.0196 (19)
C40.024 (2)0.027 (2)0.031 (2)0.0083 (17)0.0130 (17)0.0186 (19)
C50.033 (2)0.034 (3)0.029 (2)0.010 (2)0.0124 (18)0.018 (2)
C60.033 (2)0.041 (3)0.031 (2)0.009 (2)0.0105 (19)0.025 (2)
C70.032 (2)0.046 (3)0.048 (3)0.016 (2)0.015 (2)0.035 (3)
C80.029 (2)0.030 (2)0.036 (2)0.0144 (19)0.0129 (19)0.016 (2)
C90.0187 (19)0.030 (2)0.029 (2)0.0077 (17)0.0115 (16)0.0171 (18)
C100.023 (2)0.025 (2)0.028 (2)0.0072 (17)0.0108 (16)0.0157 (18)
C110.037 (3)0.050 (3)0.032 (2)0.014 (2)0.015 (2)0.024 (2)
C120.025 (2)0.030 (2)0.0205 (19)0.0074 (18)0.0099 (16)0.0120 (17)
C130.022 (2)0.047 (3)0.050 (3)0.007 (2)0.011 (2)0.030 (3)
C140.026 (2)0.030 (2)0.038 (3)0.0093 (18)0.0155 (19)0.019 (2)
C150.073 (4)0.034 (3)0.079 (4)0.031 (3)0.040 (4)0.029 (3)
Geometric parameters (Å, º) top
Br1—C61.905 (5)C8—H80.9300
O2—C131.455 (5)C9—C81.395 (6)
O4—C151.442 (7)C10—C51.393 (6)
N1—C21.452 (6)C10—C91.427 (6)
N1—C91.380 (6)C11—H11A0.9600
N1—H10.899 (10)C11—H11B0.9600
C2—C31.499 (6)C11—H11C0.9600
C2—C111.537 (6)C12—O11.197 (6)
C2—C121.548 (6)C12—O21.322 (5)
C3—C41.344 (6)C13—H13A0.9600
C3—H30.9300C13—H13B0.9600
C4—C101.469 (6)C13—H13C0.9600
C4—C141.493 (6)C14—O31.200 (6)
C5—H50.9300C14—O41.344 (6)
C6—C51.378 (7)C15—H15A0.9600
C7—C61.371 (8)C15—H15B0.9600
C7—H70.9300C15—H15C0.9600
C8—C71.393 (7)
C12—O2—C13116.0 (4)N1—C9—C10120.0 (4)
C14—O4—C15114.8 (4)C8—C9—C10119.7 (4)
C2—N1—H1119 (6)C5—C10—C4125.1 (4)
C9—N1—C2120.0 (4)C5—C10—C9118.7 (4)
C9—N1—H1112 (6)C9—C10—C4116.2 (4)
N1—C2—C3109.0 (3)C2—C11—H11A109.5
N1—C2—C11108.4 (4)C2—C11—H11B109.5
N1—C2—C12110.7 (4)C2—C11—H11C109.5
C3—C2—C11112.4 (4)H11A—C11—H11B109.5
C3—C2—C12109.3 (4)H11A—C11—H11C109.5
C11—C2—C12107.0 (3)H11B—C11—H11C109.5
C2—C3—H3118.8O1—C12—O2124.9 (4)
C4—C3—C2122.3 (4)O1—C12—C2124.3 (4)
C4—C3—H3118.8O2—C12—C2110.7 (4)
C3—C4—C10120.3 (4)O2—C13—H13A109.5
C3—C4—C14119.0 (4)O2—C13—H13B109.5
C10—C4—C14120.7 (4)O2—C13—H13C109.5
C6—C5—C10120.0 (4)H13A—C13—H13B109.5
C6—C5—H5120.0H13A—C13—H13C109.5
C10—C5—H5120.0H13B—C13—H13C109.5
C5—C6—Br1119.1 (4)O3—C14—O4121.9 (5)
C7—C6—Br1119.0 (4)O3—C14—C4126.2 (4)
C7—C6—C5122.0 (4)O4—C14—C4111.8 (4)
C6—C7—C8119.5 (4)O4—C15—H15A109.5
C6—C7—H7120.2O4—C15—H15B109.5
C8—C7—H7120.2O4—C15—H15C109.5
C7—C8—C9120.1 (4)H15A—C15—H15B109.5
C7—C8—H8120.0H15A—C15—H15C109.5
C9—C8—H8120.0H15B—C15—H15C109.5
N1—C9—C8120.1 (4)
C9—N1—C2—C340.9 (5)C3—C4—C14—O416.6 (6)
C9—N1—C2—C11163.5 (4)C10—C4—C14—O317.1 (7)
C9—N1—C2—C1279.4 (5)C10—C4—C14—O4165.6 (4)
C2—N1—C9—C8154.6 (4)Br1—C6—C5—C10179.6 (3)
C2—N1—C9—C1029.0 (6)C7—C6—C5—C100.5 (7)
N1—C2—C3—C428.2 (6)C8—C7—C6—Br1178.6 (4)
C11—C2—C3—C4148.4 (4)C8—C7—C6—C51.5 (7)
C12—C2—C3—C492.9 (5)C9—C8—C7—C61.0 (7)
N1—C2—C12—O117.8 (6)N1—C9—C8—C7176.8 (4)
N1—C2—C12—O2164.7 (3)C10—C9—C8—C70.4 (7)
C3—C2—C12—O1137.9 (4)C4—C10—C5—C6177.1 (4)
C3—C2—C12—O244.6 (4)C9—C10—C5—C60.9 (6)
C11—C2—C12—O1100.1 (5)C4—C10—C9—N10.4 (6)
C11—C2—C12—O277.4 (4)C4—C10—C9—C8176.9 (4)
C2—C3—C4—C103.3 (6)C5—C10—C9—N1177.8 (4)
C2—C3—C4—C14174.5 (4)C5—C10—C9—C81.3 (6)
C3—C4—C10—C5169.9 (4)O1—C12—O2—C133.0 (6)
C3—C4—C10—C912.0 (6)C2—C12—O2—C13179.5 (4)
C14—C4—C10—C57.9 (7)O3—C14—O4—C152.4 (7)
C14—C4—C10—C9170.2 (4)C4—C14—O4—C15175.1 (4)
C3—C4—C14—O3160.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.90 (8)2.12 (8)3.013 (6)176 (7)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H14BrNO4
Mr340.16
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.8273 (9), 10.4827 (11), 10.5029 (12)
α, β, γ (°)115.837 (9), 105.655 (9), 96.889 (8)
V3)718.25 (17)
Z2
Radiation typeMo Kα
µ (mm1)2.87
Crystal size (mm)0.33 × 0.32 × 0.22
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 2009; Blessing, 1995)
Tmin, Tmax0.451, 0.571
No. of measured, independent and
observed [I > 2σ(I)] reflections
7423, 2692, 2267
Rint0.045
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.153, 1.21
No. of reflections2692
No. of parameters189
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.96, 0.46

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.90 (8)2.12 (8)3.013 (6)176 (7)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The title compound was synthesized at RWTH Aachen University. The authors thank Professor Magnus Rueping of RWTH Aachen University, Germany, for helpful discussions.

References

First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCraig, J. C. & Pearson, P. E. (1971). J. Med. Chem. 14, 1221–1222.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGültekin, Z., Bolte, M. & Hökelek, T. (2012). Acta Cryst. E68, o606.  CSD CrossRef IUCr Journals Google Scholar
First citationGültekin, Z., Frey, W. & Hökelek, T. (2011b). Acta Cryst. E67, o576.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGültekin, Z., Frey, W., Tercan, B. & Hökelek, T. (2010). Acta Cryst. E66, o2891–o2892.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGültekin, Z., Frey, W., Tercan, B. & Hökelek, T. (2011a). Acta Cryst. E67, o672–o673.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHamann, L. G., Higuchi, R. I., Zhi, L., Edwards, J. P., Wang, X. N., Marschke, K. B., Kong, J. W., Farmer, L. J. & Jones, T. K. (1998). J. Med. Chem. 41, 623–639.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHe, L., Chang, H.-X., Chou, T.-C., Savaraj, N. & Cheng, C.-C. (2003). Eur. J. Med. Chem. 38, 101–107.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHu, X.-Y., Zhang, J.-C., Wei, W. & Ji, J.-X. (2011). Tetrahedron Lett. 52, 2903–2905.  Web of Science CrossRef CAS Google Scholar
First citationLaMontagne, M. P., Blumbergs, B. & Smith, D. C. (1989). J. Med. Chem. 32, 1728–1732.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMuren, J. F. & Weissman, A. (1971). J. Med. Chem. 14, 49–53.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWaldmann, H., Karunakar, G. V. & Kumar, K. (2008). Org. Lett. 10, 2159–2162.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYadav, J. S., Reddy, B. V. S., Premalatha, K. & Murty, M. S. R. (2007). J. Mol. Catal. A Chem. 271, 161–163.  Web of Science CrossRef CAS Google Scholar
First citationYadav, J. S., Reddy, B. V. S., Yadav, N. N., Gupta, M. K. & Sridhar, B. (2008). J. Org. Chem. 73, 6857–6859.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, J.-C. & Ji, J.-X. (2011). ACS Catalysis, 1, 1360–1363.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o710-o711
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds