organic compounds
4-Oxo-2,4-diphenylbutanenitrile
aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, cDepartment of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt, dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and e Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com
The title molecule, C16H13NO, is twisted, the dihedral angle between the terminal phenyl rings being 68.40 (6)°. In the crystal, C—H⋯O and C—H⋯N interactions lead to supramolecular layers in the bc plane.
Related literature
For background to the synthetic applications of 2,4-diaryl-4-oxo-butanenitriles, see: Coudert et al. (1990, 1988); Iida et al. (2007). For the preparation of the title compound, see Coudert et al. (1990). For the structure of the methoxy derivative, see: Abdel-Aziz et al. (2012).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812006137/xu5469sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812006137/xu5469Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812006137/xu5469Isup3.cml
Acetone cyanohydrin (0.045 mol) and 10% aqueous sodium carbonate (0.0015 mol and 1.5 ml water) were added to solution of benzalacetophenone (0.015 mol) in ethanol (50 ml). The mixture was heated at reflux temperature for 4 h. After cooling, the product which separated out was filtered off and recrystallized from methanol.
Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 1.00 Å, Uiso(H) = 1.2Ueq(C)] and were included in the
in the riding model approximation.Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).C16H13NO | F(000) = 496 |
Mr = 235.27 | Dx = 1.279 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.5418 Å |
Hall symbol: -P 2ybc | Cell parameters from 2233 reflections |
a = 14.2158 (3) Å | θ = 3.2–76.0° |
b = 8.9244 (2) Å | µ = 0.63 mm−1 |
c = 9.7553 (2) Å | T = 100 K |
β = 99.217 (2)° | Prism, colourless |
V = 1221.65 (5) Å3 | 0.30 × 0.30 × 0.15 mm |
Z = 4 |
Agilent SuperNova Dual diffractometer with an Atlas detector | 2496 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 2187 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.016 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 76.2°, θmin = 3.2° |
ω scan | h = −17→17 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −11→6 |
Tmin = 0.752, Tmax = 1.000 | l = −11→12 |
4625 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.048P)2 + 0.3439P] where P = (Fo2 + 2Fc2)/3 |
2496 reflections | (Δ/σ)max < 0.001 |
163 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C16H13NO | V = 1221.65 (5) Å3 |
Mr = 235.27 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 14.2158 (3) Å | µ = 0.63 mm−1 |
b = 8.9244 (2) Å | T = 100 K |
c = 9.7553 (2) Å | 0.30 × 0.30 × 0.15 mm |
β = 99.217 (2)° |
Agilent SuperNova Dual diffractometer with an Atlas detector | 2496 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 2187 reflections with I > 2σ(I) |
Tmin = 0.752, Tmax = 1.000 | Rint = 0.016 |
4625 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.22 e Å−3 |
2496 reflections | Δρmin = −0.20 e Å−3 |
163 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.36576 (6) | 0.21438 (10) | 0.43914 (9) | 0.0285 (2) | |
N1 | 0.17432 (7) | 0.10500 (12) | 0.59790 (12) | 0.0279 (2) | |
C1 | 0.49902 (8) | 0.30995 (13) | 0.59134 (12) | 0.0208 (2) | |
C2 | 0.53560 (8) | 0.42071 (14) | 0.68608 (12) | 0.0247 (3) | |
H2 | 0.4947 | 0.4960 | 0.7124 | 0.030* | |
C3 | 0.63208 (9) | 0.42086 (16) | 0.74205 (13) | 0.0298 (3) | |
H3 | 0.6570 | 0.4966 | 0.8062 | 0.036* | |
C4 | 0.69199 (8) | 0.31074 (16) | 0.70442 (13) | 0.0299 (3) | |
H4 | 0.7575 | 0.3102 | 0.7441 | 0.036* | |
C5 | 0.65640 (9) | 0.20143 (15) | 0.60905 (14) | 0.0297 (3) | |
H5 | 0.6976 | 0.1268 | 0.5826 | 0.036* | |
C6 | 0.56030 (9) | 0.20125 (14) | 0.55228 (13) | 0.0252 (3) | |
H6 | 0.5361 | 0.1267 | 0.4865 | 0.030* | |
C7 | 0.39562 (8) | 0.30324 (13) | 0.53106 (12) | 0.0205 (2) | |
C8 | 0.32829 (7) | 0.40714 (13) | 0.59087 (12) | 0.0201 (2) | |
H8 | 0.3436 | 0.5120 | 0.5698 | 0.024* | |
H8B | 0.3386 | 0.3957 | 0.6931 | 0.024* | |
C9 | 0.22257 (7) | 0.37701 (13) | 0.53382 (12) | 0.0198 (2) | |
H9 | 0.2119 | 0.3901 | 0.4307 | 0.024* | |
C10 | 0.19687 (8) | 0.22196 (13) | 0.56679 (12) | 0.0211 (2) | |
C11 | 0.15783 (7) | 0.48444 (12) | 0.59617 (12) | 0.0187 (2) | |
C12 | 0.11047 (8) | 0.59901 (13) | 0.51696 (12) | 0.0218 (2) | |
H12 | 0.1195 | 0.6126 | 0.4233 | 0.026* | |
C13 | 0.04974 (8) | 0.69400 (13) | 0.57491 (13) | 0.0232 (3) | |
H13 | 0.0177 | 0.7726 | 0.5207 | 0.028* | |
C14 | 0.03583 (8) | 0.67459 (13) | 0.71113 (13) | 0.0224 (2) | |
H14 | −0.0067 | 0.7384 | 0.7496 | 0.027* | |
C15 | 0.08427 (8) | 0.56136 (13) | 0.79140 (12) | 0.0234 (2) | |
H15 | 0.0755 | 0.5483 | 0.8852 | 0.028* | |
C16 | 0.14544 (8) | 0.46762 (12) | 0.73418 (12) | 0.0211 (2) | |
H16 | 0.1792 | 0.3913 | 0.7895 | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0216 (4) | 0.0328 (5) | 0.0314 (5) | −0.0005 (4) | 0.0048 (3) | −0.0109 (4) |
N1 | 0.0227 (5) | 0.0233 (5) | 0.0370 (6) | 0.0003 (4) | 0.0031 (4) | −0.0017 (4) |
C1 | 0.0179 (5) | 0.0224 (5) | 0.0228 (5) | 0.0004 (4) | 0.0057 (4) | 0.0020 (4) |
C2 | 0.0196 (5) | 0.0287 (6) | 0.0265 (6) | −0.0012 (5) | 0.0058 (4) | −0.0036 (5) |
C3 | 0.0223 (6) | 0.0390 (7) | 0.0281 (6) | −0.0062 (5) | 0.0038 (5) | −0.0029 (6) |
C4 | 0.0165 (5) | 0.0441 (8) | 0.0290 (6) | −0.0001 (5) | 0.0032 (5) | 0.0087 (6) |
C5 | 0.0217 (6) | 0.0319 (7) | 0.0365 (7) | 0.0067 (5) | 0.0081 (5) | 0.0053 (5) |
C6 | 0.0233 (6) | 0.0239 (6) | 0.0294 (6) | 0.0020 (5) | 0.0071 (5) | 0.0007 (5) |
C7 | 0.0187 (5) | 0.0212 (5) | 0.0223 (5) | −0.0007 (4) | 0.0052 (4) | 0.0003 (4) |
C8 | 0.0155 (5) | 0.0214 (5) | 0.0233 (5) | −0.0004 (4) | 0.0032 (4) | −0.0014 (4) |
C9 | 0.0163 (5) | 0.0210 (5) | 0.0222 (5) | 0.0011 (4) | 0.0030 (4) | −0.0002 (4) |
C10 | 0.0145 (5) | 0.0231 (6) | 0.0250 (5) | 0.0026 (4) | 0.0012 (4) | −0.0036 (5) |
C11 | 0.0136 (5) | 0.0177 (5) | 0.0248 (5) | −0.0015 (4) | 0.0029 (4) | −0.0007 (4) |
C12 | 0.0171 (5) | 0.0243 (6) | 0.0241 (6) | −0.0001 (4) | 0.0042 (4) | 0.0043 (5) |
C13 | 0.0167 (5) | 0.0208 (5) | 0.0317 (6) | 0.0019 (4) | 0.0023 (4) | 0.0047 (5) |
C14 | 0.0175 (5) | 0.0193 (5) | 0.0308 (6) | 0.0011 (4) | 0.0054 (4) | −0.0021 (5) |
C15 | 0.0239 (6) | 0.0220 (5) | 0.0250 (6) | 0.0006 (5) | 0.0060 (4) | −0.0002 (5) |
C16 | 0.0207 (5) | 0.0180 (5) | 0.0243 (6) | 0.0007 (4) | 0.0027 (4) | 0.0012 (4) |
O1—C7 | 1.2212 (14) | C8—H8 | 0.9900 |
N1—C10 | 1.1470 (16) | C8—H8B | 0.9900 |
C1—C2 | 1.3956 (17) | C9—C10 | 1.4796 (16) |
C1—C6 | 1.3970 (16) | C9—C11 | 1.5217 (14) |
C1—C7 | 1.4944 (15) | C9—H9 | 1.0000 |
C2—C3 | 1.3926 (17) | C11—C12 | 1.3889 (16) |
C2—H2 | 0.9500 | C11—C16 | 1.3936 (16) |
C3—C4 | 1.3879 (19) | C12—C13 | 1.3929 (16) |
C3—H3 | 0.9500 | C12—H12 | 0.9500 |
C4—C5 | 1.386 (2) | C13—C14 | 1.3853 (17) |
C4—H4 | 0.9500 | C13—H13 | 0.9500 |
C5—C6 | 1.3894 (17) | C14—C15 | 1.3914 (16) |
C5—H5 | 0.9500 | C14—H14 | 0.9500 |
C6—H6 | 0.9500 | C15—C16 | 1.3868 (16) |
C7—C8 | 1.5151 (15) | C15—H15 | 0.9500 |
C8—C9 | 1.5403 (14) | C16—H16 | 0.9500 |
C2—C1—C6 | 119.34 (11) | H8—C8—H8B | 107.7 |
C2—C1—C7 | 121.85 (10) | C10—C9—C11 | 108.43 (9) |
C6—C1—C7 | 118.81 (11) | C10—C9—C8 | 110.20 (9) |
C3—C2—C1 | 119.96 (11) | C11—C9—C8 | 111.29 (9) |
C3—C2—H2 | 120.0 | C10—C9—H9 | 109.0 |
C1—C2—H2 | 120.0 | C11—C9—H9 | 109.0 |
C4—C3—C2 | 120.21 (12) | C8—C9—H9 | 109.0 |
C4—C3—H3 | 119.9 | N1—C10—C9 | 176.20 (12) |
C2—C3—H3 | 119.9 | C12—C11—C16 | 119.46 (10) |
C3—C4—C5 | 120.15 (11) | C12—C11—C9 | 120.78 (10) |
C3—C4—H4 | 119.9 | C16—C11—C9 | 119.76 (10) |
C5—C4—H4 | 119.9 | C11—C12—C13 | 119.93 (11) |
C4—C5—C6 | 119.88 (12) | C11—C12—H12 | 120.0 |
C4—C5—H5 | 120.1 | C13—C12—H12 | 120.0 |
C6—C5—H5 | 120.1 | C14—C13—C12 | 120.41 (11) |
C5—C6—C1 | 120.44 (12) | C14—C13—H13 | 119.8 |
C5—C6—H6 | 119.8 | C12—C13—H13 | 119.8 |
C1—C6—H6 | 119.8 | C13—C14—C15 | 119.79 (11) |
O1—C7—C1 | 121.29 (10) | C13—C14—H14 | 120.1 |
O1—C7—C8 | 120.89 (10) | C15—C14—H14 | 120.1 |
C1—C7—C8 | 117.79 (10) | C16—C15—C14 | 119.82 (11) |
C7—C8—C9 | 113.21 (9) | C16—C15—H15 | 120.1 |
C7—C8—H8 | 108.9 | C14—C15—H15 | 120.1 |
C9—C8—H8 | 108.9 | C15—C16—C11 | 120.55 (10) |
C7—C8—H8B | 108.9 | C15—C16—H16 | 119.7 |
C9—C8—H8B | 108.9 | C11—C16—H16 | 119.7 |
C6—C1—C2—C3 | −0.85 (18) | C7—C8—C9—C10 | 59.99 (12) |
C7—C1—C2—C3 | 178.58 (11) | C7—C8—C9—C11 | −179.69 (9) |
C1—C2—C3—C4 | −0.31 (19) | C10—C9—C11—C12 | −130.84 (11) |
C2—C3—C4—C5 | 1.11 (19) | C8—C9—C11—C12 | 107.79 (12) |
C3—C4—C5—C6 | −0.74 (19) | C10—C9—C11—C16 | 48.89 (13) |
C4—C5—C6—C1 | −0.44 (19) | C8—C9—C11—C16 | −72.47 (13) |
C2—C1—C6—C5 | 1.23 (18) | C16—C11—C12—C13 | −1.27 (16) |
C7—C1—C6—C5 | −178.23 (11) | C9—C11—C12—C13 | 178.47 (10) |
C2—C1—C7—O1 | 173.35 (11) | C11—C12—C13—C14 | −0.31 (17) |
C6—C1—C7—O1 | −7.21 (17) | C12—C13—C14—C15 | 1.28 (17) |
C2—C1—C7—C8 | −8.53 (16) | C13—C14—C15—C16 | −0.67 (17) |
C6—C1—C7—C8 | 170.91 (10) | C14—C15—C16—C11 | −0.91 (17) |
O1—C7—C8—C9 | 5.29 (15) | C12—C11—C16—C15 | 1.88 (17) |
C1—C7—C8—C9 | −172.83 (9) | C9—C11—C16—C15 | −177.85 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···N1i | 0.95 | 2.62 | 3.3669 (17) | 136 |
C8—H8b···O1ii | 0.99 | 2.56 | 3.5246 (14) | 163 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C16H13NO |
Mr | 235.27 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 14.2158 (3), 8.9244 (2), 9.7553 (2) |
β (°) | 99.217 (2) |
V (Å3) | 1221.65 (5) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.63 |
Crystal size (mm) | 0.30 × 0.30 × 0.15 |
Data collection | |
Diffractometer | Agilent SuperNova Dual diffractometer with an Atlas detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.752, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4625, 2496, 2187 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.630 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.097, 1.02 |
No. of reflections | 2496 |
No. of parameters | 163 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.20 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···N1i | 0.95 | 2.62 | 3.3669 (17) | 136 |
C8—H8b···O1ii | 0.99 | 2.56 | 3.5246 (14) | 163 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x, −y+1/2, z+1/2. |
Footnotes
‡Additional correspondence author, e-mail: alaa_moenes@yahoo.com.
Acknowledgements
This work was supported by the Research Center of Pharmacy, King Saud University, Riyadh, Saudi Arabia. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM·C/HIR/MOHE/SC/12).
References
Abdel-Aziz, A. A.-M., El-Azab, A. S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o737. CSD CrossRef IUCr Journals Google Scholar
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Coudert, P., Couquelet, J. & Tronche, P. (1988). J. Heterocycl. Chem. 25, 799–802. CrossRef CAS Google Scholar
Coudert, P., Rubat, C., Couquelet, J. & Tronche, P. (1990). J. Pharm. Belg. 45, 191—195. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Iida, H., Moromizato, T., Hamana, H. & Matsumoto, K. (2007). Tetrahedron Lett. 48, 2037–2039. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2,4-Diaryl-4-oxo-butanenitriles constitute an important class of difunctional intermediates for both the synthesis of biologically active heterocycles, such as pyridazine derivatives, and as a source ketone (Coudert et al., 1990; Coudert et al., 1988; Iida et al., 2007). Herein, the crystal structure of a 2,4-diaryl-4-oxo-butanenitrile derivative, 2,4-diphenyl-4-oxo-butanenitrile (I), is described. This compound has been prepared previously (Coudert et al., 1990) and the structure of the methoxy derivative is known (Abdel-Aziz et al., 2012).
The molecule of (I), Fig. 1, is twisted as seen in the value of the dihedral angle between the terminal benzene rings of 68.40 (6)°. The twist occurs between the C9—C11 bond [the C8—C9—C11—C12 torsion angle is 107.79 (12)°] with the other part of the molecule being relatively planar [the C7—C8—C9—C11 torsion angle is -179.69 (9)°].
Supramolecular layers in the bc plane are formed in the crystal packing via C—H···O and C—H···N interactions, Fig. 2 and Table 1. These stack along the a axis with no specific intermolecular interactions between the layers, Fig. 3.