organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Oxo-2,4-di­phenyl­butane­nitrile

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, cDepartment of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt, dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and e Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 February 2012; accepted 12 February 2012; online 17 February 2012)

The title mol­ecule, C16H13NO, is twisted, the dihedral angle between the terminal phenyl rings being 68.40 (6)°. In the crystal, C—H⋯O and C—H⋯N inter­actions lead to supra­molecular layers in the bc plane.

Related literature

For background to the synthetic applications of 2,4-diaryl-4-oxo-butane­nitriles, see: Coudert et al. (1990[Coudert, P., Rubat, C., Couquelet, J. & Tronche, P. (1990). J. Pharm. Belg. 45, 191—195.], 1988[Coudert, P., Couquelet, J. & Tronche, P. (1988). J. Heterocycl. Chem. 25, 799-802.]); Iida et al. (2007[Iida, H., Moromizato, T., Hamana, H. & Matsumoto, K. (2007). Tetrahedron Lett. 48, 2037-2039.]). For the preparation of the title compound, see Coudert et al. (1990[Coudert, P., Rubat, C., Couquelet, J. & Tronche, P. (1990). J. Pharm. Belg. 45, 191—195.]). For the structure of the meth­oxy derivative, see: Abdel-Aziz et al. (2012[Abdel-Aziz, A. A.-M., El-Azab, A. S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o737.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO

  • Mr = 235.27

  • Monoclinic, P 21 /c

  • a = 14.2158 (3) Å

  • b = 8.9244 (2) Å

  • c = 9.7553 (2) Å

  • β = 99.217 (2)°

  • V = 1221.65 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.63 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.752, Tmax = 1.000

  • 4625 measured reflections

  • 2496 independent reflections

  • 2187 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.097

  • S = 1.02

  • 2496 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N1i 0.95 2.62 3.3669 (17) 136
C8—H8b⋯O1ii 0.99 2.56 3.5246 (14) 163
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

2,4-Diaryl-4-oxo-butanenitriles constitute an important class of difunctional intermediates for both the synthesis of biologically active heterocycles, such as pyridazine derivatives, and as a source ketone (Coudert et al., 1990; Coudert et al., 1988; Iida et al., 2007). Herein, the crystal structure of a 2,4-diaryl-4-oxo-butanenitrile derivative, 2,4-diphenyl-4-oxo-butanenitrile (I), is described. This compound has been prepared previously (Coudert et al., 1990) and the structure of the methoxy derivative is known (Abdel-Aziz et al., 2012).

The molecule of (I), Fig. 1, is twisted as seen in the value of the dihedral angle between the terminal benzene rings of 68.40 (6)°. The twist occurs between the C9—C11 bond [the C8—C9—C11—C12 torsion angle is 107.79 (12)°] with the other part of the molecule being relatively planar [the C7—C8—C9—C11 torsion angle is -179.69 (9)°].

Supramolecular layers in the bc plane are formed in the crystal packing via C—H···O and C—H···N interactions, Fig. 2 and Table 1. These stack along the a axis with no specific intermolecular interactions between the layers, Fig. 3.

Related literature top

For background to the synthetic applications of 2,4-diaryl-4-oxo-butanenitriles, see: Coudert et al. (1990, 1988); Iida et al. (2007). For the preparation of the title compound, see Coudert et al. (1990). For the structure of the methoxy derivative, see: Abdel-Aziz et al. (2012).

Experimental top

Acetone cyanohydrin (0.045 mol) and 10% aqueous sodium carbonate (0.0015 mol and 1.5 ml water) were added to solution of benzalacetophenone (0.015 mol) in ethanol (50 ml). The mixture was heated at reflux temperature for 4 h. After cooling, the product which separated out was filtered off and recrystallized from methanol.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 1.00 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular in the bc plane in (I). The C—H···O and C—H···N interactions are shown as orange and blue dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the c axis of the unit-cell contents for (I). The C—H···O and C—H···N interactions are shown as orange and blue dashed lines, respectively.
4-Oxo-2,4-diphenylbutanenitrile top
Crystal data top
C16H13NOF(000) = 496
Mr = 235.27Dx = 1.279 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ybcCell parameters from 2233 reflections
a = 14.2158 (3) Åθ = 3.2–76.0°
b = 8.9244 (2) ŵ = 0.63 mm1
c = 9.7553 (2) ÅT = 100 K
β = 99.217 (2)°Prism, colourless
V = 1221.65 (5) Å30.30 × 0.30 × 0.15 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2496 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2187 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.016
Detector resolution: 10.4041 pixels mm-1θmax = 76.2°, θmin = 3.2°
ω scanh = 1717
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 116
Tmin = 0.752, Tmax = 1.000l = 1112
4625 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.048P)2 + 0.3439P]
where P = (Fo2 + 2Fc2)/3
2496 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C16H13NOV = 1221.65 (5) Å3
Mr = 235.27Z = 4
Monoclinic, P21/cCu Kα radiation
a = 14.2158 (3) ŵ = 0.63 mm1
b = 8.9244 (2) ÅT = 100 K
c = 9.7553 (2) Å0.30 × 0.30 × 0.15 mm
β = 99.217 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2496 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2187 reflections with I > 2σ(I)
Tmin = 0.752, Tmax = 1.000Rint = 0.016
4625 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.02Δρmax = 0.22 e Å3
2496 reflectionsΔρmin = 0.20 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36576 (6)0.21438 (10)0.43914 (9)0.0285 (2)
N10.17432 (7)0.10500 (12)0.59790 (12)0.0279 (2)
C10.49902 (8)0.30995 (13)0.59134 (12)0.0208 (2)
C20.53560 (8)0.42071 (14)0.68608 (12)0.0247 (3)
H20.49470.49600.71240.030*
C30.63208 (9)0.42086 (16)0.74205 (13)0.0298 (3)
H30.65700.49660.80620.036*
C40.69199 (8)0.31074 (16)0.70442 (13)0.0299 (3)
H40.75750.31020.74410.036*
C50.65640 (9)0.20143 (15)0.60905 (14)0.0297 (3)
H50.69760.12680.58260.036*
C60.56030 (9)0.20125 (14)0.55228 (13)0.0252 (3)
H60.53610.12670.48650.030*
C70.39562 (8)0.30324 (13)0.53106 (12)0.0205 (2)
C80.32829 (7)0.40714 (13)0.59087 (12)0.0201 (2)
H80.34360.51200.56980.024*
H8B0.33860.39570.69310.024*
C90.22257 (7)0.37701 (13)0.53382 (12)0.0198 (2)
H90.21190.39010.43070.024*
C100.19687 (8)0.22196 (13)0.56679 (12)0.0211 (2)
C110.15783 (7)0.48444 (12)0.59617 (12)0.0187 (2)
C120.11047 (8)0.59901 (13)0.51696 (12)0.0218 (2)
H120.11950.61260.42330.026*
C130.04974 (8)0.69400 (13)0.57491 (13)0.0232 (3)
H130.01770.77260.52070.028*
C140.03583 (8)0.67459 (13)0.71113 (13)0.0224 (2)
H140.00670.73840.74960.027*
C150.08427 (8)0.56136 (13)0.79140 (12)0.0234 (2)
H150.07550.54830.88520.028*
C160.14544 (8)0.46762 (12)0.73418 (12)0.0211 (2)
H160.17920.39130.78950.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0216 (4)0.0328 (5)0.0314 (5)0.0005 (4)0.0048 (3)0.0109 (4)
N10.0227 (5)0.0233 (5)0.0370 (6)0.0003 (4)0.0031 (4)0.0017 (4)
C10.0179 (5)0.0224 (5)0.0228 (5)0.0004 (4)0.0057 (4)0.0020 (4)
C20.0196 (5)0.0287 (6)0.0265 (6)0.0012 (5)0.0058 (4)0.0036 (5)
C30.0223 (6)0.0390 (7)0.0281 (6)0.0062 (5)0.0038 (5)0.0029 (6)
C40.0165 (5)0.0441 (8)0.0290 (6)0.0001 (5)0.0032 (5)0.0087 (6)
C50.0217 (6)0.0319 (7)0.0365 (7)0.0067 (5)0.0081 (5)0.0053 (5)
C60.0233 (6)0.0239 (6)0.0294 (6)0.0020 (5)0.0071 (5)0.0007 (5)
C70.0187 (5)0.0212 (5)0.0223 (5)0.0007 (4)0.0052 (4)0.0003 (4)
C80.0155 (5)0.0214 (5)0.0233 (5)0.0004 (4)0.0032 (4)0.0014 (4)
C90.0163 (5)0.0210 (5)0.0222 (5)0.0011 (4)0.0030 (4)0.0002 (4)
C100.0145 (5)0.0231 (6)0.0250 (5)0.0026 (4)0.0012 (4)0.0036 (5)
C110.0136 (5)0.0177 (5)0.0248 (5)0.0015 (4)0.0029 (4)0.0007 (4)
C120.0171 (5)0.0243 (6)0.0241 (6)0.0001 (4)0.0042 (4)0.0043 (5)
C130.0167 (5)0.0208 (5)0.0317 (6)0.0019 (4)0.0023 (4)0.0047 (5)
C140.0175 (5)0.0193 (5)0.0308 (6)0.0011 (4)0.0054 (4)0.0021 (5)
C150.0239 (6)0.0220 (5)0.0250 (6)0.0006 (5)0.0060 (4)0.0002 (5)
C160.0207 (5)0.0180 (5)0.0243 (6)0.0007 (4)0.0027 (4)0.0012 (4)
Geometric parameters (Å, º) top
O1—C71.2212 (14)C8—H80.9900
N1—C101.1470 (16)C8—H8B0.9900
C1—C21.3956 (17)C9—C101.4796 (16)
C1—C61.3970 (16)C9—C111.5217 (14)
C1—C71.4944 (15)C9—H91.0000
C2—C31.3926 (17)C11—C121.3889 (16)
C2—H20.9500C11—C161.3936 (16)
C3—C41.3879 (19)C12—C131.3929 (16)
C3—H30.9500C12—H120.9500
C4—C51.386 (2)C13—C141.3853 (17)
C4—H40.9500C13—H130.9500
C5—C61.3894 (17)C14—C151.3914 (16)
C5—H50.9500C14—H140.9500
C6—H60.9500C15—C161.3868 (16)
C7—C81.5151 (15)C15—H150.9500
C8—C91.5403 (14)C16—H160.9500
C2—C1—C6119.34 (11)H8—C8—H8B107.7
C2—C1—C7121.85 (10)C10—C9—C11108.43 (9)
C6—C1—C7118.81 (11)C10—C9—C8110.20 (9)
C3—C2—C1119.96 (11)C11—C9—C8111.29 (9)
C3—C2—H2120.0C10—C9—H9109.0
C1—C2—H2120.0C11—C9—H9109.0
C4—C3—C2120.21 (12)C8—C9—H9109.0
C4—C3—H3119.9N1—C10—C9176.20 (12)
C2—C3—H3119.9C12—C11—C16119.46 (10)
C3—C4—C5120.15 (11)C12—C11—C9120.78 (10)
C3—C4—H4119.9C16—C11—C9119.76 (10)
C5—C4—H4119.9C11—C12—C13119.93 (11)
C4—C5—C6119.88 (12)C11—C12—H12120.0
C4—C5—H5120.1C13—C12—H12120.0
C6—C5—H5120.1C14—C13—C12120.41 (11)
C5—C6—C1120.44 (12)C14—C13—H13119.8
C5—C6—H6119.8C12—C13—H13119.8
C1—C6—H6119.8C13—C14—C15119.79 (11)
O1—C7—C1121.29 (10)C13—C14—H14120.1
O1—C7—C8120.89 (10)C15—C14—H14120.1
C1—C7—C8117.79 (10)C16—C15—C14119.82 (11)
C7—C8—C9113.21 (9)C16—C15—H15120.1
C7—C8—H8108.9C14—C15—H15120.1
C9—C8—H8108.9C15—C16—C11120.55 (10)
C7—C8—H8B108.9C15—C16—H16119.7
C9—C8—H8B108.9C11—C16—H16119.7
C6—C1—C2—C30.85 (18)C7—C8—C9—C1059.99 (12)
C7—C1—C2—C3178.58 (11)C7—C8—C9—C11179.69 (9)
C1—C2—C3—C40.31 (19)C10—C9—C11—C12130.84 (11)
C2—C3—C4—C51.11 (19)C8—C9—C11—C12107.79 (12)
C3—C4—C5—C60.74 (19)C10—C9—C11—C1648.89 (13)
C4—C5—C6—C10.44 (19)C8—C9—C11—C1672.47 (13)
C2—C1—C6—C51.23 (18)C16—C11—C12—C131.27 (16)
C7—C1—C6—C5178.23 (11)C9—C11—C12—C13178.47 (10)
C2—C1—C7—O1173.35 (11)C11—C12—C13—C140.31 (17)
C6—C1—C7—O17.21 (17)C12—C13—C14—C151.28 (17)
C2—C1—C7—C88.53 (16)C13—C14—C15—C160.67 (17)
C6—C1—C7—C8170.91 (10)C14—C15—C16—C110.91 (17)
O1—C7—C8—C95.29 (15)C12—C11—C16—C151.88 (17)
C1—C7—C8—C9172.83 (9)C9—C11—C16—C15177.85 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N1i0.952.623.3669 (17)136
C8—H8b···O1ii0.992.563.5246 (14)163
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H13NO
Mr235.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.2158 (3), 8.9244 (2), 9.7553 (2)
β (°) 99.217 (2)
V3)1221.65 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.63
Crystal size (mm)0.30 × 0.30 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.752, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4625, 2496, 2187
Rint0.016
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.02
No. of reflections2496
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.20

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N1i0.952.623.3669 (17)136
C8—H8b···O1ii0.992.563.5246 (14)163
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: alaa_moenes@yahoo.com.

Acknowledgements

This work was supported by the Research Center of Pharmacy, King Saud University, Riyadh, Saudi Arabia. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM·C/HIR/MOHE/SC/12).

References

First citationAbdel-Aziz, A. A.-M., El-Azab, A. S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o737.  CSD CrossRef IUCr Journals Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCoudert, P., Couquelet, J. & Tronche, P. (1988). J. Heterocycl. Chem. 25, 799–802.  CrossRef CAS Google Scholar
First citationCoudert, P., Rubat, C., Couquelet, J. & Tronche, P. (1990). J. Pharm. Belg. 45, 191—195.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIida, H., Moromizato, T., Hamana, H. & Matsumoto, K. (2007). Tetrahedron Lett. 48, 2037–2039.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds