organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Meth­­oxy­phen­yl)-4-oxo-4-phenyl­butane­nitrile

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, cDepartment of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt, dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and eChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 February 2012; accepted 13 February 2012; online 17 February 2012)

The title mol­ecule, C17H15NO2, is twisted, the dihedral angle between the terminal benzene rings being 63.30 (6)°. In the crystal, C—H⋯O and C—H⋯N inter­actions lead to supra­molecular layers in the ab plane. These are connected along the c axis via C—H⋯π inter­actions.

Related literature

For background to the synthetic applications of 2,4-diaryl-4-oxo-butane­nitriles, see: Coudert et al. (1990[Coudert, P., Rubat, C., Couquelet, J. & Tronche, P. (1990). J. Pharm. Belg. 45, 191-195.]), 1988[Coudert, P., Couquelet, J. & Tronche, P. (1988). J. Heterocycl. Chem. 25, 799-802.]); Iida et al. (2007[Iida, H., Moromizato, T., Hamana, H. & Matsumoto, K. (2007). Tetrahedron Lett. 48, 2037-2039.]). For the preparation of the title compound, see: Coudert et al. (1990[Coudert, P., Rubat, C., Couquelet, J. & Tronche, P. (1990). J. Pharm. Belg. 45, 191-195.]). For the structure of the unsubstituted parent compound, see: Abdel-Aziz et al. (2012[Abdel-Aziz, A. A.-M., El-Azab, A. S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o736.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15NO2

  • Mr = 265.30

  • Orthorhombic, P b c a

  • a = 9.5730 (2) Å

  • b = 8.7748 (2) Å

  • c = 32.0620 (7) Å

  • V = 2693.25 (10) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.69 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.651, Tmax = 1.000

  • 6569 measured reflections

  • 2764 independent reflections

  • 2410 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.101

  • S = 1.02

  • 2764 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8b⋯O1i 0.99 2.44 3.3102 (16) 147
C15—H15⋯N1ii 0.95 2.62 3.4250 (17) 143
C4—H4⋯Cgiii 0.95 2.82 3.5787 (14) 138
C17—H17c⋯Cgiv 0.98 2.89 3.6754 (15) 138
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x+{\script{3\over 2}}, -y-{\script{1\over 2}}, -z+1]; (iv) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

An important class of difunctional intermediates for both the synthesis of biologically active heterocycles, such as pyridazine derivatives, and as a source ketone (Coudert et al., 1990; Coudert et al., 1988; Iida et al., 2007) are the 2,4-diaryl-4-oxo-butanenitriles. Herein, the crystal structure of a 2,4-diaryl-4-oxo-butanenitrile derivative, 4-(4-methoxyphenyl)-4-oxo-2-phenylbutanenitrile (I), is described. The structure of the parent compound is known (Abdel-Aziz et al., 2012).

In (I), Fig. 1, the terminal benzene rings form a dihedral angle of 63.30 (6)° indicating a considerable twist in the molecule. The benzyl group is twisted out of the plane of the benzene ring to which it is connected [the C2—C1—C7—C8 torsion angle is -8.58 (17)°] and in addition there is a twist around the C8—C9 bond [the C7—C8—C9—C11 torsion angle is 173.19 (10)°]. The methoxy group is co-planar with the benzene ring to which it is connected [the C17—O2—C14—C13 torsion angle is 3.03 (17)°].

In the crystal packing, molecules are linked by C—H···O and C—H···N interactions into supramolecular layers in the ab plane, Fig. 2 and Table 1. Layers are connected along the c axis via C—H···π interactions involving the (C11–C16) ring, Fig. 3 and Table 1.

Related literature top

For background to the synthetic applications of 2,4-diaryl-4-oxo-butanenitriles, see: Coudert et al. (1990), 1988); Iida et al. (2007). For the preparation of the title compound, see: Coudert et al. (1990). For the structure of the unsubstituted parent compound, see: Abdel-Aziz et al. (2012).

Experimental top

Acetone cyanohydrin (0.045 mol) and 10% aqueous sodium carbonate (0.0015 mol and 1.5 ml water) were added to solution of 3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one (0.015 mol) in ethanol (50 ml). The mixture was heated at reflux temperature for 4 h. After cooling, the product which separated out was filtered off and recrystallized from methanol solution.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 1.00 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular array in the ab plane in (I). The C—H···O and C—H···N interactions are shown as orange and blue dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents for (I). The C—H···O, C—H···N and C—H···π interactions are shown as orange, blue and purple dashed lines, respectively.
2-(4-Methoxyphenyl)-4-oxo-4-phenylbutanenitrile top
Crystal data top
C17H15NO2F(000) = 1120
Mr = 265.30Dx = 1.309 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ac 2abCell parameters from 2587 reflections
a = 9.5730 (2) Åθ = 2.8–76.0°
b = 8.7748 (2) ŵ = 0.69 mm1
c = 32.0620 (7) ÅT = 100 K
V = 2693.25 (10) Å3Prism, colourless
Z = 80.30 × 0.30 × 0.05 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2764 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2410 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.019
Detector resolution: 10.4041 pixels mm-1θmax = 76.2°, θmin = 2.8°
ω scanh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1010
Tmin = 0.651, Tmax = 1.000l = 3339
6569 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.8432P]
where P = (Fo2 + 2Fc2)/3
2764 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C17H15NO2V = 2693.25 (10) Å3
Mr = 265.30Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 9.5730 (2) ŵ = 0.69 mm1
b = 8.7748 (2) ÅT = 100 K
c = 32.0620 (7) Å0.30 × 0.30 × 0.05 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2764 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2410 reflections with I > 2σ(I)
Tmin = 0.651, Tmax = 1.000Rint = 0.019
6569 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.02Δρmax = 0.21 e Å3
2764 reflectionsΔρmin = 0.21 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27711 (10)0.07603 (11)0.68494 (3)0.0294 (2)
O20.65190 (10)0.70231 (10)0.52150 (3)0.0267 (2)
N10.49228 (12)0.01483 (13)0.60258 (3)0.0282 (3)
C10.37272 (13)0.18133 (13)0.74651 (4)0.0214 (3)
C20.47344 (13)0.27465 (14)0.76484 (4)0.0235 (3)
H20.53220.33580.74780.028*
C30.48802 (14)0.27836 (15)0.80803 (4)0.0261 (3)
H30.55700.34180.82040.031*
C40.40215 (14)0.18967 (15)0.83309 (4)0.0262 (3)
H40.41240.19220.86250.031*
C50.30090 (14)0.09693 (15)0.81498 (4)0.0268 (3)
H50.24200.03640.83210.032*
C60.28593 (13)0.09281 (15)0.77198 (4)0.0244 (3)
H60.21650.02970.75980.029*
C70.35473 (13)0.17095 (14)0.70034 (4)0.0225 (3)
C80.43447 (13)0.28103 (14)0.67269 (4)0.0231 (3)
H8A0.53590.26870.67770.028*
H8B0.40860.38680.68020.028*
C90.40397 (13)0.25499 (14)0.62604 (4)0.0228 (3)
H90.30050.25890.62200.027*
C100.45287 (13)0.10206 (15)0.61327 (4)0.0230 (3)
C110.46935 (13)0.37597 (14)0.59828 (4)0.0222 (3)
C120.38502 (13)0.48068 (15)0.57791 (4)0.0251 (3)
H120.28670.47590.58160.030*
C130.44116 (14)0.59264 (15)0.55215 (4)0.0252 (3)
H130.38180.66400.53860.030*
C140.58517 (14)0.59909 (14)0.54638 (4)0.0219 (3)
C150.67095 (13)0.49409 (14)0.56660 (4)0.0230 (3)
H150.76930.49850.56280.028*
C160.61369 (13)0.38362 (14)0.59212 (4)0.0233 (3)
H160.67300.31220.60560.028*
C170.56675 (16)0.81515 (16)0.50178 (4)0.0293 (3)
H17A0.62490.87880.48360.044*
H17B0.52260.87900.52310.044*
H17C0.49440.76500.48510.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0261 (5)0.0329 (5)0.0292 (5)0.0061 (4)0.0019 (4)0.0041 (4)
O20.0286 (5)0.0262 (5)0.0254 (4)0.0001 (4)0.0000 (4)0.0033 (4)
N10.0313 (6)0.0268 (6)0.0264 (5)0.0021 (5)0.0035 (5)0.0028 (4)
C10.0201 (6)0.0188 (6)0.0252 (6)0.0040 (5)0.0029 (5)0.0002 (4)
C20.0228 (6)0.0201 (6)0.0276 (6)0.0005 (5)0.0042 (5)0.0007 (5)
C30.0250 (6)0.0240 (6)0.0294 (6)0.0010 (5)0.0003 (5)0.0027 (5)
C40.0283 (6)0.0264 (7)0.0239 (6)0.0055 (5)0.0015 (5)0.0021 (5)
C50.0247 (6)0.0264 (6)0.0294 (6)0.0027 (5)0.0066 (5)0.0053 (5)
C60.0203 (6)0.0220 (6)0.0309 (6)0.0003 (5)0.0023 (5)0.0004 (5)
C70.0188 (5)0.0213 (6)0.0274 (6)0.0032 (5)0.0024 (5)0.0028 (5)
C80.0235 (6)0.0227 (6)0.0232 (6)0.0008 (5)0.0013 (5)0.0022 (5)
C90.0204 (6)0.0239 (6)0.0241 (6)0.0012 (5)0.0005 (5)0.0009 (5)
C100.0227 (6)0.0268 (7)0.0197 (5)0.0034 (5)0.0005 (5)0.0003 (5)
C110.0234 (6)0.0236 (6)0.0197 (5)0.0014 (5)0.0005 (5)0.0029 (5)
C120.0202 (6)0.0281 (7)0.0269 (6)0.0029 (5)0.0003 (5)0.0013 (5)
C130.0255 (6)0.0255 (6)0.0246 (6)0.0048 (5)0.0035 (5)0.0000 (5)
C140.0263 (6)0.0208 (6)0.0186 (5)0.0005 (5)0.0001 (5)0.0028 (4)
C150.0193 (6)0.0260 (6)0.0237 (6)0.0015 (5)0.0010 (5)0.0041 (5)
C160.0235 (6)0.0238 (6)0.0225 (6)0.0043 (5)0.0032 (5)0.0023 (5)
C170.0375 (7)0.0271 (7)0.0233 (6)0.0032 (6)0.0012 (5)0.0035 (5)
Geometric parameters (Å, º) top
O1—C71.2205 (15)C8—H8A0.9900
O2—C141.3656 (15)C8—H8B0.9900
O2—C171.4299 (15)C9—C101.4791 (17)
N1—C101.1454 (17)C9—C111.5201 (17)
C1—C21.3949 (17)C9—H91.0000
C1—C61.4002 (17)C11—C121.3865 (17)
C1—C71.4931 (17)C11—C161.3975 (18)
C2—C31.3921 (18)C12—C131.3915 (18)
C2—H20.9500C12—H120.9500
C3—C41.3881 (18)C13—C141.3920 (18)
C3—H30.9500C13—H130.9500
C4—C51.3924 (19)C14—C151.3941 (17)
C4—H40.9500C15—C161.3818 (18)
C5—C61.3865 (18)C15—H150.9500
C5—H50.9500C16—H160.9500
C6—H60.9500C17—H17A0.9800
C7—C81.5172 (17)C17—H17B0.9800
C8—C91.5409 (16)C17—H17C0.9800
C14—O2—C17116.80 (10)C11—C9—C8112.75 (10)
C2—C1—C6119.34 (11)C10—C9—H9108.0
C2—C1—C7122.23 (11)C11—C9—H9108.0
C6—C1—C7118.43 (11)C8—C9—H9108.0
C3—C2—C1120.14 (12)N1—C10—C9178.38 (13)
C3—C2—H2119.9C12—C11—C16118.50 (12)
C1—C2—H2119.9C12—C11—C9119.93 (11)
C4—C3—C2120.21 (12)C16—C11—C9121.57 (11)
C4—C3—H3119.9C11—C12—C13121.51 (12)
C2—C3—H3119.9C11—C12—H12119.2
C3—C4—C5119.91 (12)C13—C12—H12119.2
C3—C4—H4120.0C14—C13—C12119.34 (12)
C5—C4—H4120.0C14—C13—H13120.3
C6—C5—C4120.12 (12)C12—C13—H13120.3
C6—C5—H5119.9O2—C14—C13124.60 (11)
C4—C5—H5119.9O2—C14—C15115.75 (11)
C5—C6—C1120.28 (12)C13—C14—C15119.65 (12)
C5—C6—H6119.9C16—C15—C14120.35 (12)
C1—C6—H6119.9C16—C15—H15119.8
O1—C7—C1120.86 (11)C14—C15—H15119.8
O1—C7—C8120.30 (11)C15—C16—C11120.64 (12)
C1—C7—C8118.85 (11)C15—C16—H16119.7
C7—C8—C9112.17 (10)C11—C16—H16119.7
C7—C8—H8A109.2O2—C17—H17A109.5
C9—C8—H8A109.2O2—C17—H17B109.5
C7—C8—H8B109.2H17A—C17—H17B109.5
C9—C8—H8B109.2O2—C17—H17C109.5
H8A—C8—H8B107.9H17A—C17—H17C109.5
C10—C9—C11109.95 (10)H17B—C17—H17C109.5
C10—C9—C8110.08 (10)
C6—C1—C2—C30.58 (18)C10—C9—C11—C12126.52 (12)
C7—C1—C2—C3178.79 (11)C8—C9—C11—C12110.23 (13)
C1—C2—C3—C40.23 (19)C10—C9—C11—C1652.54 (15)
C2—C3—C4—C50.13 (19)C8—C9—C11—C1670.70 (15)
C3—C4—C5—C60.13 (19)C16—C11—C12—C130.69 (18)
C4—C5—C6—C10.23 (19)C9—C11—C12—C13179.78 (11)
C2—C1—C6—C50.58 (18)C11—C12—C13—C140.55 (19)
C7—C1—C6—C5178.81 (11)C17—O2—C14—C133.03 (17)
C2—C1—C7—O1171.59 (11)C17—O2—C14—C15177.49 (10)
C6—C1—C7—O17.78 (17)C12—C13—C14—O2179.13 (11)
C2—C1—C7—C88.58 (17)C12—C13—C14—C150.33 (18)
C6—C1—C7—C8172.05 (11)O2—C14—C15—C16179.24 (10)
O1—C7—C8—C90.11 (16)C13—C14—C15—C160.27 (18)
C1—C7—C8—C9179.94 (10)C14—C15—C16—C110.42 (18)
C7—C8—C9—C1063.64 (13)C12—C11—C16—C150.62 (18)
C7—C8—C9—C11173.19 (10)C9—C11—C16—C15179.70 (11)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8b···O1i0.992.443.3102 (16)147
C15—H15···N1ii0.952.623.4250 (17)143
C4—H4···Cgiii0.952.823.5787 (14)138
C17—H17c···Cgiv0.982.893.6754 (15)138
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+3/2, y+1/2, z; (iii) x+3/2, y1/2, z+1; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H15NO2
Mr265.30
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)9.5730 (2), 8.7748 (2), 32.0620 (7)
V3)2693.25 (10)
Z8
Radiation typeCu Kα
µ (mm1)0.69
Crystal size (mm)0.30 × 0.30 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.651, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6569, 2764, 2410
Rint0.019
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.02
No. of reflections2764
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.21

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8b···O1i0.992.443.3102 (16)147
C15—H15···N1ii0.952.623.4250 (17)143
C4—H4···Cgiii0.952.823.5787 (14)138
C17—H17c···Cgiv0.982.893.6754 (15)138
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+3/2, y+1/2, z; (iii) x+3/2, y1/2, z+1; (iv) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: alaa_moenes@yahoo.com.

Acknowledgements

This work was supported by the Research Center of Pharmacy, King Saud University, Riyadh, Saudi Arabia. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research Scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAbdel-Aziz, A. A.-M., El-Azab, A. S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o736.  CSD CrossRef IUCr Journals Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCoudert, P., Couquelet, J. & Tronche, P. (1988). J. Heterocycl. Chem. 25, 799–802.  CrossRef CAS Google Scholar
First citationCoudert, P., Rubat, C., Couquelet, J. & Tronche, P. (1990). J. Pharm. Belg. 45, 191–195.  CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIida, H., Moromizato, T., Hamana, H. & Matsumoto, K. (2007). Tetrahedron Lett. 48, 2037–2039.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds