organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-[(2-Bromo­phen­yl)­methyl­ene]­dipyrrolidin-2-one

aKey Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China, bChemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India, and cBioinformatics Infrastructure Facility, Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
*Correspondence e-mail: hongqili@dhu.edu.cn

(Received 12 February 2012; accepted 13 February 2012; online 17 February 2012)

In the title compound, C15H17BrN2O2, both pyrrolidinone rings adopt envelope conformations. The crystal packing is characterized by short C—Br⋯O=C inter­actions [Br⋯O = 3.1730 (13) Å], leading to supra­molecular dimers. Inter­molecular C—H⋯O and C—H⋯π inter­actions are also observed.

Related literature

For a related structure, see: Camus et al. (2001[Camus, F., Norberg, B., Bourry, A., Rigo, B. & Durant, F. (2001). Acta Cryst. E57, o439-o440.]). For related references on Br⋯O inter­actions, see: Allen et al. (1997[Allen, F. H., Lommerse, J. P. M., Hoy, V. J., Howard, J. A. K. & Desiraju, G. R. (1997). Acta Cryst. B53, 1006-1016.]); Damodharan et al. (2004[Damodharan, L., Pattabhi, V., Behera, M. & Kotha, S. (2004). J. Mol. Struct. 705, 101-106.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17BrN2O2

  • Mr = 337.22

  • Monoclinic, P 21 /n

  • a = 7.9734 (3) Å

  • b = 11.0788 (4) Å

  • c = 15.9456 (6) Å

  • β = 91.859 (1)°

  • V = 1407.82 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.92 mm−1

  • T = 123 K

  • 0.20 × 0.18 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.593, Tmax = 0.621

  • 15532 measured reflections

  • 4296 independent reflections

  • 3661 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.057

  • S = 1.01

  • 4296 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O2i 0.97 2.40 3.363 (2) 174
C6—H6B⋯O2i 0.97 2.59 3.528 (2) 163
C11—H11⋯O1i 0.93 2.56 3.328 (2) 140
C13—H13⋯O2ii 0.93 2.55 3.223 (2) 130
C8—H8BCgiii 0.97 2.75 3.6405 (19) 152
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the title compound, C15H17BrN2O2, both pyrrolidinone rings (N1/C2—C5; N2/C6—C9) adopt envelope conformation with C3 and C7 atoms at their flap, respectively (Fig. 1). Crystal packing is characterized by C15—Br1···O1—C5i interaction [symmetry code (i): 2 - x,1 - y,-z; Br···O = 3.1730 (13) Å, C—Br···O = 170.33 (5)°] leading to molecular dimers (Fig. 2). Intermolecular C—H···O and C—H···π interactions additionally stabilize the packing (Table 1).

Related literature top

For a related structure, see: Camus et al. (2001). For related references on Br···O interactions, see: Allen et al. (1997); Damodharan et al. (2004).

Experimental top

In a dry 100 ml Erlenmeyer flask 2-pyrrolidone (10 mmol), benzaldehyde (10 mmol), iodine (15 mol %) and dichloromethane (DCM; 15 ml) were taken. The reaction mixture was stirred at room temperature (25°C) for one hour. The reaction was monitored by TLC and after the completion of reaction iodine utilized was set free from the product by treating it with aqueous sodium thiosulfate solution and extracted into DCM (2 X 20 ml). The crude reaction mixture was purified by column chromatography on silica gel using ethyl acetate/hexane as the eluents. Final yields: 82%; m.p. 354 (1)°K. Suitable single crystals for data collection were grown from ethanol and tetrahydrofuran (THF) mixture (1:1).

Refinement top

H atoms were placed in the geometrically expected positions and refined with the riding options. The calculated distances with hydrogen atoms are: C(sp2)—H = 0.93 Å, C(methylene)—H = 0.97 Å, C(methine)—H = 0.98 Å and Uiso = 1.2 Ueq(parent).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of (I) with non-H atoms shown as probability ellipsoids at 30% levels (Farrugia, 1997). H atoms radii are on an arbitrary scale.
[Figure 2] Fig. 2. Molecular dimers via Br···O interaction.
1,1'-[(2-Bromophenyl)methylene]dipyrrolidin-2-one top
Crystal data top
C15H17BrN2O2F(000) = 688
Mr = 337.22Dx = 1.591 Mg m3
Monoclinic, P21/nMelting point: 354(1) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.9734 (3) ÅCell parameters from 840 reflections
b = 11.0788 (4) Åθ = 2.1–24.0°
c = 15.9456 (6) ŵ = 2.92 mm1
β = 91.859 (1)°T = 123 K
V = 1407.82 (9) Å3Block, colorless
Z = 40.20 × 0.18 × 0.18 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4296 independent reflections
Radiation source: fine-focus sealed tube3661 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 30.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.593, Tmax = 0.621k = 1415
15532 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0228P)2 + 0.7592P]
where P = (Fo2 + 2Fc2)/3
4296 reflections(Δ/σ)max = 0.002
181 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C15H17BrN2O2V = 1407.82 (9) Å3
Mr = 337.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.9734 (3) ŵ = 2.92 mm1
b = 11.0788 (4) ÅT = 123 K
c = 15.9456 (6) Å0.20 × 0.18 × 0.18 mm
β = 91.859 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4296 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3661 reflections with I > 2σ(I)
Tmin = 0.593, Tmax = 0.621Rint = 0.027
15532 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.01Δρmax = 0.43 e Å3
4296 reflectionsΔρmin = 0.38 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.86332 (17)0.68852 (12)0.18659 (8)0.0138 (3)
H10.92150.61060.18710.017*
C20.75434 (19)0.81209 (13)0.05820 (9)0.0182 (3)
H2A0.86000.83790.03560.022*
H2B0.71030.87620.09250.022*
C30.62857 (19)0.77622 (15)0.01195 (9)0.0218 (3)
H3A0.51460.79380.00370.026*
H3B0.65150.81860.06360.026*
C40.6548 (2)0.64047 (14)0.02201 (9)0.0223 (3)
H4A0.54930.60010.03550.027*
H4B0.73290.62380.06590.027*
C50.72546 (18)0.60005 (14)0.06225 (9)0.0178 (3)
C60.58936 (18)0.75537 (13)0.25328 (9)0.0180 (3)
H6A0.50890.72260.21240.022*
H6B0.60870.83980.24060.022*
C70.5283 (2)0.73979 (15)0.34296 (10)0.0231 (3)
H7A0.55440.81080.37650.028*
H7B0.40800.72640.34250.028*
C80.62238 (18)0.62932 (14)0.37781 (9)0.0191 (3)
H8A0.66040.64280.43550.023*
H8B0.55110.55840.37560.023*
C90.76951 (17)0.61425 (12)0.32157 (8)0.0151 (3)
C100.99547 (17)0.78631 (13)0.19871 (8)0.0139 (2)
C110.98318 (18)0.87298 (13)0.26151 (9)0.0169 (3)
H110.89260.87080.29680.020*
C121.10341 (19)0.96235 (14)0.27229 (9)0.0201 (3)
H121.09351.01880.31500.024*
C131.23820 (19)0.96825 (14)0.21989 (10)0.0220 (3)
H131.31751.02930.22670.026*
C141.25446 (18)0.88301 (14)0.15741 (10)0.0200 (3)
H141.34420.88670.12170.024*
C151.13587 (18)0.79196 (13)0.14840 (9)0.0161 (3)
N10.77437 (15)0.69982 (10)0.10618 (7)0.0147 (2)
N20.74562 (15)0.68714 (10)0.25438 (7)0.0146 (2)
O10.73991 (15)0.49624 (10)0.08795 (7)0.0253 (2)
O20.89131 (13)0.54791 (10)0.33318 (7)0.0210 (2)
Br11.171997 (18)0.670483 (13)0.066302 (9)0.01925 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0145 (6)0.0132 (6)0.0136 (6)0.0009 (5)0.0010 (5)0.0000 (5)
C20.0219 (7)0.0148 (7)0.0178 (6)0.0008 (5)0.0014 (5)0.0013 (5)
C30.0200 (7)0.0269 (8)0.0184 (7)0.0013 (6)0.0022 (5)0.0011 (6)
C40.0262 (8)0.0241 (8)0.0166 (7)0.0066 (6)0.0000 (6)0.0032 (6)
C50.0182 (6)0.0188 (7)0.0166 (6)0.0046 (5)0.0040 (5)0.0032 (5)
C60.0148 (6)0.0160 (7)0.0233 (7)0.0036 (5)0.0030 (5)0.0013 (5)
C70.0227 (7)0.0219 (8)0.0252 (8)0.0032 (6)0.0089 (6)0.0016 (6)
C80.0208 (7)0.0197 (7)0.0171 (6)0.0026 (6)0.0044 (5)0.0004 (5)
C90.0175 (6)0.0125 (6)0.0154 (6)0.0029 (5)0.0006 (5)0.0011 (5)
C100.0146 (6)0.0133 (6)0.0136 (6)0.0007 (5)0.0014 (5)0.0015 (5)
C110.0179 (7)0.0174 (7)0.0155 (6)0.0002 (5)0.0000 (5)0.0000 (5)
C120.0238 (7)0.0169 (7)0.0191 (7)0.0015 (6)0.0049 (5)0.0020 (5)
C130.0181 (7)0.0195 (7)0.0279 (8)0.0034 (6)0.0049 (6)0.0025 (6)
C140.0135 (6)0.0227 (8)0.0238 (7)0.0003 (6)0.0011 (5)0.0049 (6)
C150.0157 (6)0.0167 (6)0.0160 (6)0.0033 (5)0.0000 (5)0.0013 (5)
N10.0178 (6)0.0123 (5)0.0140 (5)0.0013 (4)0.0008 (4)0.0006 (4)
N20.0142 (5)0.0140 (6)0.0158 (5)0.0018 (4)0.0029 (4)0.0015 (4)
O10.0359 (6)0.0154 (5)0.0246 (6)0.0066 (5)0.0020 (5)0.0017 (4)
O20.0206 (5)0.0194 (5)0.0229 (5)0.0047 (4)0.0015 (4)0.0052 (4)
Br10.02074 (8)0.01928 (8)0.01803 (7)0.00452 (6)0.00520 (5)0.00019 (6)
Geometric parameters (Å, º) top
C1—N11.4504 (17)C7—C81.531 (2)
C1—N21.4545 (17)C7—H7A0.9700
C1—C101.5192 (19)C7—H7B0.9700
C1—H10.9800C8—C91.5088 (19)
C2—N11.4664 (18)C8—H8A0.9700
C2—C31.530 (2)C8—H8B0.9700
C2—H2A0.9700C9—O21.2272 (17)
C2—H2B0.9700C9—N21.3501 (18)
C3—C41.528 (2)C10—C111.393 (2)
C3—H3A0.9700C10—C151.3997 (19)
C3—H3B0.9700C11—C121.385 (2)
C4—C51.508 (2)C11—H110.9300
C4—H4A0.9700C12—C131.384 (2)
C4—H4B0.9700C12—H120.9300
C5—O11.2251 (19)C13—C141.382 (2)
C5—N11.3589 (18)C13—H130.9300
C6—N21.4569 (18)C14—C151.387 (2)
C6—C71.535 (2)C14—H140.9300
C6—H6A0.9700C15—Br11.9059 (14)
C6—H6B0.9700
N1—C1—N2110.43 (11)C8—C7—H7B110.7
N1—C1—C10111.61 (11)C6—C7—H7B110.7
N2—C1—C10111.99 (11)H7A—C7—H7B108.8
N1—C1—H1107.5C9—C8—C7104.72 (12)
N2—C1—H1107.5C9—C8—H8A110.8
C10—C1—H1107.5C7—C8—H8A110.8
N1—C2—C3102.63 (11)C9—C8—H8B110.8
N1—C2—H2A111.2C7—C8—H8B110.8
C3—C2—H2A111.2H8A—C8—H8B108.9
N1—C2—H2B111.2O2—C9—N2124.65 (13)
C3—C2—H2B111.2O2—C9—C8127.11 (13)
H2A—C2—H2B109.2N2—C9—C8108.25 (12)
C4—C3—C2104.12 (12)C11—C10—C15117.22 (13)
C4—C3—H3A110.9C11—C10—C1121.22 (12)
C2—C3—H3A110.9C15—C10—C1121.55 (12)
C4—C3—H3B110.9C12—C11—C10121.16 (13)
C2—C3—H3B110.9C12—C11—H11119.4
H3A—C3—H3B109.0C10—C11—H11119.4
C5—C4—C3104.31 (12)C13—C12—C11120.45 (14)
C5—C4—H4A110.9C13—C12—H12119.8
C3—C4—H4A110.9C11—C12—H12119.8
C5—C4—H4B110.9C14—C13—C12119.72 (14)
C3—C4—H4B110.9C14—C13—H13120.1
H4A—C4—H4B108.9C12—C13—H13120.1
O1—C5—N1124.68 (14)C13—C14—C15119.48 (14)
O1—C5—C4127.23 (13)C13—C14—H14120.3
N1—C5—C4108.08 (12)C15—C14—H14120.3
N2—C6—C7103.15 (12)C14—C15—C10121.90 (13)
N2—C6—H6A111.1C14—C15—Br1117.84 (11)
C7—C6—H6A111.1C10—C15—Br1120.24 (11)
N2—C6—H6B111.1C5—N1—C1120.62 (12)
C7—C6—H6B111.1C5—N1—C2113.36 (12)
H6A—C6—H6B109.1C1—N1—C2125.19 (11)
C8—C7—C6105.16 (11)C9—N2—C1121.21 (11)
C8—C7—H7A110.7C9—N2—C6114.74 (11)
C6—C7—H7A110.7C1—N2—C6123.90 (11)
N1—C2—C3—C426.53 (15)C1—C10—C15—Br13.48 (18)
C2—C3—C4—C525.03 (15)O1—C5—N1—C15.5 (2)
C3—C4—C5—O1166.88 (15)C4—C5—N1—C1173.64 (12)
C3—C4—C5—N114.00 (16)O1—C5—N1—C2175.60 (14)
N2—C6—C7—C819.18 (15)C4—C5—N1—C23.55 (16)
C6—C7—C8—C918.77 (16)N2—C1—N1—C591.10 (15)
C7—C8—C9—O2168.80 (14)C10—C1—N1—C5143.64 (12)
C7—C8—C9—N211.29 (16)N2—C1—N1—C2100.04 (15)
N1—C1—C10—C11115.42 (14)C10—C1—N1—C225.22 (18)
N2—C1—C10—C118.97 (18)C3—C2—N1—C519.40 (16)
N1—C1—C10—C1565.71 (16)C3—C2—N1—C1171.04 (12)
N2—C1—C10—C15169.89 (12)O2—C9—N2—C12.8 (2)
C15—C10—C11—C121.3 (2)C8—C9—N2—C1177.13 (12)
C1—C10—C11—C12179.76 (13)O2—C9—N2—C6178.53 (13)
C10—C11—C12—C130.8 (2)C8—C9—N2—C61.39 (16)
C11—C12—C13—C141.2 (2)N1—C1—N2—C9141.19 (13)
C12—C13—C14—C150.5 (2)C10—C1—N2—C993.76 (15)
C13—C14—C15—C102.7 (2)N1—C1—N2—C634.15 (17)
C13—C14—C15—Br1175.86 (11)C10—C1—N2—C690.89 (15)
C11—C10—C15—C143.0 (2)C7—C6—N2—C913.31 (16)
C1—C10—C15—C14178.04 (13)C7—C6—N2—C1171.07 (12)
C11—C10—C15—Br1175.43 (10)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2B···O2i0.972.403.363 (2)174
C6—H6B···O2i0.972.593.528 (2)163
C11—H11···O1i0.932.563.328 (2)140
C13—H13···O2ii0.932.553.223 (2)130
C8—H8B···Cgiii0.972.753.6405 (19)152
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+5/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H17BrN2O2
Mr337.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)123
a, b, c (Å)7.9734 (3), 11.0788 (4), 15.9456 (6)
β (°) 91.859 (1)
V3)1407.82 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.92
Crystal size (mm)0.20 × 0.18 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.593, 0.621
No. of measured, independent and
observed [I > 2σ(I)] reflections
15532, 4296, 3661
Rint0.027
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.057, 1.01
No. of reflections4296
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.38

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2B···O2i0.972.403.363 (2)174
C6—H6B···O2i0.972.593.528 (2)163
C11—H11···O1i0.932.563.328 (2)140
C13—H13···O2ii0.932.553.223 (2)130
C8—H8B···Cgiii0.972.753.6405 (19)152
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+5/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

RSR thanks CSIR, New Delhi, for funding under the scientist's pool scheme and BIF, University of Hyderabad, for computational resources.

References

First citationAllen, F. H., Lommerse, J. P. M., Hoy, V. J., Howard, J. A. K. & Desiraju, G. R. (1997). Acta Cryst. B53, 1006–1016.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCamus, F., Norberg, B., Bourry, A., Rigo, B. & Durant, F. (2001). Acta Cryst. E57, o439–o440.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDamodharan, L., Pattabhi, V., Behera, M. & Kotha, S. (2004). J. Mol. Struct. 705, 101–106.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds