organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-methyl-1,3-dioxo-1,2,3,4-tetra­hydro­iso­quinoline-4-carboxyl­ate

aLaboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
*Correspondence e-mail: wyz@zju.edu.cn

(Received 18 February 2012; accepted 23 February 2012; online 29 February 2012)

In the title compound, C13H13NO4, the fused-ring system is nearly planar, with an r.m.s. deviation of 0.0408 Å. In the crystal, mol­ecules are linked into centrosymmetric dimers by a pair of N—H⋯O hydrogen bonds. The ethyl group is disordered over two positions in a ratio of 0.758 (6):0.242 (6).

Related literature

For pharmaceutical usage of derivatives of isoquinoline-1,3(2H,4H)-dione, see: Lu et al. (2010[Lu, X.-Y., Chen, Y.-D., Sun, N.-Y., Jiang, Y.-J. & You, Q.-D. (2010). J. Mol. Model. 16, 163-173.]); Tsou et al. (2008[Tsou, H. R., Otteng, M., Tran, T., Floyd, M. B. Jr, Reich, M., Birnberg, G., Kutterer, K., Ayral-Kaloustian, S., Ravi, M., Nilakantan, R., Grillo, M., McGinnis, J. P. & Rabindran, S. K. (2008). J. Med. Chem. 51, 3507-3525.], 2009[Tsou, H. R., Liu, X.-X., Birnberg, G., Kaplan, J., Otteng, M., Tran, T., Kutterer, K., Tang, Z.-L., Suayan, R., Zask, A., Ravi, M., Bretz, A., Grillo, M., McGinnis, J. P., Rabindran, S. K., Ayral-Kaloustian, S. & Mansour, T. S. (2009). J. Med. Chem. 52, 2289-2310.]); Billamboz et al. (2011[Billamboz, M., Bailly, F., Lion, C., Touati, N., Vezin, H., Calmels, C., Andreola, M.-L., Christ, F., Debyser, Z. & Cotelle, P. (2011). J. Med. Chem. 54, 1812-1824.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13NO4

  • Mr = 247.24

  • Triclinic, [P \overline 1]

  • a = 6.4585 (9) Å

  • b = 8.1999 (7) Å

  • c = 12.5763 (11) Å

  • α = 78.876 (7)°

  • β = 77.228 (9)°

  • γ = 72.354 (9)°

  • V = 613.28 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.38 × 0.23 × 0.09 mm

Data collection
  • Agilent Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.963, Tmax = 0.991

  • 3820 measured reflections

  • 2243 independent reflections

  • 1659 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.135

  • S = 1.06

  • 2243 reflections

  • 170 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.05 2.903 (3) 172
Symmetry code: (i) -x, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Derivatives of isoquinoline-1,3(2H,4H)-dione are important compounds in pharmaceutical chemistry and have great research values, such as inhibitors of the cyclic-dependent kinase 4 (CDK4) (Tsou et al., 2008, 2009; Lu et al.., 2010); inhibitors of HIV-1 integrase (Billamboz et al., 2011). In our research of synthesis of cyclonitrones, we have obtained the title compound as a minor product from ethyl 2-(2-(1,3-dioxolan-2-yl)phenyl)-2-cyanopropanoate hydrolysed by hydrogen peroxide. The structure of the title compound has been characterized by spectroscopic methods and further confirmation by X-ray analysis. We report here its crystal structure. In the molecule of the title compound (Fig. 1), there is one benzene ring fused by carbonyl amide closing six-membered heterocyclic ring, the two rings are almost coplanar with only 1.02 (10)° dihedral angle. One sterogenic center but the crystallizes as a racemate as indicated by the centrosymmetric space group. In the crystal structure, molecules are linked by two N—H···O hydrogen bonds into dimers that are located on centres of inversion.

Related literature top

For pharmaceutical usage of derivatives of isoquinoline-1,3(2H,4H)-dione, see: Lu et al. (2010); Tsou et al. (2008, 2009); Billamboz et al. (2011).

Experimental top

At room temperature, to a solution of ethyl 2-(2-(1,3-dioxolan-2-yl) phenyl)-2-cyanopropanoate (344 mg, 1.25 mmol) in DMSO (3.0 ml) was added K2CO3 (89 mg, 0.64 eq), after then H2O2 (0.55 mL, 30%, 4 eq) was added as three portions in 2 hours. The mixture was then stirred for another 1h and quenched with brine (20 mL). The resulting mixture was subjected to extraction with ethyl acetate (2 x 30 mL). The combined organic phase was washed with brine (2 x 20 mL), dried over Na2SO4, concentrated in vacuo, and the residue was subjected to flash chromatography (silica gel, 25% ethyl acetate in hexane) to give ethyl 2-(2-(1,3-dioxolan-2-yl)phenyl)-3-amino-2-methyl-3-oxopropanoate (264 mg, 72%) as a colorless solid and the title compound, ethyl 4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinoline-4-carboxylate (50 mg, 16%) as colorless needles (m.p. 440-441.5 K). Single crystals suitable for X-ray diffraction of the title compound were grown at ambient temperature in dichloromethane.

Refinement top

The H atoms were placed in calculated positions with C—H = 0.93–0.97 Å, N—H = 0.86 Å and included in the refinement as riding their carrier atoms with Uiso(H)=1.2Ueq(C,N).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Centrosymmetric dimers of the title compound linked by two N—H···O hydrogen bonds (dotted lines). Symmetry code: (i) -x, -y, -z+1.
Ethyl 4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinoline-4-carboxylate top
Crystal data top
C13H13NO4Z = 2
Mr = 247.24F(000) = 260
Triclinic, P1Dx = 1.339 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4585 (9) ÅCell parameters from 1387 reflections
b = 8.1999 (7) Åθ = 3.3–29.2°
c = 12.5763 (11) ŵ = 0.10 mm1
α = 78.876 (7)°T = 293 K
β = 77.228 (9)°Platelet, colorless
γ = 72.354 (9)°0.38 × 0.23 × 0.09 mm
V = 613.28 (11) Å3
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
2243 independent reflections
Radiation source: fine-focus sealed tube1659 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 10.3592 pixels mm-1θmax = 25.4°, θmin = 3.3°
ω scansh = 76
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 99
Tmin = 0.963, Tmax = 0.991l = 1415
3820 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.061P)2 + 0.1013P]
where P = (Fo2 + 2Fc2)/3
2243 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.18 e Å3
5 restraintsΔρmin = 0.25 e Å3
Crystal data top
C13H13NO4γ = 72.354 (9)°
Mr = 247.24V = 613.28 (11) Å3
Triclinic, P1Z = 2
a = 6.4585 (9) ÅMo Kα radiation
b = 8.1999 (7) ŵ = 0.10 mm1
c = 12.5763 (11) ÅT = 293 K
α = 78.876 (7)°0.38 × 0.23 × 0.09 mm
β = 77.228 (9)°
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
2243 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1659 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.991Rint = 0.021
3820 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0495 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.06Δρmax = 0.18 e Å3
2243 reflectionsΔρmin = 0.25 e Å3
170 parameters
Special details top

Experimental. 1H NMR (400 MHz, CDCl3): 8.37 (br s, 1H), 8.26 (d, J = 8.0 Hz, 1H), 7.68 (t, J = 8.0 Hz, 1H), 7.52 (t, J = 8.0 Hz, 1H), 7.41 (d, J = 7.6 Hz, 1H), 4.23-4.05 (m, 2H), 1.89 (s, 3H), 1.12 (t, J = 7.2 Hz, 3H) ppm; 13C NMR (100 MHz, CDCl3): 171.1, 169.1, 163.6, 140.1, 134.8, 128.9, 128.6, 125.9, 123.5, 62.6, 55.0, 25.1, 13.7 ppm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.2337 (3)0.13049 (17)0.54786 (12)0.0529 (4)
O20.1215 (2)0.40108 (18)0.63638 (13)0.0527 (4)
O30.1682 (3)0.4585 (2)0.83716 (14)0.0734 (6)
O40.0080 (3)0.2543 (2)0.86413 (12)0.0610 (5)
N10.0689 (3)0.13902 (19)0.58943 (13)0.0379 (4)
H10.02680.14710.54940.046*
C10.5645 (4)0.1829 (3)0.67306 (17)0.0453 (5)
H1A0.56360.27590.64110.054*
C20.7280 (4)0.1987 (3)0.7311 (2)0.0559 (6)
H20.83730.30230.73900.067*
C30.7288 (4)0.0596 (3)0.7776 (2)0.0578 (6)
H30.84050.06960.81610.069*
C40.5663 (4)0.0937 (3)0.76769 (18)0.0477 (6)
H40.56840.18580.80010.057*
C50.3988 (3)0.1116 (2)0.70940 (15)0.0333 (4)
C60.4003 (3)0.0284 (2)0.66182 (14)0.0333 (4)
C70.2317 (3)0.0136 (2)0.59585 (15)0.0353 (5)
C80.0413 (3)0.2804 (2)0.63970 (15)0.0338 (4)
C90.2282 (3)0.2843 (2)0.69348 (14)0.0325 (4)
C100.3389 (4)0.4169 (3)0.61867 (18)0.0478 (5)
H10A0.45220.42980.65200.072*
H10B0.23070.52610.60880.072*
H10C0.40300.37760.54850.072*
C110.1267 (3)0.3452 (3)0.80564 (17)0.0420 (5)
C120.1109 (6)0.3031 (5)0.9735 (2)0.0928 (10)
H12A0.00090.27581.01940.111*0.758 (6)
H12B0.17980.42660.96740.111*0.758 (6)
H12C0.07980.20261.02860.111*0.242 (6)
H12D0.04930.38880.98840.111*0.242 (6)
C130.2713 (9)0.2137 (8)1.0226 (3)0.1076 (18)0.758 (6)
H13A0.38580.24550.97910.161*0.758 (6)
H13B0.33340.24321.09540.161*0.758 (6)
H13C0.20360.09151.02680.161*0.758 (6)
C13A0.340 (2)0.371 (2)0.9802 (11)0.1076 (18)0.242 (6)
H13D0.37220.48420.93890.161*0.242 (6)
H13E0.40900.37741.05580.161*0.242 (6)
H13F0.39690.29690.95040.161*0.242 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0628 (10)0.0400 (8)0.0648 (10)0.0090 (7)0.0201 (8)0.0254 (7)
O20.0404 (9)0.0454 (9)0.0740 (10)0.0051 (7)0.0223 (7)0.0247 (8)
O30.0921 (14)0.0731 (11)0.0728 (11)0.0273 (10)0.0124 (10)0.0462 (10)
O40.0681 (11)0.0740 (11)0.0415 (8)0.0234 (9)0.0101 (7)0.0258 (8)
N10.0375 (10)0.0385 (9)0.0429 (9)0.0059 (7)0.0146 (7)0.0159 (7)
C10.0484 (13)0.0332 (11)0.0496 (12)0.0030 (9)0.0069 (10)0.0094 (9)
C20.0492 (14)0.0422 (12)0.0656 (15)0.0057 (10)0.0151 (11)0.0057 (11)
C30.0463 (14)0.0610 (15)0.0650 (15)0.0035 (12)0.0275 (11)0.0035 (12)
C40.0460 (13)0.0464 (12)0.0569 (13)0.0082 (10)0.0224 (10)0.0133 (10)
C50.0323 (10)0.0331 (10)0.0342 (10)0.0069 (8)0.0043 (8)0.0089 (8)
C60.0351 (11)0.0307 (10)0.0323 (10)0.0078 (8)0.0024 (8)0.0062 (8)
C70.0385 (11)0.0320 (10)0.0371 (10)0.0104 (9)0.0027 (8)0.0114 (8)
C80.0323 (11)0.0333 (10)0.0367 (10)0.0072 (8)0.0050 (8)0.0112 (8)
C90.0329 (10)0.0293 (9)0.0380 (10)0.0073 (8)0.0070 (8)0.0116 (8)
C100.0494 (13)0.0361 (11)0.0607 (13)0.0152 (10)0.0107 (10)0.0058 (10)
C110.0405 (12)0.0409 (11)0.0459 (12)0.0019 (10)0.0133 (9)0.0168 (10)
C120.094 (2)0.134 (3)0.0461 (15)0.029 (2)0.0168 (14)0.0391 (17)
C130.125 (4)0.143 (5)0.059 (3)0.068 (4)0.035 (2)0.030 (3)
C13A0.125 (4)0.143 (5)0.059 (3)0.068 (4)0.035 (2)0.030 (3)
Geometric parameters (Å, º) top
O1—C71.223 (2)C6—C71.473 (3)
O2—C81.208 (2)C8—C91.519 (3)
O3—C111.197 (2)C9—C111.527 (3)
O4—C111.324 (3)C9—C101.535 (3)
O4—C121.463 (3)C10—H10A0.9600
N1—C71.371 (2)C10—H10B0.9600
N1—C81.372 (2)C10—H10C0.9600
N1—H10.8600C12—C13A1.406 (13)
C1—C21.373 (3)C12—C131.412 (5)
C1—C61.390 (3)C12—H12A0.9700
C1—H1A0.9300C12—H12B0.9700
C2—C31.380 (3)C12—H12C0.9700
C2—H20.9300C12—H12D0.9700
C3—C41.376 (3)C13—H13A0.9600
C3—H30.9300C13—H13B0.9600
C4—C51.394 (3)C13—H13C0.9600
C4—H40.9300C13A—H13D0.9600
C5—C61.390 (2)C13A—H13E0.9600
C5—C91.517 (2)C13A—H13F0.9600
C11—O4—C12115.2 (2)C9—C10—H10C109.5
C7—N1—C8127.34 (15)H10A—C10—H10C109.5
C7—N1—H1116.3H10B—C10—H10C109.5
C8—N1—H1116.3O3—C11—O4124.5 (2)
C2—C1—C6120.26 (19)O3—C11—C9123.9 (2)
C2—C1—H1A119.9O4—C11—C9111.54 (16)
C6—C1—H1A119.9C13A—C12—C1354.0 (7)
C1—C2—C3119.5 (2)C13A—C12—O4110.5 (6)
C1—C2—H2120.3C13—C12—O4110.2 (3)
C3—C2—H2120.3C13A—C12—H12A139.8
C4—C3—C2120.8 (2)C13—C12—H12A109.6
C4—C3—H3119.6O4—C12—H12A109.6
C2—C3—H3119.6C13A—C12—H12B58.6
C3—C4—C5120.40 (19)C13—C12—H12B109.6
C3—C4—H4119.8O4—C12—H12B109.6
C5—C4—H4119.8H12A—C12—H12B108.1
C6—C5—C4118.45 (18)C13A—C12—H12C109.5
C6—C5—C9121.52 (16)C13—C12—H12C58.8
C4—C5—C9119.93 (16)O4—C12—H12C109.5
C1—C6—C5120.58 (18)H12A—C12—H12C54.2
C1—C6—C7118.94 (17)H12B—C12—H12C140.7
C5—C6—C7120.46 (16)C13A—C12—H12D109.5
O1—C7—N1120.24 (17)C13—C12—H12D140.2
O1—C7—C6122.58 (17)O4—C12—H12D109.5
N1—C7—C6117.17 (15)H12A—C12—H12D56.7
O2—C8—N1120.90 (17)H12B—C12—H12D54.3
O2—C8—C9121.31 (15)H12C—C12—H12D108.1
N1—C8—C9117.70 (15)C12—C13—H13A109.5
C5—C9—C8114.29 (15)C12—C13—H13B109.5
C5—C9—C11108.88 (15)C12—C13—H13C109.5
C8—C9—C11107.75 (15)C12—C13A—H13D109.5
C5—C9—C10109.59 (16)C12—C13A—H13E109.5
C8—C9—C10106.40 (15)H13D—C13A—H13E109.5
C11—C9—C10109.85 (16)C12—C13A—H13F109.5
C9—C10—H10A109.5H13D—C13A—H13F109.5
C9—C10—H10B109.5H13E—C13A—H13F109.5
H10A—C10—H10B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.052.903 (3)172
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H13NO4
Mr247.24
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.4585 (9), 8.1999 (7), 12.5763 (11)
α, β, γ (°)78.876 (7), 77.228 (9), 72.354 (9)
V3)613.28 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.38 × 0.23 × 0.09
Data collection
DiffractometerAgilent Xcalibur Atlas Gemini ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.963, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
3820, 2243, 1659
Rint0.021
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.135, 1.06
No. of reflections2243
No. of parameters170
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.25

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.052.903 (3)172
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

This work was supported by a research grant from the Zhejiang Provincial Natural Science Foundation of China (grant No. Y207295). We thank Mr J. Gu for his valuable help and Mr J. Liu for his assistance in data collection.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBillamboz, M., Bailly, F., Lion, C., Touati, N., Vezin, H., Calmels, C., Andreola, M.-L., Christ, F., Debyser, Z. & Cotelle, P. (2011). J. Med. Chem. 54, 1812-1824.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLu, X.-Y., Chen, Y.-D., Sun, N.-Y., Jiang, Y.-J. & You, Q.-D. (2010). J. Mol. Model. 16, 163-173.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsou, H. R., Liu, X.-X., Birnberg, G., Kaplan, J., Otteng, M., Tran, T., Kutterer, K., Tang, Z.-L., Suayan, R., Zask, A., Ravi, M., Bretz, A., Grillo, M., McGinnis, J. P., Rabindran, S. K., Ayral-Kaloustian, S. & Mansour, T. S. (2009). J. Med. Chem. 52, 2289-2310.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTsou, H. R., Otteng, M., Tran, T., Floyd, M. B. Jr, Reich, M., Birnberg, G., Kutterer, K., Ayral-Kaloustian, S., Ravi, M., Nilakantan, R., Grillo, M., McGinnis, J. P. & Rabindran, S. K. (2008). J. Med. Chem. 51, 3507-3525.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds