organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(3R,6R)-6-Methyl-2,5-dioxomorph­olin-3-yl]-N-(propan-2-yl)acetamide

aKey Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: ludedai@126.com

(Received 8 December 2011; accepted 22 February 2012; online 29 February 2012)

The molecular conformation of the title compound, C10H16N2O4, is determined by an intra­molecular N—H⋯O hydrogen bond involving the morpholine NH group and the amide O atom. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into chains along the a-axis direction.

Related literature

For the synthesis of polydepsipeptides, see: Feng et al. (2002[Feng, Y.-K., Klee, D. & Höcker, H. (2002). Macromol. Chem. Phys. 203, 819-824.]); Hughes & Sleebs (2005[Hughes, A. B. & Sleebs, M. M. (2005). J. Org. Chem. 70, 3079-3088.]); In't Veld et al. (1992[In't Veld, P. J. A., Dijkstra, P. J. & Feijen, J. (1992). Macromol. Chem. Phys. 193, 2713-2730.],1994[In't Veld, P. J. A., Shen, Z. R., Takens, G. A. J., Dijkstra, P. J. & Feijen, J. (1994). J. Polym. Sci. Part A Polym. Chem. 32, 1063-1069.]); Jörres et al. (1998[Jörres, V., Keul, H. & Höcker, H. (1998). Macromol. Chem. Phys. 199, 825-833.]). For the synthesis of title compound, see: Wang & Feng (1997[Wang, D. & Feng, X.-D. (1997). Macromolecules, 30, 5688-5692.]).

[Scheme 1]

Experimental

Crystal data
  • C10H16N2O4

  • Mr = 228.25

  • Monoclinic, P 21

  • a = 8.038 (3) Å

  • b = 5.678 (2) Å

  • c = 12.656 (5) Å

  • β = 105.476 (4)°

  • V = 556.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.28 × 0.26 × 0.24 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.975

  • 3796 measured reflections

  • 1111 independent reflections

  • 973 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.085

  • S = 1.16

  • 1111 reflections

  • 153 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4 0.85 (4) 2.09 (3) 2.763 (4) 136 (3)
N2—H2N⋯O1i 0.82 (3) 2.11 (3) 2.926 (3) 170 (3)
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Polydepsipeptides, copolymers of α-hydroxy acids and α-amino acids, are the most important representatives of biodegradable polyesteramides. Morpholine-2,5-dione derivatives are a series of monomers which were used to synthesize polydepsipeptides via ring-opening polymerization. (In't Veld et al., 1992,1994). In recent years, all kinds of functional groups are introduced into these monomers in order to synthesize functional polydepsipeptides (Feng et al., 2002; Jörres et al., 1998; Hughes & Sleebs, 2005). In our current research, related to this topic, we have designed and synthesized the title compound, which includes the isopropyl amide functional group (Fig. 1). In the crystal structure of the title compound, C10H16N2O4, there are two kinds of hydrogen bonds, one is intramolecular N—H···O [H···O = 2.09 (3) Å] hydrogen bond, the other is intermolecular N—H···O [H···O = 2.11 (3) Å] hydrogen bond which links molecules into the one-dimensional chains along the a-axis direction (Fig. 2).

Related literature top

For the synthesis of polydepsipeptides, see: Feng et al. (2002); Hughes & Sleebs (2005); In't Veld et al. (1992,1994); Jörres et al. (1998). For the synthesis of title compound, see: Wang & Feng (1997).

Experimental top

All reagents used in the syntheses were of analytical grade and used without further purification. The title compound was prepared according to the literature method (Wang & Feng, 1997). Single crystals were grown from ethyl acetate solution by slow evaporation at room temperature.

Refinement top

All H atoms were placed in calculated positions, with C—H distances ranging from 0.96 to 0.98 Å, and N—H distances ranging from 0.82 to 0.85 Å. They were refined in the riding-model approximation, with Uiso(H) = 1.2Ueq(carrier C, N) or Uiso(H) = 1.5Ueq(C of methyl group).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The hydrogen-bonded chain in the structure of title compound.
2-[(3R,6R)-6-methyl-2,5-dioxomorpholin-3-yl]- N-(propan-2-yl)acetamide top
Crystal data top
C10H16N2O4F(000) = 244
Mr = 228.25Dx = 1.362 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2019 reflections
a = 8.038 (3) Åθ = 2.6–28.4°
b = 5.678 (2) ŵ = 0.11 mm1
c = 12.656 (5) ÅT = 296 K
β = 105.476 (4)°Block, colourless
V = 556.6 (3) Å30.28 × 0.26 × 0.24 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
1111 independent reflections
Radiation source: fine-focus sealed tube973 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 98
Tmin = 0.971, Tmax = 0.975k = 66
3796 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.0663P]
where P = (Fo2 + 2Fc2)/3
1111 reflections(Δ/σ)max < 0.001
153 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.13 e Å3
Crystal data top
C10H16N2O4V = 556.6 (3) Å3
Mr = 228.25Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.038 (3) ŵ = 0.11 mm1
b = 5.678 (2) ÅT = 296 K
c = 12.656 (5) Å0.28 × 0.26 × 0.24 mm
β = 105.476 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
1111 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
973 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.975Rint = 0.026
3796 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.13 e Å3
1111 reflectionsΔρmin = 0.13 e Å3
153 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3090 (3)0.0143 (5)0.7877 (2)0.0396 (6)
H1N0.303 (3)0.121 (7)0.759 (2)0.041 (9)*
O10.0310 (2)0.0204 (5)0.78753 (18)0.0587 (6)
C20.1717 (3)0.1165 (6)0.8051 (2)0.0395 (7)
N20.7140 (3)0.2115 (4)0.66322 (19)0.0384 (6)
H2N0.803 (4)0.138 (6)0.691 (2)0.041 (9)*
O20.6493 (2)0.3811 (4)0.93137 (16)0.0480 (6)
C30.1981 (3)0.3664 (6)0.8450 (2)0.0425 (7)
H3A0.18030.46990.78100.051*
O30.3725 (2)0.4038 (4)0.91393 (15)0.0426 (5)
O40.4538 (2)0.3182 (4)0.67977 (16)0.0500 (6)
C50.5079 (3)0.3148 (5)0.8859 (2)0.0343 (7)
C60.4708 (3)0.1354 (5)0.7952 (2)0.0310 (6)
H6A0.46070.21840.72590.037*
C70.0782 (4)0.4419 (7)0.9102 (3)0.0641 (11)
H7A0.10230.60230.93320.096*
H7B0.09390.34260.97350.096*
H7C0.03880.42950.86590.096*
C80.6152 (3)0.0437 (5)0.8098 (2)0.0351 (7)
H8A0.72440.03800.82030.042*
H8B0.62100.13700.87490.042*
C90.5878 (3)0.2038 (5)0.7122 (2)0.0355 (7)
C100.7090 (3)0.3549 (6)0.5672 (2)0.0409 (7)
H10A0.58980.35780.52110.049*
C110.8204 (5)0.2421 (7)0.5025 (3)0.0704 (11)
H11A0.78220.08360.48390.106*
H11B0.81180.33060.43660.106*
H11C0.93840.24030.54580.106*
C120.7629 (5)0.6010 (7)0.5983 (3)0.0634 (10)
H12A0.68950.66720.63920.095*
H12B0.88030.60230.64240.095*
H12C0.75380.69270.53320.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0359 (13)0.0329 (15)0.0509 (16)0.0098 (12)0.0133 (11)0.0121 (14)
O10.0304 (11)0.0629 (16)0.0810 (15)0.0155 (11)0.0121 (10)0.0133 (14)
C20.0326 (15)0.0445 (19)0.0402 (15)0.0056 (14)0.0077 (12)0.0024 (14)
N20.0345 (13)0.0397 (15)0.0424 (14)0.0085 (12)0.0127 (11)0.0152 (12)
O20.0342 (10)0.0475 (13)0.0588 (12)0.0081 (11)0.0064 (9)0.0169 (11)
C30.0330 (14)0.0476 (19)0.0453 (17)0.0025 (15)0.0073 (12)0.0029 (15)
O30.0322 (9)0.0479 (13)0.0481 (11)0.0059 (10)0.0115 (8)0.0154 (10)
O40.0389 (11)0.0542 (15)0.0574 (13)0.0152 (11)0.0138 (9)0.0229 (12)
C50.0346 (15)0.0343 (18)0.0359 (14)0.0045 (13)0.0125 (11)0.0009 (13)
C60.0299 (13)0.0330 (16)0.0305 (14)0.0062 (12)0.0088 (10)0.0015 (13)
C70.0410 (17)0.077 (3)0.077 (2)0.0029 (19)0.0215 (15)0.028 (2)
C80.0330 (14)0.0361 (18)0.0351 (14)0.0045 (13)0.0072 (11)0.0050 (13)
C90.0340 (14)0.0340 (17)0.0375 (15)0.0004 (13)0.0077 (11)0.0011 (14)
C100.0370 (15)0.0457 (19)0.0394 (16)0.0007 (15)0.0091 (12)0.0102 (15)
C110.112 (3)0.051 (2)0.063 (2)0.001 (2)0.050 (2)0.003 (2)
C120.091 (3)0.039 (2)0.069 (2)0.002 (2)0.035 (2)0.0075 (19)
Geometric parameters (Å, º) top
N1—C21.317 (4)C6—H6A0.9800
N1—C61.452 (3)C7—H7A0.9600
N1—H1N0.85 (4)C7—H7B0.9600
O1—C21.222 (3)C7—H7C0.9600
C2—C31.502 (5)C8—C91.502 (4)
N2—C91.323 (3)C8—H8A0.9700
N2—C101.454 (4)C8—H8B0.9700
N2—H2N0.82 (3)C10—C121.485 (5)
O2—C51.190 (3)C10—C111.508 (4)
C3—O31.456 (3)C10—H10A0.9800
C3—C71.489 (4)C11—H11A0.9600
C3—H3A0.9800C11—H11B0.9600
O3—C51.331 (3)C11—H11C0.9600
O4—C91.231 (3)C12—H12A0.9600
C5—C61.504 (4)C12—H12B0.9600
C6—C81.517 (4)C12—H12C0.9600
C2—N1—C6123.8 (3)H7A—C7—H7C109.5
C2—N1—H1N121.1 (19)H7B—C7—H7C109.5
C6—N1—H1N114.0 (19)C9—C8—C6111.5 (2)
O1—C2—N1123.3 (3)C9—C8—H8A109.3
O1—C2—C3121.6 (3)C6—C8—H8A109.3
N1—C2—C3115.0 (3)C9—C8—H8B109.3
C9—N2—C10123.8 (3)C6—C8—H8B109.3
C9—N2—H2N118 (2)H8A—C8—H8B108.0
C10—N2—H2N118 (2)O4—C9—N2122.6 (3)
O3—C3—C7106.7 (2)O4—C9—C8121.1 (2)
O3—C3—C2111.5 (3)N2—C9—C8116.3 (2)
C7—C3—C2113.8 (3)N2—C10—C12111.4 (3)
O3—C3—H3A108.2N2—C10—C11109.1 (3)
C7—C3—H3A108.2C12—C10—C11111.7 (3)
C2—C3—H3A108.2N2—C10—H10A108.2
C5—O3—C3120.7 (2)C12—C10—H10A108.2
O2—C5—O3119.6 (3)C11—C10—H10A108.2
O2—C5—C6123.5 (2)C10—C11—H11A109.5
O3—C5—C6116.8 (2)C10—C11—H11B109.5
N1—C6—C5111.3 (2)H11A—C11—H11B109.5
N1—C6—C8109.5 (2)C10—C11—H11C109.5
C5—C6—C8111.9 (2)H11A—C11—H11C109.5
N1—C6—H6A108.0H11B—C11—H11C109.5
C5—C6—H6A108.0C10—C12—H12A109.5
C8—C6—H6A108.0C10—C12—H12B109.5
C3—C7—H7A109.5H12A—C12—H12B109.5
C3—C7—H7B109.5C10—C12—H12C109.5
H7A—C7—H7B109.5H12A—C12—H12C109.5
C3—C7—H7C109.5H12B—C12—H12C109.5
C6—N1—C2—O1172.1 (3)O2—C5—C6—N1155.1 (3)
C6—N1—C2—C35.8 (4)O3—C5—C6—N125.9 (3)
O1—C2—C3—O3149.0 (3)O2—C5—C6—C832.4 (4)
N1—C2—C3—O333.1 (3)O3—C5—C6—C8148.7 (2)
O1—C2—C3—C728.2 (4)N1—C6—C8—C963.2 (3)
N1—C2—C3—C7153.9 (3)C5—C6—C8—C9173.0 (2)
C7—C3—O3—C5168.1 (3)C10—N2—C9—O40.3 (4)
C2—C3—O3—C543.3 (4)C10—N2—C9—C8179.4 (3)
C3—O3—C5—O2166.4 (3)C6—C8—C9—O455.6 (3)
C3—O3—C5—C612.6 (4)C6—C8—C9—N2123.5 (3)
C2—N1—C6—C536.3 (4)C9—N2—C10—C1283.3 (3)
C2—N1—C6—C8160.4 (2)C9—N2—C10—C11152.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.85 (4)2.09 (3)2.763 (4)136 (3)
N2—H2N···O1i0.82 (3)2.11 (3)2.926 (3)170 (3)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H16N2O4
Mr228.25
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)8.038 (3), 5.678 (2), 12.656 (5)
β (°) 105.476 (4)
V3)556.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.28 × 0.26 × 0.24
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.971, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
3796, 1111, 973
Rint0.026
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.085, 1.16
No. of reflections1111
No. of parameters153
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.85 (4)2.09 (3)2.763 (4)136 (3)
N2—H2N···O1i0.82 (3)2.11 (3)2.926 (3)170 (3)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We are thankful for the financial support of this work by the National Natural Science Foundation of China (grant No. 51103118).

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeng, Y.-K., Klee, D. & Höcker, H. (2002). Macromol. Chem. Phys. 203, 819–824.  CrossRef CAS Google Scholar
First citationHughes, A. B. & Sleebs, M. M. (2005). J. Org. Chem. 70, 3079–3088.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIn't Veld, P. J. A., Dijkstra, P. J. & Feijen, J. (1992). Macromol. Chem. Phys. 193, 2713–2730.  CAS Google Scholar
First citationIn't Veld, P. J. A., Shen, Z. R., Takens, G. A. J., Dijkstra, P. J. & Feijen, J. (1994). J. Polym. Sci. Part A Polym. Chem. 32, 1063–1069.  CAS Google Scholar
First citationJörres, V., Keul, H. & Höcker, H. (1998). Macromol. Chem. Phys. 199, 825–833.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, D. & Feng, X.-D. (1997). Macromolecules, 30, 5688–5692.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds