organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Methyl­benzo­yl)-4-nitro­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 9 February 2012; accepted 21 February 2012; online 29 February 2012)

In the title compound, C14H12N2O5S, the dihedral angle between the nitro­phenyl group and the –S—NH—C—O fragment is 80.74 (17)° and that between the nitro­phenyl and methyl­phenyl groups is 87.66 (14)°. The C—S—N—C torsion angle at the S—N bond is −67.0 (3)°. In the crystal, mol­ecules are linked into C(4) chains via N—H⋯O hydrogen bonds.

Related literature

For our studies on the effects of substituents on the structures and other aspects of N-aryl­amides, see: Gowda et al. (1999[Gowda, B. T., Bhat, D. K., Fuess, H. & Weiss, A. (1999). Z. Naturforsch. Teil A, 54, 261-267.], 2006[Gowda, B. T., Kozisek, J. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 588-594.]). For N-aryl-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2597.]). For N-(substituted-benzo­yl)-aryl­sulfonamides, see: Suchetan et al. (2010[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1501.]). For N-chloro­aryl­amides, see: Jyothi & Gowda (2004[Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64-68.]). For N-bromo­aryl­sulfonamides, see: Usha & Gowda (2006[Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2O5S

  • Mr = 320.32

  • Orthorhombic, P b c a

  • a = 13.969 (1) Å

  • b = 9.6591 (6) Å

  • c = 21.026 (2) Å

  • V = 2837.0 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.40 × 0.18 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.905, Tmax = 0.956

  • 7163 measured reflections

  • 2864 independent reflections

  • 1835 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.152

  • S = 1.16

  • 2863 reflections

  • 203 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.85 (2) 2.16 (2) 2.994 (4) 168 (4)
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our studies on the substituent effects on the structures and other aspects of N-arylamides (Gowda et al., 1999, 2006), N-aryl-methanesulfonamides (Gowda et al., 2007), N-(substituted-benzoyl)-arylsulfonamides (Suchetan et al., 2010), N-chloroarylsulfonamides (Jyothi & Gowda, 2004) and N-bromoarylsulfonamides (Usha & Gowda, 2006), in the present work, the crystal structure of N-(4-methylbenzoyl)-4-nitrobenzenesulfonamide has been determined (Fig.1).

The conformation of the N—H bond in the C—SO2—NH—C(O) segment is anti with respect to the C=O bond (Fig.1), similar to that observed in N-(4-methylbenzoyl)-4-chlorobenzenesulfonamide (I) (Suchetan et al., 2010).

In the title compound, the molecules are twisted at the S–N bonds with the torsional angle of -67.0 (3)°, compared to the value of 69.0 (2)° in (I).

The dihedral angle between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 79.6 (1)°, compared to the value of 77.2 (1)° in (I).

The dihedral angle between the sulfonyl and the benzoyl benzene rings is 89.3 (1)°, compared to the value of 89.5 (1)° in (I).

The packing of molecules linked by of N—H···O hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For our studies on the effects of substituents on the structures and other aspects of N-arylamides, see: Gowda et al. (1999, 2006). For N-aryl-methanesulfonamides, see: Gowda et al. (2007). For N-(substituted-benzoyl)-arylsulfonamides, see: Suchetan et al. (2010). For N-chloroarylamides, see: Jyothi & Gowda (2004). For N-bromoarylsulfonamides, see: Usha & Gowda (2006).

Experimental top

The title compound was prepared by refluxing a mixture of 4-methylbenzoic acid, 4-nitrobenzenesulfonamide and phosphorous oxy chloride for 3 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was reprecipitated by acidifying the filtered solution with dilute HCl. It was filtered, dried and recrystallized.

Rod like colourless single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation from its toluene solution at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and restrained to N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H distances of 0.93Å (C-aromatic) and 0.96Å (C-methyl).

All H atoms were refined with isotropic displacement parameters were set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq(C-methyl).

The Uij components of O4 were restrained to approximate isotropic behaviour.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom- labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
N-(4-Methylbenzoyl)-4-nitrobenzenesulfonamide top
Crystal data top
C14H12N2O5SF(000) = 1328
Mr = 320.32Dx = 1.500 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 818 reflections
a = 13.969 (1) Åθ = 2.6–27.9°
b = 9.6591 (6) ŵ = 0.25 mm1
c = 21.026 (2) ÅT = 293 K
V = 2837.0 (4) Å3Rod, colourless
Z = 80.40 × 0.18 × 0.18 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2864 independent reflections
Radiation source: fine-focus sealed tube1836 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 717
Tmin = 0.905, Tmax = 0.956k = 712
7163 measured reflectionsl = 2619
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0409P)2 + 3.5546P]
where P = (Fo2 + 2Fc2)/3
2863 reflections(Δ/σ)max = 0.015
203 parametersΔρmax = 0.32 e Å3
7 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H12N2O5SV = 2837.0 (4) Å3
Mr = 320.32Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.969 (1) ŵ = 0.25 mm1
b = 9.6591 (6) ÅT = 293 K
c = 21.026 (2) Å0.40 × 0.18 × 0.18 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2864 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1836 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.956Rint = 0.027
7163 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0627 restraints
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.32 e Å3
2863 reflectionsΔρmin = 0.21 e Å3
203 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5261 (3)0.2260 (4)0.55537 (17)0.0407 (9)
C20.4949 (3)0.1161 (4)0.5903 (2)0.0490 (10)
H20.53020.03450.59110.059*
C30.4113 (3)0.1260 (4)0.6240 (2)0.0533 (11)
H30.38990.05210.64860.064*
C40.3601 (3)0.2459 (4)0.62105 (19)0.0450 (9)
C50.3893 (3)0.3565 (5)0.5862 (2)0.0669 (13)
H50.35310.43720.58470.080*
C60.4737 (4)0.3461 (5)0.5534 (2)0.0708 (14)
H60.49560.42090.52960.085*
C70.7385 (3)0.3573 (4)0.59457 (17)0.0405 (9)
C80.8213 (3)0.3558 (4)0.63877 (17)0.0385 (8)
C90.9003 (3)0.2694 (4)0.63104 (19)0.0449 (9)
H90.90180.20660.59750.054*
C100.9763 (3)0.2765 (4)0.67281 (19)0.0490 (10)
H101.02930.21990.66640.059*
C110.9750 (3)0.3668 (4)0.72441 (19)0.0463 (10)
C120.8959 (3)0.4520 (4)0.73124 (19)0.0497 (10)
H120.89380.51350.76520.060*
C130.8207 (3)0.4481 (4)0.68931 (18)0.0458 (10)
H130.76910.50760.69480.055*
C141.0575 (3)0.3736 (5)0.7701 (2)0.0638 (12)
H14A1.11600.38650.74690.077*
H14B1.06090.28890.79390.077*
H14C1.04840.44990.79880.077*
N10.7201 (2)0.2339 (3)0.56360 (15)0.0421 (8)
H1N0.750 (3)0.161 (3)0.5748 (17)0.051*
N20.2706 (3)0.2572 (4)0.65756 (17)0.0569 (9)
O10.6446 (2)0.0697 (3)0.49280 (14)0.0605 (8)
O20.6361 (2)0.3183 (3)0.46528 (13)0.0647 (9)
O30.68781 (18)0.4583 (3)0.58609 (13)0.0519 (7)
O40.2492 (3)0.1639 (4)0.6926 (2)0.1066 (14)
O50.2239 (2)0.3613 (4)0.65262 (17)0.0805 (10)
S10.63333 (7)0.21032 (11)0.51121 (5)0.0474 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.042 (2)0.042 (2)0.038 (2)0.0042 (18)0.0084 (17)0.0030 (17)
C20.046 (2)0.035 (2)0.067 (3)0.0027 (18)0.002 (2)0.005 (2)
C30.050 (2)0.039 (2)0.070 (3)0.003 (2)0.003 (2)0.012 (2)
C40.0384 (19)0.044 (2)0.053 (2)0.0040 (18)0.0034 (19)0.0001 (18)
C50.061 (3)0.052 (3)0.088 (4)0.018 (2)0.014 (3)0.024 (3)
C60.073 (3)0.053 (3)0.087 (3)0.012 (2)0.019 (3)0.039 (3)
C70.041 (2)0.0330 (19)0.048 (2)0.0044 (17)0.0068 (18)0.0038 (18)
C80.0351 (18)0.0321 (18)0.048 (2)0.0054 (16)0.0051 (17)0.0010 (17)
C90.046 (2)0.035 (2)0.054 (2)0.0011 (18)0.0016 (19)0.0090 (18)
C100.041 (2)0.042 (2)0.064 (3)0.0021 (18)0.002 (2)0.001 (2)
C110.043 (2)0.049 (2)0.047 (2)0.007 (2)0.0037 (18)0.001 (2)
C120.048 (2)0.056 (2)0.045 (2)0.007 (2)0.0065 (19)0.013 (2)
C130.040 (2)0.044 (2)0.053 (2)0.0000 (18)0.0099 (19)0.0075 (19)
C140.055 (3)0.085 (3)0.052 (3)0.005 (2)0.007 (2)0.002 (2)
N10.0432 (18)0.0345 (17)0.0487 (19)0.0012 (14)0.0045 (15)0.0009 (15)
N20.051 (2)0.056 (2)0.064 (2)0.0004 (19)0.0042 (19)0.0004 (19)
O10.0604 (18)0.0604 (18)0.0606 (18)0.0056 (15)0.0001 (15)0.0237 (15)
O20.069 (2)0.081 (2)0.0444 (16)0.0037 (17)0.0040 (15)0.0182 (16)
O30.0455 (16)0.0353 (14)0.0749 (19)0.0039 (13)0.0010 (14)0.0027 (14)
O40.098 (3)0.081 (2)0.140 (3)0.004 (2)0.058 (2)0.026 (2)
O50.062 (2)0.086 (2)0.094 (3)0.0287 (19)0.0031 (18)0.004 (2)
S10.0490 (6)0.0523 (6)0.0409 (5)0.0053 (5)0.0008 (5)0.0027 (5)
Geometric parameters (Å, º) top
C1—C21.362 (5)C9—H90.9300
C1—C61.373 (5)C10—C111.392 (5)
C1—S11.769 (4)C10—H100.9300
C2—C31.369 (5)C11—C121.385 (5)
C2—H20.9300C11—C141.502 (5)
C3—C41.363 (5)C12—C131.372 (5)
C3—H30.9300C12—H120.9300
C4—C51.359 (6)C13—H130.9300
C4—N21.471 (5)C14—H14A0.9600
C5—C61.369 (6)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
C6—H60.9300N1—S11.654 (3)
C7—O31.218 (4)N1—H1N0.852 (19)
C7—N11.383 (4)N2—O41.202 (5)
C7—C81.484 (5)N2—O51.203 (4)
C8—C131.387 (5)O1—S11.421 (3)
C8—C91.393 (5)O2—S11.422 (3)
C9—C101.380 (5)
C2—C1—C6120.3 (4)C11—C10—H10119.4
C2—C1—S1119.1 (3)C12—C11—C10117.6 (4)
C6—C1—S1120.5 (3)C12—C11—C14121.3 (4)
C1—C2—C3119.9 (4)C10—C11—C14121.1 (4)
C1—C2—H2120.1C13—C12—C11121.9 (4)
C3—C2—H2120.1C13—C12—H12119.1
C4—C3—C2118.9 (4)C11—C12—H12119.1
C4—C3—H3120.6C12—C13—C8120.4 (4)
C2—C3—H3120.6C12—C13—H13119.8
C5—C4—C3122.4 (4)C8—C13—H13119.8
C5—C4—N2118.6 (4)C11—C14—H14A109.5
C3—C4—N2119.0 (4)C11—C14—H14B109.5
C4—C5—C6118.2 (4)H14A—C14—H14B109.5
C4—C5—H5120.9C11—C14—H14C109.5
C6—C5—H5120.9H14A—C14—H14C109.5
C5—C6—C1120.4 (4)H14B—C14—H14C109.5
C5—C6—H6119.8C7—N1—S1124.7 (3)
C1—C6—H6119.8C7—N1—H1N119 (3)
O3—C7—N1120.9 (3)S1—N1—H1N116 (3)
O3—C7—C8123.5 (3)O4—N2—O5123.0 (4)
N1—C7—C8115.6 (3)O4—N2—C4118.4 (4)
C13—C8—C9118.6 (4)O5—N2—C4118.6 (4)
C13—C8—C7118.0 (3)O1—S1—O2120.89 (19)
C9—C8—C7123.4 (3)O1—S1—N1103.42 (17)
C10—C9—C8120.4 (4)O2—S1—N1109.36 (17)
C10—C9—H9119.8O1—S1—C1108.56 (18)
C8—C9—H9119.8O2—S1—C1108.45 (18)
C9—C10—C11121.2 (4)N1—S1—C1105.02 (16)
C9—C10—H10119.4
C6—C1—C2—C30.7 (6)C14—C11—C12—C13179.1 (4)
S1—C1—C2—C3179.1 (3)C11—C12—C13—C81.0 (6)
C1—C2—C3—C41.1 (6)C9—C8—C13—C121.0 (5)
C2—C3—C4—C50.6 (7)C7—C8—C13—C12179.4 (3)
C2—C3—C4—N2179.6 (4)O3—C7—N1—S12.5 (5)
C3—C4—C5—C60.3 (7)C8—C7—N1—S1178.8 (3)
N2—C4—C5—C6178.7 (4)C5—C4—N2—O4173.7 (5)
C4—C5—C6—C10.7 (8)C3—C4—N2—O45.4 (6)
C2—C1—C6—C50.2 (7)C5—C4—N2—O53.9 (6)
S1—C1—C6—C5178.2 (4)C3—C4—N2—O5177.0 (4)
O3—C7—C8—C1325.4 (5)C7—N1—S1—O1179.3 (3)
N1—C7—C8—C13153.2 (3)C7—N1—S1—O249.2 (4)
O3—C7—C8—C9152.8 (4)C7—N1—S1—C167.0 (3)
N1—C7—C8—C928.5 (5)C2—C1—S1—O129.9 (4)
C13—C8—C9—C100.3 (6)C6—C1—S1—O1148.6 (4)
C7—C8—C9—C10177.9 (3)C2—C1—S1—O2162.9 (3)
C8—C9—C10—C111.8 (6)C6—C1—S1—O215.5 (4)
C9—C10—C11—C121.8 (6)C2—C1—S1—N180.2 (3)
C9—C10—C11—C14179.6 (4)C6—C1—S1—N1101.3 (4)
C10—C11—C12—C130.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.85 (2)2.16 (2)2.994 (4)168 (4)
Symmetry code: (i) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC14H12N2O5S
Mr320.32
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)13.969 (1), 9.6591 (6), 21.026 (2)
V3)2837.0 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.40 × 0.18 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.905, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
7163, 2864, 1836
Rint0.027
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.152, 1.16
No. of reflections2863
No. of parameters203
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.852 (19)2.16 (2)2.994 (4)168 (4)
Symmetry code: (i) x+3/2, y1/2, z.
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a UGC-BSR one-time Grant to Faculty.

References

First citationGowda, B. T., Bhat, D. K., Fuess, H. & Weiss, A. (1999). Z. Naturforsch. Teil A, 54, 261–267.  CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kozisek, J. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 588–594.  CAS Google Scholar
First citationJyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1501.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUsha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds