metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m335-m336

catena-Poly[ammonium (cadmium-tri-μ-thio­cyanato-κ4S:N;κ2N:S)–1,4,10,13,16-hexa­oxa­cyclo­octa­decane (1/1)]

aResearch and Development Centre, Bharathiyar University, Coimbatore 641 046, India, bDepartment of Physics, Rajeswari Vedachalam Government Arts College, Chengalpet 603 001, India, and cDepartment of Physics, The New College (Autonomous), Chennai 600 014, India
*Correspondence e-mail: mnizam_new@yahoo.in

(Received 20 September 2011; accepted 4 February 2012; online 24 February 2012)

In the title compound, {(NH4)[Cd(NCS)3]·C12H24O6}n, the Cd2+ ion, the ammonium cation, one of the SCN ligands and the macrocycle are located on mirror planes. The thiocyanate anions act as bridging ligands between the CdII ions, leading to a polymeric chain arrangement extending along [001] around a twofold screw axis. The ammonium ions are contained within the bowl of the macrocycle via extensive N—H⋯O hydrogen bonding.

Related literature

For a singly bridged cadmium thio­cyanate complex, see: Bose et al. (2004[Bose, D., Banerjee, J., Rahaman, S. H., Mostafa, G., Fun, H.-K., Walsh, R. D. B., Zaworotko, M. J. & Ghosh, B. K. (2004). Polyhedron, 23, 2045-2053.]). For a triply bridged cadmium thio­cyanate complex, see: Chen et al. (2002[Chen, W., Liu, F. & You, X. (2002). J. Solid State Chem. 167, 119-125.]). For an S-bound terminal thio­cyanate cadmium complex, see: Nfor et al. (2006[Nfor, E. N., Liu, W., Zuo, J.-L. & You, X.-Z. (2006). Transition Met. Chem. 31, 837-841.]). For polymeric structures of complexes, see: Lobana et al. (2008[Lobana, T. S., Sharma, R., Sharma, R., Sultana, R. & Butcher, R. J. (2008). Z. Anorg. Allg. Chem. 634, 718-723.]). For the structures and properties of cadmium compounds, see: Gu et al. (2011[Gu, J. Z., Lv, D. Y., Gao, Z. Q., Liu, J. Z., Dou, W. & Tang, Y. (2011). J. Solid State Chem. 184, 675-683.]); Zheng et al. (2004[Zheng, S.-L., Yang, J.-H., Yu, X.-L., Chen, X.-M. & Wong, W.-T. (2004). Inorg. Chem. 43, 830-838.]); Rajesh et al. (2004[Rajesh, N. P., Kannan, V., Ashok, M., Sivaji, K., Raghavan, P. S. & Ramasamy, P. (2004). J. Cryst. Growth, 262, 561-566.]). For bond lengths and angles of related compounds, see: Nawaz et al. (2010[Nawaz, S., Sadaf, S., Fettouhi, M., Fazal, A. & Ahmad, S. (2010). Acta Cryst. E66, m950.]).

[Scheme 1]

Experimental

Crystal data
  • (NH4)[Cd(NCS)3]·C12H24O6

  • Mr = 568.99

  • Orthorhombic, C m c 21

  • a = 14.7568 (6) Å

  • b = 15.4378 (6) Å

  • c = 10.6383 (5) Å

  • V = 2423.54 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.716, Tmax = 0.796

  • 11323 measured reflections

  • 2483 independent reflections

  • 2445 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.013

  • wR(F2) = 0.034

  • S = 1.09

  • 2483 reflections

  • 154 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 7607 Friedel pairs

  • Flack parameter: 0.005 (15)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3E⋯O2 0.89 (1) 2.03 (1) 2.9130 (19) 174 (3)
N3—H3D⋯O4 0.90 (1) 2.05 (3) 2.892 (3) 155 (5)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiocyanate anion is known to bind the cadmium ion in different modes: terminal N-bound, terminal S-bound (Nfor et al. 2006) or N:S-bridging ligand. As a bridging ligand, it may give rise to a singly bridged (Bose et al. 2004), doubly bridged or triply bridged (Chen et al. 2002) cadmium complex. Cadmium(II) complexes with thiones possess a variety of structures ranging from four- to six-coordinate species with tetrahedral and octahedral environments for the CdII atom, respectively. In some cases, these units further aggregate to form polymeric structures (Lobana et al., 2008). The interest in cadmium compounds was provoked by their luminescent properties (Zheng et al., 2004), magnetic and catalytic properties (Gu et al., 2011) and non-linear optical properties (Rajesh et al., 2004). Herein, we report the synthesis and crystal structure of cadmium complex, the title compound, (I), coordinated by nitrogen and sulfur.

A perspective view of compound (I) with the atom-numbering scheme is shown in Fig. 1. The CdII ions are bridged by a pair of thiocyanate N:S-bridging ligands around a twofold screw axis. Two trans-N:S-bridging thiocyanates complete the N3S3 donor set around the Cd atom. The thiocyanate anions function as bridging ligands between the CdII centres, leading to a chain-like arrangement expanding along [001]. The thiocyanate ligands are almost linear.

The Cd—S bond lengths are 2.747 (4) and 2.728 (4) Å. These are in agreement with those reported for related compounds (Nawaz et al., 2010). The bond distances of N-bonded NCS groups [Cd—N(NCS) 2.347 (4) and 2.375 (4) Å]. These values agree well with those observed in [Cd(NCS)2(1-vinylimidazole)4] (Gu et al., 2011). The values of the bond angles around cadmium are close to those expected for a regular octahedral geometry, the largest angular deviation being observed for the N2 –Cd1- N1 angle [93.34 (5)°].

The parameters of hydrogen bonds are given in the Table 1. The thiocyanate anions function as bridging ligands between the CdII centres, leading to a chain-like arrangement are parallel to one another and expanding along [001]. The ammonium molecules also participate in extensive N—H···O hydrogen bonding, as shown in Fig. 2.

Related literature top

For a singly bridged cadmium thiocyanate complex, see: Bose et al. (2004). For a triply bridged cadmium thiocyanate complex, see: Chen et al. (2002). For an S-bound terminal thiocyanate cadmium complex, see: Nfor et al. (2006). For polymeric structures of complexes, see: Lobana et al. (2008). For the structures and properties of cadmium compounds, see: Gu et al. (2011); Zheng et al. (2004); Rajesh et al. (2004). For bond distances and angles, see: Nawaz et al. (2010).

Experimental top

The mixture of 18-crown-6 (C12H24O6), CdCl2 and NH4SCN (molar ratio 1:1:3) were thoroughly dissolved in double distilled water and stirred for 5 h to obtain a homogeneous mixture. The colorless single crystals were obtained after the filtrate had been allowed to stand at room temperature for three weeks.

Refinement top

Carbon H atoms were placed geometrically (C—H = 0.97 Å) and treated as riding with Uiso(H) = 1.2Ueq(C). Water H atoms were located in calculated positions and treated in the subsequent refinement as riding atoms, with N—H = 0.89 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and publCIF (Westrip, 2010)..

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme and 50% probability displacement ellipsoids. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Molecular packing, viewed down c axis.
catena-Poly[ammonium (cadmium-tri-µ-thiocyanato-κ4S:N;κ2N:S)– 1,4,10,13,16-hexaoxacyclooctadecane (1/1)] top
Crystal data top
(NH4)[Cd(NCS)3]·C12H24O6F(000) = 1160
Mr = 568.99Dx = 1.559 Mg m3
Orthorhombic, Cmc21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c -2Cell parameters from 5280 reflections
a = 14.7568 (6) Åθ = 2.6–26.7°
b = 15.4378 (6) ŵ = 1.20 mm1
c = 10.6383 (5) ÅT = 293 K
V = 2423.54 (18) Å3Block, colourless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2483 independent reflections
Radiation source: fine-focus sealed tube2445 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω and ϕ scanθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1818
Tmin = 0.716, Tmax = 0.796k = 1919
11323 measured reflectionsl = 1313
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.013 w = 1/[σ2(Fo2) + (0.020P)2 + 0.1189P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.034(Δ/σ)max = 0.003
S = 1.09Δρmax = 0.20 e Å3
2483 reflectionsΔρmin = 0.36 e Å3
154 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
5 restraintsExtinction coefficient: 0.0058 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 7607 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.005 (15)
Crystal data top
(NH4)[Cd(NCS)3]·C12H24O6V = 2423.54 (18) Å3
Mr = 568.99Z = 4
Orthorhombic, Cmc21Mo Kα radiation
a = 14.7568 (6) ŵ = 1.20 mm1
b = 15.4378 (6) ÅT = 293 K
c = 10.6383 (5) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2483 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2445 reflections with I > 2σ(I)
Tmin = 0.716, Tmax = 0.796Rint = 0.019
11323 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.013H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.034Δρmax = 0.20 e Å3
S = 1.09Δρmin = 0.36 e Å3
2483 reflectionsAbsolute structure: Flack (1983), 7607 Friedel pairs
154 parametersAbsolute structure parameter: 0.005 (15)
5 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.61632 (10)1.06679 (10)0.72484 (14)0.0337 (3)
C20.50000.87710 (13)0.7689 (2)0.0339 (4)
C30.9203 (2)0.92459 (19)1.0905 (3)0.0905 (9)
H3A0.92050.96481.16060.109*
H3B0.91770.86621.12400.109*
C40.83962 (17)0.94095 (17)1.0097 (4)0.0885 (10)
H4A0.78510.93821.06040.106*
H4B0.84360.99850.97360.106*
C50.76317 (15)0.89705 (16)0.8297 (3)0.0811 (8)
H5A0.77090.95450.79450.097*
H5B0.70620.89590.87510.097*
C60.76078 (16)0.83248 (19)0.7272 (3)0.0845 (9)
H6A0.75960.77450.76210.101*
H6B0.70650.84050.67700.101*
C70.8399 (2)0.78484 (18)0.5498 (3)0.0923 (10)
H7A0.78470.79080.50100.111*
H7B0.84300.72590.58110.111*
C80.9199 (2)0.80317 (17)0.4690 (2)0.0921 (10)
H8A0.91850.76640.39520.110*
H8B0.91860.86310.44150.110*
N10.60575 (11)1.03455 (9)0.62874 (16)0.0496 (4)
N20.50000.91401 (12)0.86273 (19)0.0454 (5)
O11.00000.93509 (16)1.0190 (3)0.0776 (8)
O20.83461 (10)0.87912 (10)0.91271 (18)0.0692 (4)
O30.83851 (11)0.84297 (10)0.65100 (18)0.0703 (4)
O41.00000.78737 (15)0.5382 (2)0.0742 (7)
N31.00000.80499 (15)0.8089 (2)0.0476 (5)
Cd10.50000.971763 (8)0.494929 (17)0.03587 (6)
S10.63319 (3)1.11267 (3)0.86256 (4)0.04216 (10)
S20.50000.82400 (4)0.63561 (5)0.04418 (14)
H3E0.9497 (12)0.8303 (18)0.836 (3)0.096 (10)*
H3C1.00000.7522 (12)0.844 (3)0.076 (11)*
H3D1.00000.817 (4)0.7264 (16)0.13 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0298 (7)0.0389 (8)0.0324 (7)0.0048 (6)0.0026 (5)0.0036 (6)
C20.0389 (11)0.0289 (9)0.0339 (12)0.0000.0000.0067 (9)
C30.094 (2)0.0801 (18)0.097 (2)0.0021 (14)0.0308 (17)0.0239 (16)
C40.0702 (14)0.0716 (13)0.124 (3)0.0100 (11)0.035 (2)0.025 (2)
C50.0397 (11)0.0731 (14)0.130 (3)0.0164 (10)0.0147 (13)0.0227 (16)
C60.0411 (11)0.0820 (16)0.130 (3)0.0007 (11)0.0205 (13)0.0190 (17)
C70.097 (2)0.0739 (16)0.106 (2)0.0214 (15)0.0549 (19)0.0204 (15)
C80.149 (3)0.0678 (14)0.0592 (19)0.0343 (17)0.0297 (17)0.0138 (11)
N10.0539 (9)0.0612 (9)0.0337 (8)0.0148 (6)0.0025 (7)0.0026 (7)
N20.0682 (13)0.0370 (9)0.0309 (9)0.0000.0000.0015 (9)
O10.0683 (13)0.0780 (14)0.086 (2)0.0000.0000.0160 (14)
O20.0498 (8)0.0570 (8)0.1009 (13)0.0127 (6)0.0144 (8)0.0011 (8)
O30.0628 (9)0.0609 (8)0.0872 (12)0.0032 (7)0.0184 (8)0.0017 (8)
O40.0963 (18)0.0630 (13)0.0632 (14)0.0000.0000.0012 (10)
N30.0385 (12)0.0456 (12)0.0587 (15)0.0000.0000.0006 (10)
Cd10.04531 (9)0.03708 (8)0.02522 (8)0.0000.0000.00054 (7)
S10.0465 (2)0.0454 (2)0.0346 (2)0.00946 (16)0.00023 (17)0.00481 (17)
S20.0649 (4)0.0355 (3)0.0322 (3)0.0000.0000.0024 (2)
Geometric parameters (Å, º) top
C1—N11.148 (2)C7—C81.488 (4)
C1—S11.6463 (15)C7—H7A0.9700
C2—N21.149 (3)C7—H7B0.9700
C2—S21.638 (2)C8—O41.413 (3)
C3—O11.410 (3)C8—H8A0.9700
C3—C41.490 (5)C8—H8B0.9700
C3—H3A0.9700N1—Cd12.3241 (16)
C3—H3B0.9700N2—Cd1i2.256 (2)
C4—O21.408 (4)O1—C3ii1.410 (3)
C4—H4A0.9700O4—C8ii1.413 (3)
C4—H4B0.9700N3—H3E0.888 (10)
C5—O21.403 (3)N3—H3C0.897 (10)
C5—C61.478 (4)N3—H3D0.898 (10)
C5—H5A0.9700Cd1—N2iii2.256 (2)
C5—H5B0.9700Cd1—N1iv2.3241 (16)
C6—O31.414 (3)Cd1—S22.7283 (6)
C6—H6A0.9700Cd1—S1iii2.7468 (4)
C6—H6B0.9700Cd1—S1v2.7468 (4)
C7—O31.402 (3)S1—Cd1i2.7468 (4)
N1—C1—S1179.10 (16)O4—C8—C7109.28 (19)
N2—C2—S2179.69 (19)O4—C8—H8A109.8
O1—C3—C4109.6 (3)C7—C8—H8A109.8
O1—C3—H3A109.7O4—C8—H8B109.8
C4—C3—H3A109.7C7—C8—H8B109.8
O1—C3—H3B109.7H8A—C8—H8B108.3
C4—C3—H3B109.7C1—N1—Cd1144.86 (14)
H3A—C3—H3B108.2C2—N2—Cd1i158.30 (17)
O2—C4—C3110.48 (19)C3ii—O1—C3113.1 (4)
O2—C4—H4A109.6C5—O2—C4111.54 (19)
C3—C4—H4A109.6C7—O3—C6112.2 (2)
O2—C4—H4B109.6C8—O4—C8ii113.4 (3)
C3—C4—H4B109.6H3E—N3—H3C105 (2)
H4A—C4—H4B108.1H3E—N3—H3D103 (3)
O2—C5—C6110.46 (18)H3C—N3—H3D127 (5)
O2—C5—H5A109.6N2iii—Cd1—N193.20 (5)
C6—C5—H5A109.6N2iii—Cd1—N1iv93.20 (5)
O2—C5—H5B109.6N1—Cd1—N1iv84.36 (8)
C6—C5—H5B109.6N2iii—Cd1—S2174.69 (5)
H5A—C5—H5B108.1N1—Cd1—S290.73 (4)
O3—C6—C5109.0 (2)N1iv—Cd1—S290.73 (4)
O3—C6—H6A109.9N2iii—Cd1—S1iii92.94 (4)
C5—C6—H6A109.9N1—Cd1—S1iii172.93 (4)
O3—C6—H6B109.9N1iv—Cd1—S1iii91.80 (4)
C5—C6—H6B109.9S2—Cd1—S1iii83.363 (12)
H6A—C6—H6B108.3N2iii—Cd1—S1v92.94 (4)
O3—C7—C8109.5 (2)N1—Cd1—S1v91.80 (4)
O3—C7—H7A109.8N1iv—Cd1—S1v172.93 (4)
C8—C7—H7A109.8S2—Cd1—S1v83.363 (12)
O3—C7—H7B109.8S1iii—Cd1—S1v91.373 (19)
C8—C7—H7B109.8C1—S1—Cd1i98.27 (5)
H7A—C7—H7B108.2C2—S2—Cd193.24 (7)
O1—C3—C4—O263.7 (3)C1—N1—Cd1—N2iii107.3 (2)
O2—C5—C6—O367.4 (2)C1—N1—Cd1—N1iv14.4 (2)
O3—C7—C8—O464.2 (3)C1—N1—Cd1—S276.3 (2)
C4—C3—O1—C3ii177.23 (15)C1—N1—Cd1—S1v159.7 (2)
C6—C5—O2—C4178.6 (2)N1—Cd1—S2—C242.19 (4)
C3—C4—O2—C5175.5 (2)N1iv—Cd1—S2—C242.19 (4)
C8—C7—O3—C6176.27 (19)S1iii—Cd1—S2—C2133.916 (9)
C5—C6—O3—C7178.75 (19)S1v—Cd1—S2—C2133.916 (9)
C7—C8—O4—C8ii179.93 (16)
Symmetry codes: (i) x+1, y+2, z+1/2; (ii) x+2, y, z; (iii) x+1, y+2, z1/2; (iv) x+1, y, z; (v) x, y+2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3E···O20.89 (1)2.03 (1)2.9130 (19)174 (3)
N3—H3D···O40.90 (1)2.05 (3)2.892 (3)155 (5)

Experimental details

Crystal data
Chemical formula(NH4)[Cd(NCS)3]·C12H24O6
Mr568.99
Crystal system, space groupOrthorhombic, Cmc21
Temperature (K)293
a, b, c (Å)14.7568 (6), 15.4378 (6), 10.6383 (5)
V3)2423.54 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.716, 0.796
No. of measured, independent and
observed [I > 2σ(I)] reflections
11323, 2483, 2445
Rint0.019
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.034, 1.09
No. of reflections2483
No. of parameters154
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.36
Absolute structureFlack (1983), 7607 Friedel pairs
Absolute structure parameter0.005 (15)

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999), PLATON (Spek, 2009) and publCIF (Westrip, 2010)..

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3E···O20.888 (10)2.029 (10)2.9130 (19)174 (3)
N3—H3D···O40.898 (10)2.05 (3)2.892 (3)155 (5)
 

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help in collecting the X-ray intensity data.

References

First citationBose, D., Banerjee, J., Rahaman, S. H., Mostafa, G., Fun, H.-K., Walsh, R. D. B., Zaworotko, M. J. & Ghosh, B. K. (2004). Polyhedron, 23, 2045–2053.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, W., Liu, F. & You, X. (2002). J. Solid State Chem. 167, 119–125.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGu, J. Z., Lv, D. Y., Gao, Z. Q., Liu, J. Z., Dou, W. & Tang, Y. (2011). J. Solid State Chem. 184, 675–683.  Web of Science CSD CrossRef CAS Google Scholar
First citationLobana, T. S., Sharma, R., Sharma, R., Sultana, R. & Butcher, R. J. (2008). Z. Anorg. Allg. Chem. 634, 718–723.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNawaz, S., Sadaf, S., Fettouhi, M., Fazal, A. & Ahmad, S. (2010). Acta Cryst. E66, m950.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNfor, E. N., Liu, W., Zuo, J.-L. & You, X.-Z. (2006). Transition Met. Chem. 31, 837–841.  Web of Science CSD CrossRef CAS Google Scholar
First citationRajesh, N. P., Kannan, V., Ashok, M., Sivaji, K., Raghavan, P. S. & Ramasamy, P. (2004). J. Cryst. Growth, 262, 561–566.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, S.-L., Yang, J.-H., Yu, X.-L., Chen, X.-M. & Wong, W.-T. (2004). Inorg. Chem. 43, 830–838.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m335-m336
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds