organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Carb­­oxy­quinolin-1-ium-2-carboxyl­ate monohydrate

aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: guangbocheujs@yahoo.com.cn

(Received 4 January 2012; accepted 16 February 2012; online 24 February 2012)

The title compound, C11H7NO4·H2O, contains a 3-carb­oxy­quinolin-1-ium-2-carboxyl­ate (qda) zwitterion and one water mol­ecule. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into inversion dimers, and these dimers are further connected by O—H⋯O hydrogen bonds into a three-dimensional supra­molecular architecture. In addition, ππ inter­actions occur between pyridine and benzene rings from different qda ligands [centroid–centroid distance = 3.749 (1) Å] and the dihedral angles of the –CO2H and –CO2 groups to the quinoline system are 8.47 (3) and 88.16 (6)°, respectively.

Related literature

For background on the use of quinoline carb­oxy­lic acid derivatives in metal organic frameworks, see: Dobrzyńska et al. (2004[Dobrzyńska, D., Duczmal, M., Jerzykiewicz, L. B., Warchulska, J. & Drabent, K. (2004). Eur. J. Inorg. Chem. pp. 110-117.], 2005[Dobrzyńska, D., Jerzykiewicz, L. B., Jezierska, J. & Duczmal, M. (2005). Cryst. Growth Des. 5, 1945-1951.]); Hu et al. (2007[Hu, S., Zhang, S.-H. & Zeng, M.-H. (2007). Acta Cryst. E63, m2565.]); Li & Liu (2010[Li, X. L. & Liu, G. Z. (2010). Z. Kristallogr. New Cryst. Struct. 225, 761-762.]). For background on the role of noncovalent inter­molecular inter­actions, see: Wang et al. (2011[Wang, X. L., Zhang, J. X., Liu, G. C. & Lin, H. Y. (2011). J. Solid State Chem. 184, 280-288.]). For related structures, see: Dobrzyńska et al. (2004[Dobrzyńska, D., Duczmal, M., Jerzykiewicz, L. B., Warchulska, J. & Drabent, K. (2004). Eur. J. Inorg. Chem. pp. 110-117.]); Dobrzyńska & Jerzykiewicz (2008[Dobrzyńska, D. & Jerzykiewicz, L. B. (2008). Acta Cryst. E64, m1383-m1384.]); Odoko et al. (2001[Odoko, M., Muranishi, Y. & Okabe, N. (2001). Acta Cryst. E57, m267-m269.]); Zurowska et al. (2007[Zurowska, B., Mrozinski, J. & Ciunik, Z. (2007). Polyhedron, 26, 3085-3091.]).

[Scheme 1]

Experimental

Crystal data
  • C11H7NO4·H2O

  • Mr = 235.19

  • Monoclinic, P 21 /c

  • a = 7.5424 (15) Å

  • b = 14.422 (3) Å

  • c = 9.755 (2) Å

  • β = 108.17 (3)°

  • V = 1008.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 153 K

  • 0.15 × 0.13 × 0.11 mm

Data collection
  • Rigaku CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.981, Tmax = 1

  • 4586 measured reflections

  • 1817 independent reflections

  • 1547 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.101

  • S = 1.05

  • 1817 reflections

  • 168 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.93 (2) 1.71 (2) 2.6392 (16) 170.7 (17)
O1W—H1C⋯O1ii 0.86 (2) 1.93 (2) 2.7589 (16) 161 (2)
O1W—H1D⋯O1 0.87 (2) 1.90 (2) 2.7597 (16) 175 (2)
O4—H4A⋯O1Wiii 0.89 (2) 1.70 (2) 2.5950 (17) 175.6 (19)
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+2, -y, -z+2; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Quinoline carboxylic acid derivatives have been explored in the synthesis of metal organic frameworks due to their abundant coordination modes which lead to the construction of metal organic frameworks with intriguing structures and functional properties (Dobrzyńska et al. 2004; Hu et al. 2007; Dobrzyńska et al. 2005; Li & Liu 2010). It is well known that noncovalent intermolecular interactions such as hydrogen bonding interactions and ππ interactions, play crucial role in the design and construction of supramolecular architecture (Wang et al. 2011). Taking quinoline-2-carboxylic acid for example, the crystal structures of its metal complexes have been determined for several metal ions, including CuII (Zurowska et al. 2007), MnII (Dobrzyńska & Jerzykiewicz, 2008), NiII (Odoko et al. 2001), CoII and FeII (Dobrzyńska et al. 2004). Of these complexes, the magnetic properties of CuII, CoII and FeII complexes have also been investigated. Herein, the structurally similar quinoline-2,3-dicarboxylic acid (qda) is a good choice for constructing a framework with novel physical properties, and the crystal structure of its monohydrate is reported now.

In this report, the title compound was prepared by using quinoline-2,3-dicarboxylic acid (qda) ligand under hydrothermal conditions. The analysis of crystal structure shows that one proton of carboxyl group of qda is transferred to N atom from pyridine ring, and one water molecule exists in the crystal lattice (Fig. 1). As shown in Fig. 2, the N—H···O hydrogen bond (yellow dotted line) links the molecules into dimers, and these dimers are further connected by O–H···O hydrogen bond (black dotted line) to a 3D supramolecular architecture. In addition, the ππ interactions (blue dotted line) occur between pyridine ring and benzene ring from different qda ligands with the distance of 3.749 (1) Å, making the supramolecular network more stable (Fig. 3).

Related literature top

For background on the use of quinoline carboxylic acid derivatives in metal organic frameworks, see: Dobrzyńska et al. (2004, 2005); Hu et al. (2007); Li & Liu (2010). For background on the role of noncovalent intermolecular interactions, see: Wang et al. (2011). For related structures, see: Dobrzyńska et al. (2004); Dobrzyńska & Jerzykiewicz (2008); Odoko et al. (2001); Zurowska et al. (2007).

Experimental top

The quinoline-2,3-dicarboxylic acid (qda) was purchased commercially and used without further purification. A mixture of ZnCl2 (13.4 mg, 0.1 mmol), and qda (43.8 mg, 0.2 mmol) was dissolved in a 15 mL of water, and the pH was adjusted to 7 by 1 mol L-1 sodium hydroxide solution. Then the mixture was placed in a 25 mL autoclave with Teflon-liner. The autoclave was heated to 433 K and held at this temperature for three days. It was then cooled to room temperature under spontaneous conditions. The colourless block crystals were obtained with a yield of 60 %, however, X-ray crystallographic study shows that this crystal is not zinc complex but the title compound.

Refinement top

All H atoms on C atoms were placed in an ideal position using a riding model th with C—H distances of 0.93 Å and Uiso(H)=1.2Ueq(C). The pyridinium NH and hydroxy H-atoms were located in a difference Fourier map with N—H distance of 0.933 Å and O—H distance of 0.893 Å, and their temperature factors were freely refined. Water hydrogen atoms were also located in a difference Fourier map with a distance restraint to their parent O atoms (0.867 and 0.858 Å, respectively) and Uiso(H)=1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalClear (Rigaku, 2007) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The crystal structure of the title compound with atom-labelling scheme, showing 30% probability displacement ellipsoids. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of 3D supramolecular architecture formed by N—H···O hydrogen bond (yellow dotted line) and O—H···O hydrogen bond (black dotted line) along c axis.
[Figure 3] Fig. 3. A view of the formation of the O—H···O interactions and ππ interactions.
3-Carboxyquinolin-1-ium-2-carboxylate monohydrate top
Crystal data top
C11H7NO4·H2OF(000) = 488
Mr = 235.19Dx = 1.549 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4018 reflections
a = 7.5424 (15) Åθ = 4.0–28.9°
b = 14.422 (3) ŵ = 0.13 mm1
c = 9.755 (2) ÅT = 153 K
β = 108.17 (3)°Prism, colourless
V = 1008.3 (4) Å30.15 × 0.13 × 0.11 mm
Z = 4
Data collection top
Rigaku CCD area-detector
diffractometer
1817 independent reflections
Radiation source: fine-focus sealed tube1547 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 28.5714 pixels mm-1θmax = 25.3°, θmin = 4.0°
ω scansh = 87
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
k = 1715
Tmin = 0.981, Tmax = 1l = 811
4586 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0638P)2 + 0.0617P]
where P = (Fo2 + 2Fc2)/3
1817 reflections(Δ/σ)max = 0.001
168 parametersΔρmax = 0.20 e Å3
5 restraintsΔρmin = 0.20 e Å3
Crystal data top
C11H7NO4·H2OV = 1008.3 (4) Å3
Mr = 235.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5424 (15) ŵ = 0.13 mm1
b = 14.422 (3) ÅT = 153 K
c = 9.755 (2) Å0.15 × 0.13 × 0.11 mm
β = 108.17 (3)°
Data collection top
Rigaku CCD area-detector
diffractometer
1817 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
1547 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 1Rint = 0.020
4586 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0365 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.20 e Å3
1817 reflectionsΔρmin = 0.20 e Å3
168 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.65319 (19)0.09213 (9)1.05483 (14)0.0216 (3)
C20.67451 (18)0.30200 (9)1.06906 (15)0.0216 (3)
C30.54746 (17)0.25508 (9)0.93895 (14)0.0195 (3)
C40.54008 (17)0.15740 (9)0.93584 (14)0.0194 (3)
C50.31108 (17)0.16028 (10)0.70347 (14)0.0199 (3)
C60.31153 (18)0.25796 (9)0.70374 (14)0.0192 (3)
C70.19098 (18)0.30475 (10)0.58263 (14)0.0231 (3)
H70.18830.36920.58040.028*
C80.07928 (19)0.25556 (10)0.46975 (16)0.0255 (3)
H80.00000.28670.39090.031*
C90.08227 (19)0.15775 (10)0.47086 (15)0.0266 (3)
H90.00540.12530.39230.032*
C100.19651 (19)0.10985 (10)0.58570 (15)0.0254 (3)
H100.19830.04540.58580.031*
C110.43333 (17)0.30389 (9)0.82448 (14)0.0197 (3)
H110.43620.36840.82650.024*
O10.80640 (13)0.06645 (7)1.04539 (11)0.0322 (3)
O20.57317 (13)0.06656 (6)1.14257 (10)0.0241 (3)
O30.75594 (15)0.25971 (7)1.17666 (11)0.0346 (3)
N10.42599 (15)0.11485 (8)0.82176 (11)0.0206 (3)
H1A0.418 (2)0.0503 (15)0.8245 (19)0.046 (5)*
O1W0.88294 (16)0.02969 (8)0.79197 (12)0.0380 (3)
H1C0.987 (2)0.0010 (13)0.825 (2)0.057*
H1D0.853 (3)0.0434 (14)0.8685 (19)0.057*
O40.68389 (15)0.39253 (7)1.05383 (12)0.0300 (3)
H4A0.757 (3)0.4174 (13)1.136 (3)0.059 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0257 (7)0.0190 (7)0.0174 (7)0.0003 (5)0.0030 (6)0.0014 (5)
C20.0206 (7)0.0246 (7)0.0197 (8)0.0019 (6)0.0061 (6)0.0011 (6)
C30.0197 (7)0.0212 (7)0.0184 (7)0.0010 (5)0.0070 (6)0.0002 (5)
C40.0184 (7)0.0224 (7)0.0181 (7)0.0003 (5)0.0067 (5)0.0004 (5)
C50.0193 (7)0.0224 (7)0.0180 (7)0.0006 (5)0.0060 (5)0.0014 (5)
C60.0185 (7)0.0214 (7)0.0183 (7)0.0006 (5)0.0067 (6)0.0002 (5)
C70.0234 (7)0.0226 (7)0.0225 (8)0.0031 (6)0.0059 (6)0.0028 (6)
C80.0210 (7)0.0319 (8)0.0197 (7)0.0040 (6)0.0006 (6)0.0032 (6)
C90.0231 (7)0.0326 (8)0.0209 (7)0.0040 (6)0.0022 (6)0.0049 (6)
C100.0280 (8)0.0223 (7)0.0251 (8)0.0034 (6)0.0068 (6)0.0021 (6)
C110.0224 (7)0.0183 (7)0.0199 (8)0.0001 (5)0.0087 (6)0.0007 (5)
O10.0256 (5)0.0411 (6)0.0285 (6)0.0120 (5)0.0063 (4)0.0085 (5)
O20.0345 (6)0.0186 (5)0.0198 (5)0.0016 (4)0.0092 (4)0.0012 (4)
O30.0391 (6)0.0319 (6)0.0220 (6)0.0069 (5)0.0061 (5)0.0050 (5)
N10.0240 (6)0.0173 (6)0.0193 (6)0.0012 (5)0.0050 (5)0.0010 (4)
O1W0.0426 (7)0.0441 (7)0.0249 (6)0.0210 (5)0.0073 (5)0.0095 (5)
O40.0367 (6)0.0217 (5)0.0243 (6)0.0046 (4)0.0011 (5)0.0029 (4)
Geometric parameters (Å, º) top
C1—O11.2439 (17)C6—C71.4170 (18)
C1—O21.2470 (17)C7—C81.359 (2)
C1—C41.5310 (18)C7—H70.9300
C2—O31.2038 (16)C8—C91.411 (2)
C2—O41.3184 (17)C8—H80.9300
C2—C31.4929 (18)C9—C101.369 (2)
C3—C111.3727 (18)C9—H90.9300
C3—C41.4098 (19)C10—H100.9300
C4—N11.3260 (17)C11—H110.9300
C5—N11.3741 (17)N1—H1A0.93 (2)
C5—C101.4059 (19)O1W—H1C0.858 (15)
C5—C61.409 (2)O1W—H1D0.868 (15)
C6—C111.4126 (19)O4—H4A0.89 (2)
O1—C1—O2128.49 (13)C8—C7—H7120.0
O1—C1—C4115.97 (12)C6—C7—H7120.0
O2—C1—C4115.32 (11)C7—C8—C9120.75 (13)
O3—C2—O4124.70 (13)C7—C8—H8119.6
O3—C2—C3121.96 (12)C9—C8—H8119.6
O4—C2—C3113.32 (12)C10—C9—C8121.03 (13)
C11—C3—C4118.97 (12)C10—C9—H9119.5
C11—C3—C2122.18 (12)C8—C9—H9119.5
C4—C3—C2118.81 (11)C9—C10—C5118.53 (13)
N1—C4—C3119.43 (11)C9—C10—H10120.7
N1—C4—C1114.47 (11)C5—C10—H10120.7
C3—C4—C1126.09 (11)C3—C11—C6121.18 (13)
N1—C5—C10120.37 (13)C3—C11—H11119.4
N1—C5—C6118.34 (12)C6—C11—H11119.4
C10—C5—C6121.29 (12)C4—N1—C5123.95 (12)
C5—C6—C11118.10 (12)C4—N1—H1A118.0 (11)
C5—C6—C7118.30 (12)C5—N1—H1A118.0 (11)
C11—C6—C7123.60 (13)H1C—O1W—H1D104.2 (18)
C8—C7—C6120.10 (13)C2—O4—H4A109.7 (13)
O3—C2—C3—C11170.11 (13)C5—C6—C7—C80.28 (18)
O4—C2—C3—C118.67 (17)C11—C6—C7—C8179.25 (13)
O3—C2—C3—C47.72 (19)C6—C7—C8—C90.4 (2)
O4—C2—C3—C4173.51 (12)C7—C8—C9—C100.4 (2)
C11—C3—C4—N11.20 (18)C8—C9—C10—C50.2 (2)
C2—C3—C4—N1179.10 (11)N1—C5—C10—C9179.13 (12)
C11—C3—C4—C1178.47 (11)C6—C5—C10—C90.88 (19)
C2—C3—C4—C10.57 (18)C4—C3—C11—C60.89 (18)
O1—C1—C4—N189.54 (14)C2—C3—C11—C6178.72 (12)
O2—C1—C4—N185.51 (14)C5—C6—C11—C30.38 (18)
O1—C1—C4—C390.78 (16)C7—C6—C11—C3179.91 (12)
O2—C1—C4—C394.17 (15)C3—C4—N1—C50.20 (18)
N1—C5—C6—C111.36 (18)C1—C4—N1—C5179.51 (11)
C10—C5—C6—C11178.63 (11)C10—C5—N1—C4178.89 (12)
N1—C5—C6—C7179.09 (11)C6—C5—N1—C41.10 (18)
C10—C5—C6—C70.92 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.93 (2)1.71 (2)2.6392 (16)170.7 (17)
O1W—H1C···O1ii0.86 (2)1.93 (2)2.7589 (16)161 (2)
O4—H4A···O1Wiii0.89 (2)1.70 (2)2.5950 (17)175.6 (19)
O1W—H1D···O10.87 (2)1.90 (2)2.7597 (16)175 (2)
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y, z+2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H7NO4·H2O
Mr235.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)7.5424 (15), 14.422 (3), 9.755 (2)
β (°) 108.17 (3)
V3)1008.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.15 × 0.13 × 0.11
Data collection
DiffractometerRigaku CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.981, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
4586, 1817, 1547
Rint0.020
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.101, 1.05
No. of reflections1817
No. of parameters168
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: , SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalClear (Rigaku, 2007) and DIAMOND (Brandenburg, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.93 (2)1.71 (2)2.6392 (16)170.7 (17)
O1W—H1C···O1ii0.858 (15)1.934 (16)2.7589 (16)160.7 (19)
O4—H4A···O1Wiii0.89 (2)1.70 (2)2.5950 (17)175.6 (19)
O1W—H1D···O10.868 (15)1.895 (16)2.7597 (16)175 (2)
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y, z+2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors are thankful for the support of Jiangsu University for this work.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDobrzyńska, D., Duczmal, M., Jerzykiewicz, L. B., Warchulska, J. & Drabent, K. (2004). Eur. J. Inorg. Chem. pp. 110–117.  Google Scholar
First citationDobrzyńska, D. & Jerzykiewicz, L. B. (2008). Acta Cryst. E64, m1383–m1384.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDobrzyńska, D., Jerzykiewicz, L. B., Jezierska, J. & Duczmal, M. (2005). Cryst. Growth Des. 5, 1945–1951.  Google Scholar
First citationHu, S., Zhang, S.-H. & Zeng, M.-H. (2007). Acta Cryst. E63, m2565.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X. L. & Liu, G. Z. (2010). Z. Kristallogr. New Cryst. Struct. 225, 761–762.  CAS Google Scholar
First citationOdoko, M., Muranishi, Y. & Okabe, N. (2001). Acta Cryst. E57, m267–m269.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. L., Zhang, J. X., Liu, G. C. & Lin, H. Y. (2011). J. Solid State Chem. 184, 280–288.  Web of Science CSD CrossRef CAS Google Scholar
First citationZurowska, B., Mrozinski, J. & Ciunik, Z. (2007). Polyhedron, 26, 3085–3091.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds