organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o702-o703

3,6-Di­methyl-N1,N4-bis­­(pyridin-2-yl)-1,2,4,5-tetra­zine-1,4-dicarboxamide

aCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and bHangzhou Institute of Calibration and Testing for Quality and Technical Supervision, Hangzhou 310019, People's Republic of China
*Correspondence e-mail: rgw@zjut.edu.cn

(Received 18 January 2012; accepted 7 February 2012; online 17 February 2012)

In the title mol­ecule, C16H16N8O2, four atoms of the tetra­zine ring are coplanar, with the largest deviation from the plane being 0.0236 (12) Å; the other two atoms of the tetra­zine ring deviate on the same side from this plane by 0.320 (4) and 0.335 (4) Å. Therefore, the central tetra­zine ring exhibits a boat conformation. The dihedral angles between the mean plane of the four coplanar atoms of the tetrazine ring and the two pyridine rings are 26.22 (10) and 6.97 (5)°. The two pyridine rings form a dihedral angle of 31.27 (8)°. In the molecule, there are a number of short C—H⋯O interactions. In the crystal, molecules are linked via a C—H⋯O interaction to form zigzag chains propagating along the [010] direction.

Related literature

For the activities of 1,2,4,5-tetra­zine derivatives in chemical reactions, see: Domingo et al. (2009[Domingo, L. R., Picher, M. T. & Saez, J. A. (2009). J. Org. Chem. 74, 2726-2735.]); Lorincz et al. (2010[Lorincz, K., Kotschy, A., Tammiku-Taul, J., Sikk, L. & Burk, P. (2010). J. Org. Chem. 75, 6196-6200.]). For biological activities in 1,2,4,5-tetra­zine derivatives, see: Eremeev et al. (1978[Eremeev, A. V., Tikhomirv, D. A., Tyusheva, V. A. & Liepins, F. (1978). Khim. Geterotsikl. Soedin. pp. 753-757.], 1980[Eremeev, A. V., Tikhomirova, D. A. & Zidermane, A. (1980). USSR Patent No. 686336.]); Neunhoeffer (1984[Neunhoeffer, H. (1984). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katritzky, Vol. 3, pp. 531-572. Frankfurt: Pergamon.]); Sauer (1996[Sauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901-955. Oxford: Elsevier.]). For anti­tumor activities of 1,2,4,5-tetra­zine derivatives, see: Hu et al. (2002[Hu, W. X., Sun, Y. Q., Yuan, Q. & Yang, Z. Y. (2002). Chem. J. Chin. Univ. 23, 1877-1881.], 2004[Hu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177-1181.]); Rao & Hu (2005[Rao, G. W. & Hu, W. X. (2005). Bioorg. Med. Chem. Lett. 15, 3174-3176.], 2006[Rao, G. W. & Hu, W. X. (2006). Bioorg. Med. Chem. Lett. 16, 3702-3705.]). For typical bond lengths for C=N double and C—N and N—N single bonds, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the synthesis of the title compound, see: Hu et al. (2004[Hu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177-1181.]); Skorianetz & Kováts (1970[Skorianetz, W. & Kováts, E. Sz. (1970). Helv. Chim. Acta, 53, 251-262.], 1971[Skorianetz, W. & Kováts, E. Sz. (1971). Helv. Chim. Acta, 54, 1922-1939.]); Sun et al. (2003[Sun, Y. Q., Hu, W. X. & Yuan, Q. (2003). Synth. Commun. 33, 2769-2775.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N8O2

  • Mr = 352.37

  • Monoclinic, P 21 /c

  • a = 11.753 (2) Å

  • b = 20.081 (4) Å

  • c = 7.2012 (14) Å

  • β = 96.273 (3)°

  • V = 1689.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.36 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.981

  • 7032 measured reflections

  • 2985 independent reflections

  • 2430 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.182

  • S = 1.07

  • 2985 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O2 0.96 2.07 2.778 (4) 130
C2—H2A⋯O1 0.96 2.09 2.777 (4) 127
C8—H8⋯O1 0.93 2.31 2.886 (3) 120
C16—H16⋯O1i 0.93 2.39 3.229 (3) 150
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Tetrazine derivatives have high activities of chemical reaction (Domingo et al., 2009; Lorincz et al., 2010), and have been widely used in pesticides and medicines (Eremeev et al., 1978, 1980; Neunhoeffer, 1984; Sauer, 1996). In a continuation of our studies of antitumor activities in 1,2,4,5-tetrazine derivatives (Hu et al., 2002, 2004; Rao & Hu, 2005, 2006), we have obtained a colourless crystalline compound, (I). However, IR, NMR, and MS studies failed to prove whether the substituted groups of the nitrogen are located at the 1,4 or 1,2 position. The structure was confirmed by single-crystal X-ray diffraction.

The molecular structure of (I) is illustrated in Fig. 1. The N2C3 [1.279 (3) Å] and N5C6 [1.278 (3) Å] bonds correspond to typical double bonds of CN, and the C3—N4 [1.395 (3) Å], N4—N5 [1.419 (3) Å], C6—N1 [1.388 (3) Å] and N1—N2 [1.420 (3) Å] bond lengths correspond to typical single bonds (Allen et al., 1987). Therefore, the tetrazine ring is the 1,4-dihydro structure with the N-substituted groups at the 1,4-positions and not the 1,2-positions, the compound being 3,6-dimethyl-N1,N4-di(pyridin-2-yl)-1,2,4,5-tetrazine-1,4-dicarboxamide, rather than the 3,6-dimethyl-N1,N2-di(pyridin-2-yl)-1,2,4,5-tetrazine-1,2-dicarboxamide.

In (I), atoms N2, C3, N5 and C6 are coplanar, with the largest deviation from this plane being ±0.0236 (12) Å. Atoms N1 and N4 deviate from this plane by -0.3202 (35) and -0.3345 (36) Å, respectively. The dihedral angle between the N2/C3/N5/C6 plane and the N1/N2/C6 plane is 26.25 (18)°, and between the N2/C3/N5/C6 plane and the N4/N5/C3 plane is 27.18 (19)°. Therefore, the central six-member ring of the compound, the tetrazine ring, has an obvious boat conformation. The dihedral angles between the N2/C3/N5/C6 plane and the two pyridyl rings are 26.22 (10) and 6.97 (5)°, respectively. And two pyridyl rings form a dihedral angle of 31.27 (8)°. In the molecule, there are a number of short C—H···O interactions. In the crystal, molecules are linked via a C—H···O interaction to form zigzag chains propagating along the [010] direction.

Related literature top

For the high activities of 1,2,4,5-tetrazine derivatives in chemical reactions, see: Domingo et al. (2009); Lorincz et al. (2010). For biological activities in 1,2,4,5-tetrazine derivatives, see: Eremeev et al. (1978, 1980); Neunhoeffer (1984); Sauer (1996). For antitumor activities in 1,2,4,5-tetrazine derivatives, see: Hu et al. (2002, 2004); Rao & Hu (2005, 2006). For typical bond lengths for CN double and C—N and N—N single bonds, see: Allen et al. (1987). For the synthesis of the title compound, see: Hu et al. (2004); Skorianetz & Kováts (1970, 1971); Sun et al. (2003).

Experimental top

The title compound was prepared according to the procedure of Hu et al. (2004), Sun et al. (2003) and Skorianetz & Kováts (1970, 1971). A saturated solution of the compound in ethanol and dichloromethane (4:1, v/v) of 298 K was concentrated gradually at room temperature to afford colourless blocks.

Refinement top

H atoms were included in calculated positions and refined using a riding model. H atoms were given isotropic displacement parameters equal to 1.2 (or 1.5 for methyl H atoms) times the equivalent isotropic displacement parameters of their parent atoms, and C—H distances were set to 0.96 Å for methyl H atoms and 0.93 Å for pyridyl H atoms, while N—H distances were set to 0.86 Å.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of (I), shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A portion of the crystal packing of (I). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding were omitted for clarity.
3,6-Dimethyl-N1,N4-bis(pyridin-2-yl)-1,2,4,5-tetrazine-1,4- dicarboxamide top
Crystal data top
C16H16N8O2Z = 4
Mr = 352.37F(000) = 736
Monoclinic, P21/cDx = 1.385 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.753 (2) Åθ = 3.0–28.2°
b = 20.081 (4) ŵ = 0.10 mm1
c = 7.2012 (14) ÅT = 298 K
β = 96.273 (3)°Block, colourless
V = 1689.4 (6) Å30.36 × 0.23 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2985 independent reflections
Radiation source: fine-focus sealed tube2430 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1311
Tmin = 0.965, Tmax = 0.981k = 2322
7032 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.182 w = 1/[σ2(Fo2) + (0.0986P)2 + 0.7423P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2985 reflectionsΔρmax = 0.44 e Å3
236 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (2)
Crystal data top
C16H16N8O2V = 1689.4 (6) Å3
Mr = 352.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.753 (2) ŵ = 0.10 mm1
b = 20.081 (4) ÅT = 298 K
c = 7.2012 (14) Å0.36 × 0.23 × 0.20 mm
β = 96.273 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2985 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2430 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.981Rint = 0.024
7032 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.07Δρmax = 0.44 e Å3
2985 reflectionsΔρmin = 0.33 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.70522 (17)0.06533 (10)0.3165 (3)0.0460 (5)
O20.94498 (16)0.25045 (9)0.2447 (3)0.0587 (6)
O10.54879 (15)0.00173 (9)0.2281 (3)0.0618 (6)
N40.80771 (16)0.17897 (10)0.3261 (3)0.0464 (5)
N50.69810 (17)0.17708 (10)0.3912 (3)0.0481 (6)
N20.82657 (17)0.06420 (10)0.3487 (3)0.0480 (6)
N60.78462 (18)0.29223 (10)0.3540 (3)0.0489 (6)
H60.72170.28010.39480.059*
N80.70889 (18)0.39638 (11)0.3514 (3)0.0529 (6)
C120.8038 (2)0.36064 (12)0.3445 (3)0.0434 (6)
C30.8743 (2)0.12142 (12)0.3484 (4)0.0448 (6)
N70.7973 (2)0.14331 (12)0.1576 (4)0.0649 (7)
N30.72486 (18)0.04631 (10)0.2546 (3)0.0532 (6)
H30.79330.04030.30730.064*
C60.6486 (2)0.12036 (12)0.3784 (3)0.0432 (6)
C40.6513 (2)0.00504 (12)0.2642 (4)0.0449 (6)
C50.8541 (2)0.24270 (12)0.3062 (4)0.0453 (6)
C70.7024 (2)0.10818 (12)0.1687 (4)0.0470 (6)
C20.5324 (2)0.11538 (14)0.4433 (4)0.0570 (7)
H2A0.50460.07060.42630.086*
H2B0.48110.14530.37210.086*
H2C0.53690.12700.57330.086*
C130.9103 (2)0.38885 (13)0.3336 (4)0.0503 (7)
H130.97530.36250.33250.060*
C80.5943 (2)0.13104 (13)0.1018 (4)0.0538 (7)
H80.52940.10550.11300.065*
C160.7187 (2)0.46207 (14)0.3430 (4)0.0585 (8)
H160.65300.48760.34760.070*
C90.5865 (3)0.19228 (15)0.0190 (4)0.0637 (8)
H90.51530.20900.02760.076*
C140.9165 (2)0.45670 (14)0.3243 (5)0.0590 (8)
H140.98660.47730.31560.071*
C11.0012 (2)0.12417 (14)0.3833 (5)0.0599 (8)
H1A1.02620.16960.37780.090*
H1B1.03400.09850.29000.090*
H1C1.02550.10620.50470.090*
C150.8196 (2)0.49461 (14)0.3279 (4)0.0617 (8)
H150.82250.54080.32040.074*
C110.7852 (3)0.20271 (15)0.0760 (6)0.0745 (10)
H110.85090.22780.06730.089*
C100.6832 (3)0.22915 (15)0.0042 (5)0.0677 (9)
H100.67920.27080.05280.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0367 (11)0.0442 (12)0.0563 (13)0.0043 (8)0.0015 (9)0.0017 (9)
O20.0514 (11)0.0516 (11)0.0763 (14)0.0098 (8)0.0211 (10)0.0047 (9)
O10.0400 (11)0.0556 (12)0.0884 (15)0.0066 (8)0.0015 (10)0.0091 (10)
N40.0383 (11)0.0449 (12)0.0569 (13)0.0051 (9)0.0096 (9)0.0016 (9)
N50.0416 (12)0.0473 (12)0.0564 (13)0.0014 (9)0.0106 (10)0.0033 (10)
N20.0385 (11)0.0458 (12)0.0589 (14)0.0031 (9)0.0014 (9)0.0054 (10)
N60.0411 (11)0.0452 (12)0.0612 (14)0.0053 (9)0.0091 (10)0.0018 (10)
N80.0386 (12)0.0528 (13)0.0662 (15)0.0012 (9)0.0005 (10)0.0054 (11)
C120.0392 (13)0.0466 (14)0.0435 (14)0.0031 (10)0.0001 (10)0.0015 (10)
C30.0423 (13)0.0445 (14)0.0476 (14)0.0025 (10)0.0042 (11)0.0062 (11)
N70.0469 (14)0.0496 (13)0.097 (2)0.0010 (10)0.0032 (13)0.0065 (13)
N30.0397 (12)0.0461 (12)0.0713 (16)0.0053 (9)0.0047 (10)0.0034 (11)
C60.0417 (13)0.0430 (13)0.0446 (14)0.0024 (10)0.0037 (10)0.0049 (10)
C40.0391 (14)0.0456 (14)0.0498 (15)0.0056 (10)0.0033 (11)0.0033 (11)
C50.0424 (14)0.0458 (14)0.0475 (14)0.0053 (11)0.0048 (11)0.0032 (11)
C70.0438 (14)0.0422 (14)0.0546 (16)0.0047 (11)0.0029 (11)0.0049 (11)
C20.0475 (15)0.0543 (16)0.0718 (19)0.0021 (12)0.0180 (13)0.0038 (13)
C130.0383 (13)0.0482 (15)0.0634 (17)0.0017 (11)0.0012 (12)0.0047 (12)
C80.0452 (15)0.0504 (15)0.0643 (18)0.0017 (11)0.0011 (13)0.0011 (13)
C160.0480 (15)0.0530 (16)0.074 (2)0.0060 (12)0.0023 (13)0.0084 (14)
C90.0574 (17)0.0631 (18)0.068 (2)0.0102 (14)0.0051 (14)0.0099 (15)
C140.0464 (15)0.0530 (16)0.079 (2)0.0108 (12)0.0120 (14)0.0075 (14)
C10.0422 (15)0.0531 (16)0.083 (2)0.0020 (12)0.0027 (14)0.0067 (14)
C150.0600 (18)0.0449 (15)0.081 (2)0.0065 (13)0.0130 (15)0.0078 (14)
C110.0591 (19)0.0521 (17)0.113 (3)0.0049 (14)0.0123 (18)0.0106 (17)
C100.070 (2)0.0518 (17)0.081 (2)0.0028 (15)0.0032 (16)0.0148 (15)
Geometric parameters (Å, º) top
N1—C61.388 (3)C6—C21.494 (3)
N1—C41.399 (3)C7—C81.387 (4)
N1—N21.420 (3)C2—H2A0.9600
O2—C51.210 (3)C2—H2B0.9600
O1—C41.206 (3)C2—H2C0.9600
N4—C31.395 (3)C13—C141.367 (4)
N4—C51.405 (3)C13—H130.9300
N4—N51.419 (3)C8—C91.366 (4)
N5—C61.278 (3)C8—H80.9300
N2—C31.279 (3)C16—C151.369 (4)
N6—C51.356 (3)C16—H160.9300
N6—C121.395 (3)C9—C101.370 (4)
N6—H60.8600C9—H90.9300
N8—C161.326 (4)C14—C151.372 (4)
N8—C121.332 (3)C14—H140.9300
C12—C131.384 (3)C1—H1A0.9600
C3—C11.487 (3)C1—H1B0.9600
N7—C71.329 (3)C1—H1C0.9600
N7—C111.331 (4)C15—H150.9300
N3—C41.353 (3)C11—C101.360 (4)
N3—C71.400 (3)C11—H110.9300
N3—H30.8600C10—H100.9300
C6—N1—C4123.8 (2)C6—C2—H2B109.5
C6—N1—N2117.91 (19)H2A—C2—H2B109.5
C4—N1—N2116.61 (19)C6—C2—H2C109.5
C3—N4—C5123.2 (2)H2A—C2—H2C109.5
C3—N4—N5117.25 (19)H2B—C2—H2C109.5
C5—N4—N5115.78 (19)C14—C13—C12117.7 (2)
C6—N5—N4115.0 (2)C14—C13—H13121.2
C3—N2—N1114.7 (2)C12—C13—H13121.2
C5—N6—C12127.2 (2)C9—C8—C7117.7 (3)
C5—N6—H6116.4C9—C8—H8121.1
C12—N6—H6116.4C7—C8—H8121.1
C16—N8—C12117.2 (2)N8—C16—C15124.0 (3)
N8—C12—C13123.2 (2)N8—C16—H16118.0
N8—C12—N6112.9 (2)C15—C16—H16118.0
C13—C12—N6123.9 (2)C8—C9—C10120.2 (3)
N2—C3—N4120.3 (2)C8—C9—H9119.9
N2—C3—C1117.7 (2)C10—C9—H9119.9
N4—C3—C1121.9 (2)C13—C14—C15120.2 (3)
C7—N7—C11116.9 (2)C13—C14—H14119.9
C4—N3—C7127.5 (2)C15—C14—H14119.9
C4—N3—H3116.2C3—C1—H1A109.5
C7—N3—H3116.2C3—C1—H1B109.5
N5—C6—N1120.2 (2)H1A—C1—H1B109.5
N5—C6—C2117.5 (2)C3—C1—H1C109.5
N1—C6—C2122.3 (2)H1A—C1—H1C109.5
O1—C4—N3125.2 (2)H1B—C1—H1C109.5
O1—C4—N1121.2 (2)C16—C15—C14117.7 (3)
N3—C4—N1113.6 (2)C16—C15—H15121.2
O2—C5—N6125.4 (2)C14—C15—H15121.2
O2—C5—N4121.5 (2)N7—C11—C10124.4 (3)
N6—C5—N4113.0 (2)N7—C11—H11117.8
N7—C7—C8123.1 (3)C10—C11—H11117.8
N7—C7—N3112.3 (2)C11—C10—C9117.6 (3)
C8—C7—N3124.6 (2)C11—C10—H10121.2
C6—C2—H2A109.5C9—C10—H10121.2
C3—N4—N5—C632.6 (3)C6—N1—C4—N3164.0 (2)
C5—N4—N5—C6168.6 (2)N2—N1—C4—N30.8 (3)
C6—N1—N2—C331.4 (3)C12—N6—C5—O20.8 (4)
C4—N1—N2—C3162.8 (2)C12—N6—C5—N4177.8 (2)
C16—N8—C12—C131.6 (4)C3—N4—C5—O225.5 (4)
C16—N8—C12—N6179.9 (2)N5—N4—C5—O2177.0 (2)
C5—N6—C12—N8162.7 (2)C3—N4—C5—N6157.3 (2)
C5—N6—C12—C1318.8 (4)N5—N4—C5—N60.1 (3)
N1—N2—C3—N42.8 (3)C11—N7—C7—C80.7 (5)
N1—N2—C3—C1179.3 (2)C11—N7—C7—N3179.2 (3)
C5—N4—C3—N2173.6 (2)C4—N3—C7—N7169.7 (3)
N5—N4—C3—N229.3 (3)C4—N3—C7—C810.2 (4)
C5—N4—C3—C110.0 (4)N8—C12—C13—C141.9 (4)
N5—N4—C3—C1147.1 (3)N6—C12—C13—C14179.8 (3)
N4—N5—C6—N14.2 (3)N7—C7—C8—C90.8 (4)
N4—N5—C6—C2179.5 (2)N3—C7—C8—C9179.1 (3)
C4—N1—C6—N5167.2 (2)C12—N8—C16—C150.1 (4)
N2—N1—C6—N528.1 (3)C7—C8—C9—C100.1 (5)
C4—N1—C6—C216.6 (4)C12—C13—C14—C150.7 (4)
N2—N1—C6—C2148.0 (2)N8—C16—C15—C141.0 (5)
C7—N3—C4—O113.6 (5)C13—C14—C15—C160.7 (5)
C7—N3—C4—N1164.6 (2)C7—N7—C11—C100.1 (5)
C6—N1—C4—O117.6 (4)N7—C11—C10—C90.7 (6)
N2—N1—C4—O1177.6 (2)C8—C9—C10—C110.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O20.962.072.778 (4)130
C2—H2A···O10.962.092.777 (4)127
C8—H8···O10.932.312.886 (3)120
C16—H16···O1i0.932.393.229 (3)150
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H16N8O2
Mr352.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.753 (2), 20.081 (4), 7.2012 (14)
β (°) 96.273 (3)
V3)1689.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.36 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.965, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
7032, 2985, 2430
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.182, 1.07
No. of reflections2985
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.33

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
N1—C61.388 (3)N4—N51.419 (3)
N1—N21.420 (3)N5—C61.278 (3)
N4—C31.395 (3)N2—C31.279 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O20.962.072.778 (4)129.7
C2—H2A···O10.962.092.777 (4)126.8
C8—H8···O10.932.312.886 (3)119.7
C16—H16···O1i0.932.393.229 (3)149.7
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors are very grateful to the Natural Science Foundation of Zhejiang Province (grant No. Y2090985) and the National Natural Science Foundation of China (grant No. 20802069) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDomingo, L. R., Picher, M. T. & Saez, J. A. (2009). J. Org. Chem. 74, 2726–2735.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEremeev, A. V., Tikhomirova, D. A. & Zidermane, A. (1980). USSR Patent No. 686336.  Google Scholar
First citationEremeev, A. V., Tikhomirv, D. A., Tyusheva, V. A. & Liepins, F. (1978). Khim. Geterotsikl. Soedin. pp. 753–757.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177–1181.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHu, W. X., Sun, Y. Q., Yuan, Q. & Yang, Z. Y. (2002). Chem. J. Chin. Univ. 23, 1877–1881.  CAS Google Scholar
First citationLorincz, K., Kotschy, A., Tammiku-Taul, J., Sikk, L. & Burk, P. (2010). J. Org. Chem. 75, 6196–6200.  Web of Science CAS PubMed Google Scholar
First citationNeunhoeffer, H. (1984). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katritzky, Vol. 3, pp. 531–572. Frankfurt: Pergamon.  Google Scholar
First citationRao, G. W. & Hu, W. X. (2005). Bioorg. Med. Chem. Lett. 15, 3174–3176.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRao, G. W. & Hu, W. X. (2006). Bioorg. Med. Chem. Lett. 16, 3702–3705.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901–955. Oxford: Elsevier.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkorianetz, W. & Kováts, E. Sz. (1970). Helv. Chim. Acta, 53, 251–262.  CrossRef CAS Web of Science Google Scholar
First citationSkorianetz, W. & Kováts, E. Sz. (1971). Helv. Chim. Acta, 54, 1922–1939.  CrossRef CAS Web of Science Google Scholar
First citationSun, Y. Q., Hu, W. X. & Yuan, Q. (2003). Synth. Commun. 33, 2769–2775.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o702-o703
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds