organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o689-o690

1,4-Bis(thio­phen-2-yl)butane-1,4-dione

aGout Laboratory, The Affiliated Hospital of Medical College Qingdao University, 16 Jiangsu Road, Qingdao, Shandong 266003, People's Republic of China
*Correspondence e-mail: miao_zhimin@126.com, wangyunlongqd@163.com

(Received 23 January 2012; accepted 7 February 2012; online 10 February 2012)

In the centrosymmetric title compound, C12H10O2S2, the alkyl chains adopt a fully extended all-trans conformation with respect to the C(thio­phene)—C bond. The non-H atoms of the mol­ecule are nearly planar, with a maximum deviation of 0.063 (2) Å from the mean plane of the constituent atoms. In the crystal, symmetry-related mol­ecules are linked via pairs of C—H⋯π contacts [H–centroid distances of the thio­phene units = 2.79 (9) and 2.82 (4) Å], in turn inter­digitating with each other along the bc plane, thus leading to an inter­woven two-dimensional network.

Related literature

For related structures, see: Becerra et al. (2010[Becerra, D., Insuasty, B., Cobo, J. & Glidewell, C. (2010). Acta Cryst. C66, o79-o86.]); Liu et al. (2008[Liu, J. Y., Han, J., Song, Z. Y., Wei, W. H., Pang, M. L. & Meng, J. B. (2008). J. Mol. Struct. 891, 214-220.]); Nair, Devipriya & Eringathodi (2007[Nair, V., Devipriya, S. & Eringathodi, S. (2007). Tetrahedron Lett. 48, 3667-3670.]); Nair, Vellalath et al. (2007[Nair, V., Vellalath, S., Poonoth, M., Suresh, E. & Viji, S. (2007). Synthesis, 39, 3195-3200.]); Bushueva et al. (2010[Bushueva, Y. A., Shklyaeva, E. V. & Abashev, G. G. (2010). Russ. J. Appl. Chem. 83, 1444-1449.]). For background information on applications, see: Atalar et al. (2009[Atalar, T., Ihaner, A. C. & Algi, F. (2009). Turk. J. Chem. 33, 313-319.]); Chen et al. (2009[Chen, B., Yin, H. F., Wang, Z. S., Xu, J. H., Fan, L. Q. & Zhao, J. (2009). Adv. Synth. Catal. 351, 2959-2966.]); Charati et al. (2008[Charati, F. R., Maghsoodlou, M. T., Khorassani, S. M. H. & Makha, M. (2008). Tetrahedron Lett. 49, 343-347.]); Cao et al. (2008[Cao, W. G., Zhang, H., Chen, J., Zhou, X. H., Shao, M. & McMills, M. C. (2008). Tetrahedron, 64, 163-167.]); Wu et al. (2008[Wu, X. Y., Cao, W. G., Zhang, H., Chen, J., Jiang, H. Y. & Deng, M. (2008). Tetrahedron, 64, 10331-10338.]). For the synthetic procedure, see: Schweiger et al. (2000[Schweiger, L. F., Ryder, K. S., Morris, D. G., Glidle, A. & Cooper, J. M. (2000). J. Mater. Chem. 10, 107-114.]). For bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. J. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related C—H⋯π hydrogen bonds, see: Hu et al. (2008[Hu, S., He, K. H., Zeng, M. H., Zou, H. H. & Jiang, Y. M. (2008). Inorg. Chem. 47, 5218-5224.]); Ishihara et al. (2007[Ishihara, K., Fushimi, M. & Akakura, M. (2007). Acc. Chem. Res. 40, 1049-1055]); Jennings et al. (2001[Jennings, W. B., Farrell, B. M. & Malone, J. F. (2001). Acc. Chem. Res. 34, 885-894.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10O2S2

  • Mr = 250.34

  • Monoclinic, P 21 /n

  • a = 5.6345 (3) Å

  • b = 6.2244 (3) Å

  • c = 16.3779 (9) Å

  • β = 92.902 (4)°

  • V = 573.66 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 296 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.957, Tmax = 0.978

  • 2000 measured reflections

  • 1023 independent reflections

  • 838 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.200

  • S = 1.09

  • 1023 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C4/S1 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cg1i 0.93 2.79 (9) 3.610 (5) 146
C6—H6BCg1ii 0.97 2.82 (4) 3.637 (4) 143
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+2, -y, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Electroactive and photoactive thiophene-based molecules, oligomers, and polymers (Atalar et al., 2009; Chen et al., 2009; Charati et al., 2008; Becerra et al., 2010; Liu et al., 2008; Nair, Devipriya & Eringathodi, 2007; Nair, Vellalath et al., 2007; Bushueva et al.; 2010) are important for advanced technological applications, including display technologies, field-effect transistors, solar cells, sensors, nonlinear optics, molecular wires, and diodes (Cao et al., 2008; Wu et al., 2008). Thiophenes and its derivatives are originally applied to synthesize thiophene-based compounds, such as, oligomers and polythiophenes due to easy electropolymerization of thiophenes to produce stable, electrically conductive polymeric films. Thiophenes and its derivatives can also be widely used as building blocks in many agrochemicals and pharmaceuticals. To investigate the relationship between structure and pharmacological activity, the title compound was synthesized and its structure was determined by X-ray diffraction. As shown in figure 1, the centrosymmetric title compound lies across a crystallographic inversion centre which is situated at the midpoint of the C6–C6A (1.512 (8) Å, symmetry code: (A) 2-x, 1-y, 1-z) bond. The alkyl chains attached thiophenes adopt a fully extended all-trans conformation with respect to the Cthiophene–C bond. The non-H atoms of the molecule is nearly planar with O1 and O1A maximum deviation of 0.063 (2) Å from the mean plane of its constituting atoms. The C1–S1 and C4–S1 bond length of 1.678 (5) and 1.697 (4) Å, respectively, correspond to typical single C–S bonds. Whereas the C1–O1 (1.215 (5) Å) bond length indicate the presence of a typical double CO bond (Allen et al., 1987). It is well-established that weak bonding interactions between entities, such as hydrogen-bonding and π-stacking, are important supramolecular forces, which can be used to govern the process of molecular recognition and selfassembly (Hu et al., 2008; Ishihara et al., 2007; Jennings et al., 2001). In the crystal structure, it is noteworthy that symmetry-related molecules, in turn, are linked via pairs of intermolecular C—H···π constacts [H–centroid distance of the thiophene units = 2.79 (9) - 2.82 (4) Å], and interdigitated with each other along bc plane, thus leading to an interwoven two dimensional network.

Related literature top

For related structures, see: Becerra et al. (2010); Liu et al. (2008); Nair, Devipriya & Eringathodi (2007); Nair, Vellalath et al. (2007); Bushueva et al. (2010). For background information on applications, see: Atalar et al. (2009); Chen et al. (2009); Charati et al. (2008); Cao et al. (2008); Wu et al. (2008). For the synthetic procedure, see: Schweiger et al. (2000). For bond lengths, see: Allen et al. (1987). For related C—H···π hydrogen bonds, see: Hu et al. (2008); Ishihara et al. (2007); Jennings et al. (2001).

Experimental top

Reagents and solvents were of commercially available quality. The title compound was synthesized according to the method of Schweiger et al. 2000. To a suspension of AlCl3 (16 g, 0.12 mol) in CH2Cl2 (15 ml) a solution of thiophene (10 ml, 0.12 mol) and succinyl chloride (6 ml, 0.05 mol) in CH2Cl2 was added dropwise. The red mixture was stirred at r.t. for 18 h. This was then quenched with ice and conc. HCl (5 ml). After intensive stirring for 2 h the dark green organic phase was separated, washed with 2 M HCl, H2O NaHCO3 solution and dried over MgSO4. After evaporation of the solvent a blue-green solid remained, which was suspended in ethanol. Filtration and washing with ethanol and diethyl ether provided a green solid. Column chromatography (SiO2, CH2Cl2-hexane (1 : 1)) obtains (I) as a white solid 6.74 g (26.87 mmol; 54%). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the crude (5 g) in a mixture of water/ethanol (20 ml, 1:1, v/v) at room temperature.

Refinement top

All H atoms were placed in idealized positions (C—H = 0.93–0.97 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids at the 30% probability level (Symmetry code: (A) 2-x, 1-y, 1-z).
[Figure 2] Fig. 2. The C–H···π stacking interactions (dashed lines) in the structure of the title compound viewing along bc plane, H atoms have been omitted for clarity, except for those involved in C–H···π stacking interactions.
1,4-Bis(thiophen-2-yl)butane-1,4-dione top
Crystal data top
C12H10O2S2F(000) = 260
Mr = 250.34Dx = 1.449 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1252 reflections
a = 5.6345 (3) Åθ = 2.6–22.6°
b = 6.2244 (3) ŵ = 0.44 mm1
c = 16.3779 (9) ÅT = 296 K
β = 92.902 (4)°Bolck, yellow
V = 573.66 (5) Å30.20 × 0.15 × 0.10 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1023 independent reflections
Radiation source: fine-focus sealed tube838 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.1°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 56
Tmin = 0.957, Tmax = 0.978k = 76
2000 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.200H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.105P)2 + 0.7893P]
where P = (Fo2 + 2Fc2)/3
1023 reflections(Δ/σ)max < 0.001
73 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C12H10O2S2V = 573.66 (5) Å3
Mr = 250.34Z = 2
Monoclinic, P21/nMo Kα radiation
a = 5.6345 (3) ŵ = 0.44 mm1
b = 6.2244 (3) ÅT = 296 K
c = 16.3779 (9) Å0.20 × 0.15 × 0.10 mm
β = 92.902 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1023 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
838 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.978Rint = 0.021
2000 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.200H-atom parameters constrained
S = 1.09Δρmax = 0.58 e Å3
1023 reflectionsΔρmin = 0.35 e Å3
73 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.1013 (2)0.0356 (2)0.69663 (7)0.0577 (5)
C40.9593 (6)0.0981 (6)0.6181 (2)0.0376 (9)
C51.0715 (7)0.2877 (6)0.5837 (2)0.0403 (9)
C30.7295 (7)0.0004 (6)0.5931 (2)0.0368 (9)
H30.62390.04830.55160.044*
C20.6983 (7)0.1823 (8)0.6446 (3)0.0537 (12)
H20.56490.27020.63980.064*
C10.8824 (8)0.2171 (8)0.7017 (3)0.0515 (11)
H10.88500.32950.73920.062*
O11.2671 (5)0.3465 (5)0.6091 (2)0.0592 (9)
C60.9351 (7)0.4030 (7)0.5154 (2)0.0419 (10)
H6A0.78300.44850.53460.050*
H6B0.90430.30380.47050.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0511 (8)0.0646 (9)0.0569 (8)0.0067 (5)0.0020 (5)0.0135 (6)
C40.0371 (19)0.040 (2)0.0356 (19)0.0092 (16)0.0000 (15)0.0042 (17)
C50.041 (2)0.040 (2)0.040 (2)0.0079 (17)0.0006 (16)0.0056 (17)
C30.039 (2)0.038 (2)0.0348 (19)0.0114 (16)0.0097 (15)0.0031 (16)
C20.042 (2)0.058 (3)0.062 (3)0.002 (2)0.012 (2)0.005 (2)
C10.047 (2)0.054 (3)0.055 (2)0.008 (2)0.0129 (19)0.016 (2)
O10.0523 (18)0.057 (2)0.067 (2)0.0076 (15)0.0175 (15)0.0107 (17)
C60.045 (2)0.039 (2)0.041 (2)0.0047 (18)0.0052 (16)0.0003 (18)
Geometric parameters (Å, º) top
S1—C11.678 (5)C3—H30.9300
S1—C41.697 (4)C2—C11.379 (6)
C4—C51.466 (6)C2—H20.9300
C4—C31.470 (6)C1—H10.9300
C5—O11.215 (5)C6—C6i1.512 (8)
C5—C61.506 (5)C6—H6A0.9700
C3—C21.431 (6)C6—H6B0.9700
C1—S1—C492.8 (2)C1—C2—H2122.8
C5—C4—C3128.1 (3)C3—C2—H2122.8
C5—C4—S1119.4 (3)C2—C1—S1112.9 (3)
C3—C4—S1112.5 (3)C2—C1—H1123.5
O1—C5—C4120.8 (4)S1—C1—H1123.5
O1—C5—C6122.1 (4)C5—C6—C6i113.0 (4)
C4—C5—C6117.1 (3)C5—C6—H6A109.0
C2—C3—C4107.3 (3)C6i—C6—H6A109.0
C2—C3—H3126.4C5—C6—H6B109.0
C4—C3—H3126.4C6i—C6—H6B109.0
C1—C2—C3114.5 (4)H6A—C6—H6B107.8
C1—S1—C4—C5179.8 (3)S1—C4—C3—C20.1 (4)
C1—S1—C4—C30.1 (3)C4—C3—C2—C10.3 (5)
C3—C4—C5—O1177.6 (4)C3—C2—C1—S10.3 (5)
S1—C4—C5—O12.0 (5)C4—S1—C1—C20.2 (4)
C3—C4—C5—C61.7 (6)O1—C5—C6—C6i1.1 (7)
S1—C4—C5—C6178.6 (3)C4—C5—C6—C6i179.6 (4)
C5—C4—C3—C2179.6 (4)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C4/S1 or C1A–C4A/S1A ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···Cg1ii0.932.79 (9)3.610 (5)146
C6—H6B···Cg1iii0.972.82 (4)3.637 (4)143
Symmetry codes: (ii) x+3/2, y1/2, z+3/2; (iii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H10O2S2
Mr250.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)5.6345 (3), 6.2244 (3), 16.3779 (9)
β (°) 92.902 (4)
V3)573.66 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.957, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
2000, 1023, 838
Rint0.021
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.200, 1.09
No. of reflections1023
No. of parameters73
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.35

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C4/S1 or C1A–C4A/S1A ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···Cg1i0.932.79 (9)3.610 (5)146
C6—H6B···Cg1ii0.972.82 (4)3.637 (4)143
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+2, y, z+1.
 

Acknowledgements

The authors would like to thank the Gout Laboratory, The Affiliated Hospital of Medical College Qingdao University, for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. J. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationAtalar, T., Ihaner, A. C. & Algi, F. (2009). Turk. J. Chem. 33, 313–319.  CAS Google Scholar
First citationBecerra, D., Insuasty, B., Cobo, J. & Glidewell, C. (2010). Acta Cryst. C66, o79–o86.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBushueva, Y. A., Shklyaeva, E. V. & Abashev, G. G. (2010). Russ. J. Appl. Chem. 83, 1444–1449.  Web of Science CrossRef CAS Google Scholar
First citationCao, W. G., Zhang, H., Chen, J., Zhou, X. H., Shao, M. & McMills, M. C. (2008). Tetrahedron, 64, 163–167.  Web of Science CSD CrossRef CAS Google Scholar
First citationCharati, F. R., Maghsoodlou, M. T., Khorassani, S. M. H. & Makha, M. (2008). Tetrahedron Lett. 49, 343–347.  Google Scholar
First citationChen, B., Yin, H. F., Wang, Z. S., Xu, J. H., Fan, L. Q. & Zhao, J. (2009). Adv. Synth. Catal. 351, 2959–2966.  Web of Science CSD CrossRef CAS Google Scholar
First citationHu, S., He, K. H., Zeng, M. H., Zou, H. H. & Jiang, Y. M. (2008). Inorg. Chem. 47, 5218–5224.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationIshihara, K., Fushimi, M. & Akakura, M. (2007). Acc. Chem. Res. 40, 1049–1055  Web of Science CrossRef PubMed CAS Google Scholar
First citationJennings, W. B., Farrell, B. M. & Malone, J. F. (2001). Acc. Chem. Res. 34, 885–894.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, J. Y., Han, J., Song, Z. Y., Wei, W. H., Pang, M. L. & Meng, J. B. (2008). J. Mol. Struct. 891, 214–220.  Web of Science CSD CrossRef CAS Google Scholar
First citationNair, V., Devipriya, S. & Eringathodi, S. (2007). Tetrahedron Lett. 48, 3667–3670.  Web of Science CSD CrossRef CAS Google Scholar
First citationNair, V., Vellalath, S., Poonoth, M., Suresh, E. & Viji, S. (2007). Synthesis, 39, 3195–3200.  Web of Science CSD CrossRef Google Scholar
First citationSchweiger, L. F., Ryder, K. S., Morris, D. G., Glidle, A. & Cooper, J. M. (2000). J. Mater. Chem. 10, 107–114.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, X. Y., Cao, W. G., Zhang, H., Chen, J., Jiang, H. Y. & Deng, M. (2008). Tetrahedron, 64, 10331–10338.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o689-o690
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds