organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o858-o859

7′-(Naphthalen-1-yl)-5′′-[(naphthalen-2-yl)­methyl­­idene]-1′,3′,5′,6′,7′,7a′-hexa­hydro­di­spiro­[acenaphthene-1,5′-pyrrolo­[1,2-c]thia­zole-6′,3′′-piperidine]-2(1H),4′′-dione

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

(Received 2 February 2012; accepted 17 February 2012; online 29 February 2012)

In the title compound, C43H34N2O2S, the six-membered piperidine ring adopts a half-chair conformation. The five-membered thia­zole ring adopts a slightly twisted envelope conformation and the pyrrole ring adopts an envelope conformation; in each case, the C atom linking the rings is the flap atom. The mol­ecular structure features inter- and intra­molecular C—H⋯O inter­actions. Furthermore, the crystal packing is stabilized by four inter­molecular C—H⋯π inter­actions.

Related literature

For hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the importance of spiro compounds, see: Kobayashi et al. (1991[Kobayashi, J., Tsuda, M., Agemi, K. & Vacelet, J. (1991). Tetrahedron, 47, 6617-6622.]); James et al. (1991[James, D., Kunze, H. B. & Faulkner, D. (1991). J. Nat. Prod. 54, 1137-1140.]); Caramella & Grunanger (1984[Caramella, P. & Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291-312. New York: Wiley.]).

[Scheme 1]

Experimental

Crystal data
  • C43H34N2O2S

  • Mr = 642.78

  • Monoclinic, P 21 /n

  • a = 15.8335 (4) Å

  • b = 9.2147 (2) Å

  • c = 23.9951 (5) Å

  • β = 109.103 (1)°

  • V = 3308.12 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.21 × 0.17 × 0.12 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.974

  • 40746 measured reflections

  • 9096 independent reflections

  • 5614 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.118

  • S = 1.02

  • 9096 reflections

  • 434 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the rings C71–C76, C36–C41 and C32–C37, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯O2 0.97 2.46 2.956 (2) 111
C7—H7⋯O1 0.98 2.37 2.8012 (18) 106
C10—H10A⋯O2 0.97 2.56 3.188 (2) 123
C31—H31⋯O1 0.93 2.33 2.7296 (19) 105
C77—H77⋯O1 0.93 2.51 3.166 (2) 128
C9—H9B⋯O2i 0.97 2.50 3.357 (2) 147
C34—H34⋯O1ii 0.93 2.58 3.468 (2) 159
C22—H22⋯Cg1iii 0.93 2.77 3.483 (2) 134
C41—H41⋯Cg1iv 0.93 2.71 3.537 (3) 149
C74—H74⋯Cg2v 0.93 2.95 3.810 (2) 154
C80—H80⋯Cg3v 0.93 2.60 3.494 (3) 161
Symmetry codes: (i) -x, -y, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{3\over 2}}, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Spiro-compounds represent an important class of naturally occurring substances, which in many cases exhibit important biological properties (Kobayashi et al., 1991; James et al., 1991). 1,3-Dipolar cycloaddition reactions are widely used for the construction of spiro-compounds (Caramella & Grunanger, 1984).

In the title compound (Fig 1),C43H34N2O2S, the six-membered piperidine ring adopts half chair conformation with atoms N1 and C5 deviating by 0.600 (1) and 0.508 (1) Å, respectively, from the least-squares plane defined by atoms C2/C3/C4/C6. In the pyrrolo thiazole ring, the pyrrole ring is in the envelope conformation, and thiazole ring is in twisted envelope conformation with C8 atoms at the flap in both of these envelopes. The twisted envelope conformation of the thiazole may be due to the intramolecular C10—H10B···O2 interaction (Table 1). Similarly the orientation of the 4-methoxyphenyl substituent with respect to the attached piperidine ring may be influenced by the intermolecular C34—H34···O1 interaction (Table 1). The dihedral angle between the naphthyl rings are 83.7 (1)° and these rings are making angles of 51.5 (1)° and 35.2 (1)° with the acenaphthene group.

The C9—H9···O2 hydrogen bond connect two centrosymmetrically related molecules and generate the graph set motif R22(14) (Fig. 2) Bernstein et al., 1995). These dimers are connected into a zigzag chain by C34—H34···O1 hydrogen bonds (Fig. 2). In addition, there are four weak C—H···π interactions, viz., C22—H22···Cg1iii, C41—H41···Cg1iv C74—H74···Cg2v and C80—H80···Cg3vi (Cg1,Cg2 and Cg3 are the centroids of the rings C71—C76,C36—C41 and C32—C37 respectively; symmetry codes are given in Table 1) are observed.

Related literature top

For hydrogen bonding, see: Bernstein et al. (1995). For the importance of spiro compounds, see: Kobayashi et al. (1991); James et al. (1991); Caramella & Grunanger (1984).

Experimental top

A mixture of 1-methyl-3,5-bis[(E)-naphthylmethylidene]tetrahydro-4(1H)-pyridinone (1 mmol), acenaphthenequinone (0.182 g, 1 mmol) and 1,3-thiazolane-4-carboxylic acid (0.133 g, 1 mmol) was dissolved in methanol (10 ml) and refluxed for 30 min. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml), the precipitated solid was filtered and washed with water (100 ml) to obtain pure product as pale yellow solid. The product was dissolved in 5 ml of ethyl acetate. The mixture was heated on a water bath to boiling and filtered to a beaker. The solution was kept aside undisturbed for crystallization via slow evaporation of the solvent. Fine crystals of the compound appeared as the solvent evaporated. Then the solvent was decanted and the crystals were washed with cold ethyl acetate to obtain suitable crystals for the X-ray analysis. Melting point:237 °C,Yield: 90%

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å. Uiso = 1.2Ueq(C) for CH2 and CH groups and Uiso = 1.5Ueq(C) for CH3 group.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 10% probability displacement ellipsoids and the atom-numbering scheme. H atoms that do not take part in the H-bonding and some carbon atoms are omitted for clarity.
[Figure 2] Fig. 2. The partial packing diagram of the molecule.
7'-(Naphthalen-1-yl)-5''-[(naphthalen-2-yl)methylidene]-1',3',5',6',7',7a'- hexahydrodispiro[acenaphthene-1,5'-pyrrolo[1,2-c]thiazole-6',3''- piperidine]-2(1H),4''-dione top
Crystal data top
C43H34N2O2SF(000) = 1352
Mr = 642.78Dx = 1.291 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2000 reflections
a = 15.8335 (4) Åθ = 2–31°
b = 9.2147 (2) ŵ = 0.14 mm1
c = 23.9951 (5) ÅT = 293 K
β = 109.103 (1)°Block, colourless
V = 3308.12 (13) Å30.21 × 0.17 × 0.12 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
9096 independent reflections
Radiation source: fine-focus sealed tube5614 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 0 pixels mm-1θmax = 29.4°, θmin = 2.4°
ω and ϕ scansh = 2121
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1112
Tmin = 0.967, Tmax = 0.974l = 3330
40746 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.8672P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.004
9096 reflectionsΔρmax = 0.25 e Å3
434 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0011 (3)
Crystal data top
C43H34N2O2SV = 3308.12 (13) Å3
Mr = 642.78Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.8335 (4) ŵ = 0.14 mm1
b = 9.2147 (2) ÅT = 293 K
c = 23.9951 (5) Å0.21 × 0.17 × 0.12 mm
β = 109.103 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
9096 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5614 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.974Rint = 0.039
40746 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
9096 reflectionsΔρmin = 0.33 e Å3
434 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.06539 (14)0.11977 (19)0.30926 (8)0.0598 (5)
H1A0.03550.13170.26770.090*
H1B0.03080.16500.33070.090*
H1C0.12340.16410.32000.090*
C20.12010 (11)0.10877 (18)0.28779 (7)0.0445 (4)
H2A0.08360.10170.24660.053*
H2B0.17640.06040.29240.053*
C30.13799 (9)0.26601 (17)0.30380 (6)0.0361 (3)
C40.13712 (10)0.31838 (17)0.36271 (6)0.0355 (3)
C50.09621 (9)0.21822 (15)0.39764 (6)0.0316 (3)
C60.11873 (10)0.06270 (17)0.38586 (6)0.0387 (4)
H6A0.18290.05110.39610.046*
H6B0.09740.00460.40940.046*
C70.12624 (9)0.26024 (16)0.46452 (6)0.0328 (3)
H70.13350.36590.46690.039*
C80.04289 (10)0.22444 (16)0.48068 (6)0.0340 (3)
H80.03510.11930.48260.041*
C90.02946 (11)0.29904 (18)0.53306 (7)0.0418 (4)
H9A0.05450.39610.53790.050*
H9B0.05710.24430.56890.050*
C100.11269 (11)0.2781 (2)0.43641 (7)0.0463 (4)
H10A0.13980.18410.42380.056*
H10B0.15180.35310.41350.056*
C110.01036 (10)0.24045 (16)0.37577 (6)0.0336 (3)
C120.06233 (10)0.09732 (17)0.34865 (7)0.0400 (4)
C130.04961 (10)0.34820 (17)0.32593 (6)0.0348 (3)
C140.04068 (11)0.49462 (18)0.32288 (7)0.0432 (4)
H140.00430.54620.35510.052*
C150.08785 (12)0.5669 (2)0.26973 (8)0.0527 (4)
H150.08160.66680.26760.063*
C160.14216 (12)0.4952 (2)0.22155 (7)0.0538 (5)
H160.17120.54640.18720.065*
C170.15441 (11)0.3445 (2)0.22348 (7)0.0458 (4)
C180.10720 (10)0.27518 (18)0.27658 (6)0.0376 (4)
C190.11592 (10)0.12690 (18)0.28658 (7)0.0418 (4)
C200.17101 (12)0.0427 (2)0.24284 (8)0.0563 (5)
H200.17770.05590.24860.068*
C210.21739 (13)0.1100 (3)0.18862 (8)0.0671 (6)
H210.25380.05330.15810.081*
C220.21098 (12)0.2544 (3)0.17914 (8)0.0603 (5)
H220.24420.29450.14300.072*
C310.15384 (10)0.36718 (19)0.26847 (7)0.0401 (4)
H310.16350.46030.28420.048*
C320.15823 (10)0.35283 (18)0.20865 (7)0.0394 (4)
C330.19016 (11)0.2299 (2)0.18976 (8)0.0503 (4)
H330.20780.15170.21540.060*
C340.19698 (13)0.2187 (2)0.13315 (8)0.0577 (5)
H340.21890.13410.12180.069*
C350.17160 (13)0.3312 (2)0.09517 (8)0.0558 (5)
H350.17570.32270.05750.067*
C360.13910 (12)0.4606 (2)0.11151 (7)0.0485 (4)
C370.13197 (10)0.47313 (18)0.16895 (7)0.0412 (4)
C380.09868 (14)0.6037 (2)0.18350 (8)0.0591 (5)
H380.09170.61350.22030.071*
C390.0765 (2)0.7162 (2)0.14472 (10)0.0892 (8)
H390.05540.80230.15550.107*
C400.0850 (2)0.7035 (3)0.08869 (11)0.0950 (9)
H400.07030.78130.06260.114*
C410.11441 (16)0.5790 (3)0.07265 (9)0.0719 (6)
H410.11860.57090.03500.086*
C710.21277 (10)0.19473 (16)0.50429 (6)0.0339 (3)
C720.21646 (11)0.05172 (17)0.52050 (7)0.0412 (4)
H720.16480.00400.50710.049*
C730.29563 (11)0.01364 (19)0.55661 (7)0.0446 (4)
H730.29600.11170.56590.053*
C740.37136 (11)0.0655 (2)0.57799 (7)0.0454 (4)
H740.42350.02150.60190.054*
C750.37156 (10)0.21369 (19)0.56426 (7)0.0428 (4)
C760.29224 (10)0.28108 (17)0.52671 (6)0.0373 (3)
C770.29689 (12)0.43031 (19)0.51390 (8)0.0527 (5)
H770.24610.47740.48980.063*
C780.37456 (14)0.5059 (2)0.53637 (10)0.0768 (7)
H780.37610.60370.52730.092*
C790.45174 (14)0.4386 (3)0.57284 (11)0.0831 (7)
H790.50440.49150.58770.100*
C800.45009 (12)0.2973 (2)0.58659 (9)0.0640 (5)
H800.50180.25390.61130.077*
N10.07515 (9)0.03429 (14)0.32345 (6)0.0406 (3)
N20.02549 (8)0.28666 (14)0.42998 (5)0.0355 (3)
O10.16719 (8)0.43621 (13)0.38166 (5)0.0524 (3)
O20.06698 (8)0.00873 (13)0.37765 (5)0.0528 (3)
S10.09149 (3)0.30508 (5)0.51535 (2)0.05001 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0758 (13)0.0410 (10)0.0597 (12)0.0077 (9)0.0183 (10)0.0120 (9)
C20.0494 (10)0.0486 (10)0.0363 (8)0.0009 (8)0.0151 (7)0.0021 (7)
C30.0317 (8)0.0452 (9)0.0309 (7)0.0024 (6)0.0094 (6)0.0010 (7)
C40.0328 (7)0.0400 (9)0.0319 (7)0.0065 (7)0.0082 (6)0.0020 (7)
C50.0313 (7)0.0337 (8)0.0282 (7)0.0045 (6)0.0075 (6)0.0024 (6)
C60.0396 (8)0.0373 (9)0.0368 (8)0.0019 (7)0.0091 (7)0.0025 (7)
C70.0350 (8)0.0325 (8)0.0290 (7)0.0054 (6)0.0081 (6)0.0026 (6)
C80.0389 (8)0.0321 (8)0.0305 (7)0.0018 (6)0.0107 (6)0.0060 (6)
C90.0500 (9)0.0417 (9)0.0352 (8)0.0021 (7)0.0159 (7)0.0048 (7)
C100.0389 (9)0.0563 (11)0.0453 (9)0.0013 (8)0.0161 (7)0.0101 (8)
C110.0341 (8)0.0343 (8)0.0306 (7)0.0051 (6)0.0083 (6)0.0034 (6)
C120.0385 (8)0.0372 (9)0.0444 (9)0.0082 (7)0.0135 (7)0.0019 (7)
C130.0338 (8)0.0401 (9)0.0304 (7)0.0022 (6)0.0104 (6)0.0048 (6)
C140.0479 (9)0.0401 (9)0.0393 (9)0.0035 (7)0.0114 (7)0.0036 (7)
C150.0625 (11)0.0447 (10)0.0504 (10)0.0018 (9)0.0177 (9)0.0156 (8)
C160.0550 (11)0.0661 (13)0.0382 (9)0.0064 (9)0.0123 (8)0.0201 (9)
C170.0385 (9)0.0669 (12)0.0314 (8)0.0006 (8)0.0108 (7)0.0057 (8)
C180.0316 (8)0.0488 (10)0.0326 (8)0.0045 (7)0.0107 (6)0.0017 (7)
C190.0357 (8)0.0481 (10)0.0409 (9)0.0104 (7)0.0113 (7)0.0031 (7)
C200.0509 (10)0.0592 (12)0.0560 (11)0.0188 (9)0.0135 (9)0.0114 (9)
C210.0551 (12)0.0938 (17)0.0442 (11)0.0255 (11)0.0051 (9)0.0185 (11)
C220.0491 (11)0.0914 (16)0.0348 (9)0.0087 (10)0.0061 (8)0.0002 (10)
C310.0379 (8)0.0479 (10)0.0341 (8)0.0027 (7)0.0112 (7)0.0014 (7)
C320.0331 (8)0.0528 (10)0.0333 (8)0.0012 (7)0.0121 (6)0.0034 (7)
C330.0481 (10)0.0607 (12)0.0464 (10)0.0129 (8)0.0216 (8)0.0118 (9)
C340.0585 (11)0.0667 (13)0.0562 (11)0.0144 (10)0.0302 (9)0.0000 (10)
C350.0622 (11)0.0734 (13)0.0406 (9)0.0054 (10)0.0289 (9)0.0003 (9)
C360.0522 (10)0.0606 (11)0.0377 (9)0.0001 (8)0.0217 (8)0.0068 (8)
C370.0417 (9)0.0493 (10)0.0355 (8)0.0023 (7)0.0167 (7)0.0033 (7)
C380.0862 (14)0.0540 (12)0.0448 (10)0.0069 (10)0.0321 (10)0.0041 (9)
C390.156 (2)0.0573 (14)0.0704 (15)0.0315 (15)0.0585 (16)0.0176 (11)
C400.162 (3)0.0693 (16)0.0706 (15)0.0333 (16)0.0617 (17)0.0326 (13)
C410.1063 (18)0.0751 (15)0.0468 (11)0.0134 (13)0.0421 (12)0.0171 (10)
C710.0374 (8)0.0370 (8)0.0260 (7)0.0032 (6)0.0085 (6)0.0022 (6)
C720.0427 (9)0.0424 (9)0.0347 (8)0.0050 (7)0.0075 (7)0.0065 (7)
C730.0511 (10)0.0431 (9)0.0379 (8)0.0044 (8)0.0124 (7)0.0093 (7)
C740.0397 (9)0.0586 (11)0.0347 (8)0.0089 (8)0.0079 (7)0.0048 (8)
C750.0384 (9)0.0533 (11)0.0347 (8)0.0016 (7)0.0094 (7)0.0043 (7)
C760.0380 (8)0.0425 (9)0.0305 (7)0.0042 (7)0.0099 (6)0.0043 (6)
C770.0483 (10)0.0430 (10)0.0568 (11)0.0091 (8)0.0036 (8)0.0037 (8)
C780.0633 (13)0.0512 (12)0.0963 (17)0.0199 (10)0.0005 (12)0.0004 (11)
C790.0522 (12)0.0700 (16)0.1050 (19)0.0234 (11)0.0046 (12)0.0084 (13)
C800.0399 (10)0.0703 (14)0.0680 (13)0.0061 (9)0.0012 (9)0.0063 (11)
N10.0464 (8)0.0357 (7)0.0374 (7)0.0049 (6)0.0107 (6)0.0031 (6)
N20.0344 (7)0.0410 (7)0.0315 (6)0.0017 (5)0.0114 (5)0.0063 (5)
O10.0703 (8)0.0503 (7)0.0391 (6)0.0287 (6)0.0213 (6)0.0052 (5)
O20.0583 (7)0.0406 (7)0.0588 (7)0.0131 (6)0.0182 (6)0.0090 (6)
S10.0556 (3)0.0512 (3)0.0522 (3)0.0008 (2)0.0300 (2)0.0002 (2)
Geometric parameters (Å, º) top
C1—N11.456 (2)C18—C191.402 (2)
C1—H1A0.9600C19—C201.366 (2)
C1—H1B0.9600C20—C211.411 (3)
C1—H1C0.9600C20—H200.9300
C2—N11.452 (2)C21—C221.359 (3)
C2—C31.502 (2)C21—H210.9300
C2—H2A0.9700C22—H220.9300
C2—H2B0.9700C31—C321.465 (2)
C3—C311.338 (2)C31—H310.9300
C3—C41.498 (2)C32—C331.376 (2)
C4—O11.2127 (18)C32—C371.432 (2)
C4—C51.526 (2)C33—C341.401 (2)
C5—C61.525 (2)C33—H330.9300
C5—C71.5658 (19)C34—C351.352 (3)
C5—C111.608 (2)C34—H340.9300
C6—N11.4530 (19)C35—C361.404 (3)
C6—H6A0.9700C35—H350.9300
C6—H6B0.9700C36—C411.406 (3)
C7—C711.516 (2)C36—C371.424 (2)
C7—C81.528 (2)C37—C381.403 (2)
C7—H70.9800C38—C391.360 (3)
C8—N21.4555 (18)C38—H380.9300
C8—C91.508 (2)C39—C401.400 (3)
C8—H80.9800C39—H390.9300
C9—S11.8216 (17)C40—C411.341 (3)
C9—H9A0.9700C40—H400.9300
C9—H9B0.9700C41—H410.9300
C10—N21.441 (2)C71—C721.370 (2)
C10—S11.8292 (17)C71—C761.436 (2)
C10—H10A0.9700C72—C731.405 (2)
C10—H10B0.9700C72—H720.9300
C11—N21.4611 (19)C73—C741.353 (2)
C11—C131.522 (2)C73—H730.9300
C11—C121.578 (2)C74—C751.405 (2)
C12—O21.2158 (18)C74—H740.9300
C12—C191.478 (2)C75—C801.411 (2)
C13—C141.361 (2)C75—C761.426 (2)
C13—C181.407 (2)C76—C771.416 (2)
C14—C151.416 (2)C77—C781.362 (2)
C14—H140.9300C77—H770.9300
C15—C161.364 (2)C78—C791.394 (3)
C15—H150.9300C78—H780.9300
C16—C171.405 (3)C79—C801.346 (3)
C16—H160.9300C79—H790.9300
C17—C181.402 (2)C80—H800.9300
C17—C221.414 (2)
N1—C1—H1A109.5C20—C19—C12132.93 (16)
N1—C1—H1B109.5C18—C19—C12107.21 (13)
H1A—C1—H1B109.5C19—C20—C21117.87 (18)
N1—C1—H1C109.5C19—C20—H20121.1
H1A—C1—H1C109.5C21—C20—H20121.1
H1B—C1—H1C109.5C22—C21—C20122.67 (17)
N1—C2—C3113.14 (13)C22—C21—H21118.7
N1—C2—H2A109.0C20—C21—H21118.7
C3—C2—H2A109.0C21—C22—C17120.82 (17)
N1—C2—H2B109.0C21—C22—H22119.6
C3—C2—H2B109.0C17—C22—H22119.6
H2A—C2—H2B107.8C3—C31—C32129.54 (16)
C31—C3—C4115.79 (14)C3—C31—H31115.2
C31—C3—C2124.67 (14)C32—C31—H31115.2
C4—C3—C2119.53 (13)C33—C32—C37118.43 (14)
O1—C4—C3121.23 (14)C33—C32—C31122.49 (15)
O1—C4—C5121.37 (13)C37—C32—C31119.03 (15)
C3—C4—C5117.39 (13)C32—C33—C34122.23 (16)
C6—C5—C4107.42 (12)C32—C33—H33118.9
C6—C5—C7114.28 (12)C34—C33—H33118.9
C4—C5—C7111.85 (11)C35—C34—C33119.78 (17)
C6—C5—C11110.07 (11)C35—C34—H34120.1
C4—C5—C11109.42 (11)C33—C34—H34120.1
C7—C5—C11103.72 (11)C34—C35—C36121.20 (16)
N1—C6—C5107.41 (12)C34—C35—H35119.4
N1—C6—H6A110.2C36—C35—H35119.4
C5—C6—H6A110.2C35—C36—C41121.46 (16)
N1—C6—H6B110.2C35—C36—C37119.46 (16)
C5—C6—H6B110.2C41—C36—C37119.07 (17)
H6A—C6—H6B108.5C38—C37—C36117.78 (15)
C71—C7—C8115.60 (12)C38—C37—C32123.32 (15)
C71—C7—C5117.10 (12)C36—C37—C32118.90 (15)
C8—C7—C5102.05 (11)C39—C38—C37121.17 (17)
C71—C7—H7107.2C39—C38—H38119.4
C8—C7—H7107.2C37—C38—H38119.4
C5—C7—H7107.2C38—C39—C40120.6 (2)
N2—C8—C9104.35 (12)C38—C39—H39119.7
N2—C8—C799.84 (11)C40—C39—H39119.7
C9—C8—C7118.83 (13)C41—C40—C39120.0 (2)
N2—C8—H8111.0C41—C40—H40120.0
C9—C8—H8111.0C39—C40—H40120.0
C7—C8—H8111.0C40—C41—C36121.42 (18)
C8—C9—S1104.11 (10)C40—C41—H41119.3
C8—C9—H9A110.9C36—C41—H41119.3
S1—C9—H9A110.9C72—C71—C76118.42 (14)
C8—C9—H9B110.9C72—C71—C7120.52 (13)
S1—C9—H9B110.9C76—C71—C7121.06 (13)
H9A—C9—H9B109.0C71—C72—C73122.28 (15)
N2—C10—S1104.23 (10)C71—C72—H72118.9
N2—C10—H10A110.9C73—C72—H72118.9
S1—C10—H10A110.9C74—C73—C72120.28 (16)
N2—C10—H10B110.9C74—C73—H73119.9
S1—C10—H10B110.9C72—C73—H73119.9
H10A—C10—H10B108.9C73—C74—C75120.30 (15)
N2—C11—C13111.45 (12)C73—C74—H74119.9
N2—C11—C12113.30 (12)C75—C74—H74119.9
C13—C11—C12101.39 (11)C74—C75—C80120.74 (16)
N2—C11—C5101.94 (11)C74—C75—C76120.14 (15)
C13—C11—C5117.04 (12)C80—C75—C76119.11 (17)
C12—C11—C5112.22 (12)C77—C76—C75117.54 (14)
O2—C12—C19127.05 (14)C77—C76—C71123.92 (14)
O2—C12—C11123.84 (14)C75—C76—C71118.55 (14)
C19—C12—C11108.14 (12)C78—C77—C76120.99 (18)
C14—C13—C18118.62 (14)C78—C77—H77119.5
C14—C13—C11131.77 (14)C76—C77—H77119.5
C18—C13—C11109.57 (13)C77—C78—C79120.9 (2)
C13—C14—C15118.75 (15)C77—C78—H78119.5
C13—C14—H14120.6C79—C78—H78119.5
C15—C14—H14120.6C80—C79—C78120.05 (19)
C16—C15—C14122.43 (17)C80—C79—H79120.0
C16—C15—H15118.8C78—C79—H79120.0
C14—C15—H15118.8C79—C80—C75121.39 (18)
C15—C16—C17120.39 (15)C79—C80—H80119.3
C15—C16—H16119.8C75—C80—H80119.3
C17—C16—H16119.8C2—N1—C6111.30 (12)
C18—C17—C16116.22 (15)C2—N1—C1110.98 (14)
C18—C17—C22115.74 (17)C6—N1—C1113.26 (13)
C16—C17—C22128.01 (16)C10—N2—C8111.45 (12)
C19—C18—C17123.12 (15)C10—N2—C11121.43 (12)
C19—C18—C13113.27 (13)C8—N2—C11109.60 (11)
C17—C18—C13123.56 (15)C9—S1—C1093.45 (7)
C20—C19—C18119.75 (16)
N1—C2—C3—C31159.63 (15)C19—C20—C21—C221.7 (3)
N1—C2—C3—C419.3 (2)C20—C21—C22—C171.9 (3)
C31—C3—C4—O114.9 (2)C18—C17—C22—C210.3 (3)
C2—C3—C4—O1166.07 (15)C16—C17—C22—C21177.92 (19)
C31—C3—C4—C5164.54 (13)C4—C3—C31—C32179.29 (14)
C2—C3—C4—C514.5 (2)C2—C3—C31—C320.3 (3)
O1—C4—C5—C6145.08 (15)C3—C31—C32—C3333.7 (3)
C3—C4—C5—C635.45 (16)C3—C31—C32—C37149.05 (17)
O1—C4—C5—C718.9 (2)C37—C32—C33—C340.5 (3)
C3—C4—C5—C7161.62 (12)C31—C32—C33—C34177.82 (16)
O1—C4—C5—C1195.45 (16)C32—C33—C34—C350.1 (3)
C3—C4—C5—C1184.02 (15)C33—C34—C35—C360.6 (3)
C4—C5—C6—N163.73 (14)C34—C35—C36—C41178.6 (2)
C7—C5—C6—N1171.56 (12)C34—C35—C36—C370.6 (3)
C11—C5—C6—N155.33 (15)C35—C36—C37—C38179.61 (17)
C6—C5—C7—C7135.22 (17)C41—C36—C37—C381.2 (3)
C4—C5—C7—C7187.11 (16)C35—C36—C37—C320.0 (2)
C11—C5—C7—C71155.07 (12)C41—C36—C37—C32179.23 (17)
C6—C5—C7—C892.05 (14)C33—C32—C37—C38179.90 (17)
C4—C5—C7—C8145.62 (12)C31—C32—C37—C382.5 (2)
C11—C5—C7—C827.80 (13)C33—C32—C37—C360.6 (2)
C71—C7—C8—N2172.66 (12)C31—C32—C37—C36177.95 (14)
C5—C7—C8—N244.43 (13)C36—C37—C38—C391.9 (3)
C71—C7—C8—C974.84 (17)C32—C37—C38—C39178.5 (2)
C5—C7—C8—C9156.93 (13)C37—C38—C39—C401.0 (4)
N2—C8—C9—S141.37 (13)C38—C39—C40—C410.7 (5)
C7—C8—C9—S1151.38 (11)C39—C40—C41—C361.5 (4)
C6—C5—C11—N2121.79 (12)C35—C36—C41—C40178.7 (2)
C4—C5—C11—N2120.38 (12)C37—C36—C41—C400.5 (4)
C7—C5—C11—N20.89 (13)C8—C7—C71—C7246.07 (19)
C6—C5—C11—C13116.36 (14)C5—C7—C71—C7274.28 (18)
C4—C5—C11—C131.47 (17)C8—C7—C71—C76132.81 (15)
C7—C5—C11—C13120.96 (13)C5—C7—C71—C76106.84 (16)
C6—C5—C11—C120.25 (16)C76—C71—C72—C732.0 (2)
C4—C5—C11—C12118.08 (13)C7—C71—C72—C73179.11 (14)
C7—C5—C11—C12122.42 (12)C71—C72—C73—C741.7 (2)
N2—C11—C12—O243.5 (2)C72—C73—C74—C750.0 (2)
C13—C11—C12—O2162.99 (15)C73—C74—C75—C80179.66 (17)
C5—C11—C12—O271.33 (19)C73—C74—C75—C761.2 (2)
N2—C11—C12—C19125.98 (14)C74—C75—C76—C77179.24 (15)
C13—C11—C12—C196.44 (16)C80—C75—C76—C770.1 (2)
C5—C11—C12—C19119.24 (13)C74—C75—C76—C710.9 (2)
N2—C11—C13—C1451.2 (2)C80—C75—C76—C71179.99 (16)
C12—C11—C13—C14172.09 (17)C72—C71—C76—C77179.19 (16)
C5—C11—C13—C1465.5 (2)C7—C71—C76—C770.3 (2)
N2—C11—C13—C18126.06 (13)C72—C71—C76—C750.7 (2)
C12—C11—C13—C185.22 (16)C7—C71—C76—C75179.60 (13)
C5—C11—C13—C18117.18 (14)C75—C76—C77—C780.5 (3)
C18—C13—C14—C151.6 (2)C71—C76—C77—C78179.65 (19)
C11—C13—C14—C15178.72 (16)C76—C77—C78—C790.2 (4)
C13—C14—C15—C160.3 (3)C77—C78—C79—C800.4 (4)
C14—C15—C16—C171.0 (3)C78—C79—C80—C750.7 (4)
C15—C16—C17—C180.9 (3)C74—C75—C80—C79178.6 (2)
C15—C16—C17—C22176.71 (18)C76—C75—C80—C790.5 (3)
C16—C17—C18—C19176.50 (16)C3—C2—N1—C648.62 (18)
C22—C17—C18—C191.4 (2)C3—C2—N1—C1175.73 (14)
C16—C17—C18—C130.6 (2)C5—C6—N1—C273.38 (16)
C22—C17—C18—C13178.43 (15)C5—C6—N1—C1160.76 (14)
C14—C13—C18—C19175.49 (14)S1—C10—N2—C835.34 (15)
C11—C13—C18—C192.22 (18)S1—C10—N2—C11166.82 (11)
C14—C13—C18—C171.8 (2)C9—C8—N2—C1051.88 (16)
C11—C13—C18—C17179.53 (14)C7—C8—N2—C10175.23 (13)
C17—C18—C19—C201.5 (2)C9—C8—N2—C11170.85 (12)
C13—C18—C19—C20178.87 (15)C7—C8—N2—C1147.51 (14)
C17—C18—C19—C12175.14 (15)C13—C11—N2—C1073.17 (17)
C13—C18—C19—C122.18 (18)C12—C11—N2—C1040.42 (19)
O2—C12—C19—C2012.6 (3)C5—C11—N2—C10161.21 (13)
C11—C12—C19—C20178.41 (18)C13—C11—N2—C8154.57 (12)
O2—C12—C19—C18163.48 (17)C12—C11—N2—C891.83 (14)
C11—C12—C19—C185.51 (17)C5—C11—N2—C828.95 (14)
C18—C19—C20—C210.0 (3)C8—C9—S1—C1019.62 (12)
C12—C19—C20—C21175.70 (18)N2—C10—S1—C97.52 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O20.972.462.956 (2)111
C7—H7···O10.982.372.8012 (18)106
C10—H10A···O20.972.563.188 (2)123
C31—H31···O10.932.332.7296 (19)105
C77—H77···O10.932.513.166 (2)128
C9—H9B···O2i0.972.503.357 (2)147
C34—H34···O1ii0.932.583.468 (2)159
C22—H22···Cg1iii0.932.773.483 (2)134
C41—H41···Cg1iv0.932.713.537 (3)149
C74—H74···Cg2v0.932.953.810 (2)154
C80—H80···Cg3v0.932.603.494 (3)161
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x3/2, y1/2, z3/2; (iv) x+1/2, y+1/2, z+1/2; (v) x1/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC43H34N2O2S
Mr642.78
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)15.8335 (4), 9.2147 (2), 23.9951 (5)
β (°) 109.103 (1)
V3)3308.12 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.21 × 0.17 × 0.12
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
40746, 9096, 5614
Rint0.039
(sin θ/λ)max1)0.691
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.118, 1.02
No. of reflections9096
No. of parameters434
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.33

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O20.972.462.956 (2)111.4
C7—H7···O10.982.372.8012 (18)106.1
C10—H10A···O20.972.563.188 (2)122.6
C31—H31···O10.932.332.7296 (19)105.4
C77—H77···O10.932.513.166 (2)127.5
C9—H9B···O2i0.972.503.357 (2)147.3
C34—H34···O1ii0.932.583.468 (2)158.7
C22—H22···Cg1iii0.932.773.483 (2)134
C41—H41···Cg1iv0.932.713.537 (3)149
C74—H74···Cg2v0.932.953.810 (2)154
C80—H80···Cg3v0.932.603.494 (3)161
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x3/2, y1/2, z3/2; (iv) x+1/2, y+1/2, z+1/2; (v) x1/2, y1/2, z1/2.
 

Acknowledgements

JS thanks the UGC for FIST support. JS and RV thank the management of Madura College for their encouragement and support. RRK thanks DST, New Delhi, for funds under fast track scheme (grant No. SR/FT/CS-073/2009).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaramella, P. & Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291–312. New York: Wiley.  Google Scholar
First citationJames, D., Kunze, H. B. & Faulkner, D. (1991). J. Nat. Prod. 54, 1137–1140.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKobayashi, J., Tsuda, M., Agemi, K. & Vacelet, J. (1991). Tetrahedron, 47, 6617–6622.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o858-o859
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds