organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-(4-chloro­benz­yl)-3-phenyl-1H-pyrazole-5-carboxyl­ate

aTaishan Medical College, Tai an 271016, People's Republic of China, and bTianjin Institute of Pharmaceutical Research, Tian Jin 300193, People's Republic of China
*Correspondence e-mail: yqge@yahoo.cn

(Received 8 February 2012; accepted 19 February 2012; online 29 February 2012)

In the title compound, C19H17ClN2O2, the pyrazole ring makes dihedral angles of 6.97 (5) and 79.25 (1)°, respectively, with the phenyl and chlorophenyl rings, respectively. In the crystal, C—H⋯O hydrogen bonds are observed.

Related literature

For background to the title compound, see: Ge et al. (2007[Ge, Y.-Q., Dong, W.-L., Xia, Y., Wei, F. & Zhao, B.-X. (2007). Acta Cryst. E63, o1313-o1314.], 2009[Ge, Y. Q., Jia, J., Li, Y., Yin, L. & Wang, J. W. (2009). Heterocycles, 42, 197-206.], 2011[Ge, Y. Q., Hao, B. Q., Duan, G. Y. & Wang, J. W. (2011). J. Lumin. 131, 1070-1076.]). For a related compound, see: Xia et al. (2007[Xia, Y., Dong, Z. W., Zhao, B. X., Ge, X., Meng, N., Shin, D. S. & Miao, J. Y. (2007). Bioorg. Med. Chem. 15, 6893-6899.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17ClN2O2

  • Mr = 340.80

  • Triclinic, [P \overline 1]

  • a = 8.1815 (10) Å

  • b = 10.4039 (12) Å

  • c = 11.0969 (13) Å

  • α = 109.981 (2)°

  • β = 90.107 (2)°

  • γ = 104.046 (2)°

  • V = 857.43 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 K

  • 0.26 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.941, Tmax = 0.954

  • 4495 measured reflections

  • 3008 independent reflections

  • 2554 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.107

  • S = 1.03

  • 3008 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.93 2.56 3.281 (2) 135
C1—H1B⋯O1 0.97 2.42 2.921 (2) 111
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Synthesis of nitrogen-containing heterocyclic compounds has been a subject of great interest due to the wide application in agrochemical and pharmaceutical fields (Ge et al., 2009, 2011). Some pyrazole derivatives which belong to this category have been of interest for their biological activities. Considerable efforts have been devoted to the development of novel pyrazole compounds. The title pyrazole (I) (Fig. 1) was synthesized in order to study and compare its biological properties with other related compounds (Xia et al., 2007). (I) was screened for anticancer activities and found to be inactive. We report here the crystal structure of the title compound. In the title compound, C19H17ClN2O2, all bond lengths and angles show normal values. The pyrazole ring makes dihedral angles of 6.97° and 79.25°, respectively, with the C14–C19 and C2–C7 phenyl rings. There existed intermolecule C—H···O hydrogen bonds to stablized the crystal structure.

Related literature top

For background to the title compound, see: Ge et al. (2007, 2009, 2011). For a related compound, see: Xia et al. (2007). [Please check amended text]

Experimental top

A mixture of ethyl 3-phenyl-1H-pyrazole-5-carboxylate (0.02 mol), 1-chloro-4-(chloromethyl)benzene (0.0024 mol) and potassium carbonate (0.02 mol) in acetonitrile (100 ml) was heated to reflux for 3 h. The solvent was removed under reduced pressure and a product was isolated by column chromatography on silica gel (yield 82%). Crystals of (I) suitable for X-ray diffraction were obtained by allowing a refluxed solution of the product in ethyl acetate (0.10 M) to cool slowly to room temperature (without temperature control) and allowing the solvent to evaporate for 2 d.

Refinement top

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.97 Å (for CH2 groups) and 0.96 Å (for CH3 groups), their isotropic displacement parameters were set to 1.2 times (1.5 times for CH3 groups) the equivalent displacement parameter of their parent atoms.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I).
Ethyl 1-(4-chlorobenzyl)-3-phenyl-1H-pyrazole-5-carboxylate top
Crystal data top
C19H17ClN2O2Z = 2
Mr = 340.80F(000) = 356
Triclinic, P1Dx = 1.320 Mg m3
a = 8.1815 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.4039 (12) ÅCell parameters from 2727 reflections
c = 11.0969 (13) Åθ = 2.4–28.2°
α = 109.981 (2)°µ = 0.24 mm1
β = 90.107 (2)°T = 298 K
γ = 104.046 (2)°Block, white
V = 857.43 (18) Å30.26 × 0.24 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
3008 independent reflections
Radiation source: fine-focus sealed tube2554 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 99
Tmin = 0.941, Tmax = 0.954k = 1112
4495 measured reflectionsl = 1113
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.2205P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3008 reflectionsΔρmax = 0.25 e Å3
218 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.082 (5)
Crystal data top
C19H17ClN2O2γ = 104.046 (2)°
Mr = 340.80V = 857.43 (18) Å3
Triclinic, P1Z = 2
a = 8.1815 (10) ÅMo Kα radiation
b = 10.4039 (12) ŵ = 0.24 mm1
c = 11.0969 (13) ÅT = 298 K
α = 109.981 (2)°0.26 × 0.24 × 0.20 mm
β = 90.107 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3008 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2554 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.954Rint = 0.023
4495 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
3008 reflectionsΔρmin = 0.30 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.50815 (7)0.95990 (7)0.77388 (6)0.0839 (2)
O10.84683 (18)0.38892 (14)0.64732 (11)0.0665 (4)
O20.85747 (17)0.25171 (13)0.76392 (11)0.0598 (3)
N10.75907 (17)0.58814 (15)0.87794 (13)0.0492 (3)
N20.71786 (18)0.65423 (15)0.99660 (13)0.0514 (4)
C10.7812 (2)0.6630 (2)0.78600 (17)0.0561 (4)
H1A0.71670.73340.80910.067*
H1B0.73670.59600.70060.067*
C20.9642 (2)0.73491 (18)0.78307 (15)0.0501 (4)
C31.0607 (3)0.8300 (2)0.89533 (17)0.0650 (5)
H31.01250.84750.97330.078*
C41.2266 (3)0.8989 (2)0.89318 (18)0.0707 (5)
H41.29000.96250.96890.085*
C51.2976 (2)0.8726 (2)0.77783 (18)0.0584 (5)
C61.2062 (2)0.77923 (19)0.66533 (16)0.0563 (4)
H61.25530.76230.58780.068*
C71.0400 (2)0.71053 (19)0.66882 (16)0.0546 (4)
H70.97780.64650.59280.066*
C80.78772 (19)0.46120 (17)0.86693 (15)0.0462 (4)
C90.8332 (2)0.36663 (18)0.74715 (15)0.0491 (4)
C100.9062 (3)0.1503 (2)0.65285 (18)0.0641 (5)
H10A1.00260.19730.61900.077*
H10B0.81330.10600.58550.077*
C110.9509 (3)0.0421 (2)0.6971 (2)0.0779 (6)
H11A1.03990.08770.76590.117*
H11B0.98830.02490.62670.117*
H11C0.85330.00630.72700.117*
C120.7612 (2)0.44406 (18)0.98320 (15)0.0479 (4)
H120.76980.36731.00540.058*
C130.71823 (19)0.56638 (17)1.06121 (15)0.0457 (4)
C140.67851 (19)0.60557 (18)1.19642 (15)0.0473 (4)
C150.6985 (2)0.5232 (2)1.26854 (16)0.0564 (4)
H150.73400.44121.23030.068*
C160.6660 (3)0.5621 (2)1.39691 (18)0.0656 (5)
H160.67980.50621.44410.079*
C170.6135 (3)0.6829 (2)1.45453 (18)0.0676 (5)
H170.59260.70951.54080.081*
C180.5921 (2)0.7646 (2)1.38374 (19)0.0678 (5)
H180.55610.84621.42260.081*
C190.6235 (2)0.7266 (2)1.25547 (17)0.0573 (4)
H190.60770.78231.20860.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0670 (3)0.0917 (4)0.0892 (4)0.0145 (3)0.0093 (3)0.0313 (3)
O10.0907 (10)0.0682 (8)0.0420 (7)0.0261 (7)0.0127 (6)0.0173 (6)
O20.0781 (8)0.0569 (7)0.0473 (7)0.0281 (6)0.0168 (6)0.0146 (6)
N10.0541 (8)0.0561 (8)0.0408 (7)0.0195 (6)0.0075 (6)0.0175 (6)
N20.0560 (8)0.0559 (8)0.0444 (8)0.0206 (7)0.0092 (6)0.0162 (7)
C10.0677 (11)0.0640 (11)0.0460 (9)0.0263 (9)0.0052 (8)0.0247 (8)
C20.0668 (11)0.0502 (9)0.0394 (8)0.0232 (8)0.0059 (7)0.0179 (7)
C30.0789 (13)0.0709 (12)0.0386 (9)0.0173 (10)0.0123 (9)0.0126 (9)
C40.0802 (14)0.0731 (13)0.0436 (10)0.0107 (11)0.0019 (9)0.0078 (9)
C50.0652 (11)0.0596 (11)0.0548 (10)0.0218 (9)0.0074 (8)0.0217 (9)
C60.0716 (12)0.0619 (11)0.0425 (9)0.0280 (9)0.0133 (8)0.0199 (8)
C70.0735 (12)0.0567 (10)0.0353 (8)0.0233 (9)0.0027 (8)0.0138 (7)
C80.0446 (8)0.0502 (9)0.0416 (8)0.0130 (7)0.0028 (7)0.0129 (7)
C90.0480 (9)0.0523 (10)0.0413 (9)0.0101 (7)0.0031 (7)0.0116 (7)
C100.0764 (13)0.0584 (11)0.0516 (10)0.0247 (10)0.0141 (9)0.0070 (9)
C110.0853 (15)0.0660 (13)0.0883 (16)0.0333 (11)0.0253 (12)0.0252 (12)
C120.0499 (9)0.0502 (9)0.0439 (9)0.0142 (7)0.0049 (7)0.0158 (7)
C130.0419 (8)0.0513 (9)0.0419 (8)0.0117 (7)0.0034 (6)0.0144 (7)
C140.0408 (8)0.0534 (9)0.0426 (9)0.0100 (7)0.0042 (6)0.0121 (7)
C150.0632 (11)0.0588 (10)0.0461 (9)0.0171 (9)0.0082 (8)0.0161 (8)
C160.0717 (12)0.0778 (13)0.0475 (10)0.0166 (10)0.0096 (9)0.0242 (10)
C170.0681 (12)0.0852 (14)0.0425 (10)0.0185 (10)0.0140 (8)0.0149 (10)
C180.0641 (12)0.0720 (13)0.0585 (11)0.0247 (10)0.0132 (9)0.0070 (10)
C190.0573 (10)0.0629 (11)0.0513 (10)0.0220 (9)0.0094 (8)0.0151 (9)
Geometric parameters (Å, º) top
Cl1—C51.750 (2)C8—C91.469 (2)
O1—C91.207 (2)C10—C111.490 (3)
O2—C91.331 (2)C10—H10A0.9700
O2—C101.452 (2)C10—H10B0.9700
N1—N21.3475 (19)C11—H11A0.9600
N1—C81.362 (2)C11—H11B0.9600
N1—C11.468 (2)C11—H11C0.9600
N2—C131.341 (2)C12—C131.399 (2)
C1—C21.508 (3)C12—H120.9300
C1—H1A0.9700C13—C141.473 (2)
C1—H1B0.9700C14—C191.389 (2)
C2—C71.384 (2)C14—C151.392 (2)
C2—C31.389 (3)C15—C161.387 (2)
C3—C41.377 (3)C15—H150.9300
C3—H30.9300C16—C171.374 (3)
C4—C51.375 (3)C16—H160.9300
C4—H40.9300C17—C181.377 (3)
C5—C61.370 (3)C17—H170.9300
C6—C71.381 (3)C18—C191.384 (3)
C6—H60.9300C18—H180.9300
C7—H70.9300C19—H190.9300
C8—C121.372 (2)
C9—O2—C10115.81 (13)O2—C10—H10A110.3
N2—N1—C8111.51 (13)C11—C10—H10A110.3
N2—N1—C1118.60 (14)O2—C10—H10B110.3
C8—N1—C1129.64 (14)C11—C10—H10B110.3
C13—N2—N1105.49 (13)H10A—C10—H10B108.6
N1—C1—C2112.37 (13)C10—C11—H11A109.5
N1—C1—H1A109.1C10—C11—H11B109.5
C2—C1—H1A109.1H11A—C11—H11B109.5
N1—C1—H1B109.1C10—C11—H11C109.5
C2—C1—H1B109.1H11A—C11—H11C109.5
H1A—C1—H1B107.9H11B—C11—H11C109.5
C7—C2—C3118.03 (17)C8—C12—C13105.44 (15)
C7—C2—C1121.30 (16)C8—C12—H12127.3
C3—C2—C1120.66 (15)C13—C12—H12127.3
C4—C3—C2121.10 (17)N2—C13—C12110.70 (14)
C4—C3—H3119.5N2—C13—C14120.36 (14)
C2—C3—H3119.5C12—C13—C14128.93 (15)
C5—C4—C3119.29 (18)C19—C14—C15118.53 (16)
C5—C4—H4120.4C19—C14—C13120.92 (15)
C3—C4—H4120.4C15—C14—C13120.54 (15)
C6—C5—C4121.16 (18)C16—C15—C14120.64 (17)
C6—C5—Cl1119.15 (14)C16—C15—H15119.7
C4—C5—Cl1119.69 (15)C14—C15—H15119.7
C5—C6—C7118.99 (16)C17—C16—C15120.21 (19)
C5—C6—H6120.5C17—C16—H16119.9
C7—C6—H6120.5C15—C16—H16119.9
C6—C7—C2121.43 (16)C16—C17—C18119.58 (18)
C6—C7—H7119.3C16—C17—H17120.2
C2—C7—H7119.3C18—C17—H17120.2
N1—C8—C12106.85 (14)C17—C18—C19120.77 (18)
N1—C8—C9122.81 (14)C17—C18—H18119.6
C12—C8—C9130.33 (15)C19—C18—H18119.6
O1—C9—O2124.39 (15)C18—C19—C14120.25 (18)
O1—C9—C8125.32 (16)C18—C19—H19119.9
O2—C9—C8110.29 (14)C14—C19—H19119.9
O2—C10—C11107.06 (16)
C8—N1—N2—C130.84 (18)C12—C8—C9—O1176.62 (18)
C1—N1—N2—C13175.68 (14)N1—C8—C9—O2178.64 (14)
N2—N1—C1—C296.41 (17)C12—C8—C9—O23.3 (2)
C8—N1—C1—C277.4 (2)C9—O2—C10—C11171.93 (16)
N1—C1—C2—C7126.30 (17)N1—C8—C12—C130.64 (17)
N1—C1—C2—C355.0 (2)C9—C8—C12—C13178.92 (16)
C7—C2—C3—C40.4 (3)N1—N2—C13—C120.41 (18)
C1—C2—C3—C4178.33 (18)N1—N2—C13—C14179.81 (13)
C2—C3—C4—C50.1 (3)C8—C12—C13—N20.15 (18)
C3—C4—C5—C60.1 (3)C8—C12—C13—C14179.18 (15)
C3—C4—C5—Cl1179.85 (16)N2—C13—C14—C196.6 (2)
C4—C5—C6—C70.1 (3)C12—C13—C14—C19174.15 (17)
Cl1—C5—C6—C7179.98 (13)N2—C13—C14—C15172.21 (15)
C5—C6—C7—C20.5 (3)C12—C13—C14—C157.1 (3)
C3—C2—C7—C60.6 (3)C19—C14—C15—C160.7 (3)
C1—C2—C7—C6178.15 (15)C13—C14—C15—C16178.08 (16)
N2—N1—C8—C120.95 (18)C14—C15—C16—C170.0 (3)
C1—N1—C8—C12175.06 (16)C15—C16—C17—C180.5 (3)
N2—N1—C8—C9179.39 (14)C16—C17—C18—C190.3 (3)
C1—N1—C8—C96.5 (3)C17—C18—C19—C140.5 (3)
C10—O2—C9—O11.1 (3)C15—C14—C19—C181.0 (3)
C10—O2—C9—C8178.97 (14)C13—C14—C19—C18177.83 (16)
N1—C8—C9—O11.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.563.281 (2)135
C1—H1B···O10.972.422.921 (2)111
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC19H17ClN2O2
Mr340.80
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.1815 (10), 10.4039 (12), 11.0969 (13)
α, β, γ (°)109.981 (2), 90.107 (2), 104.046 (2)
V3)857.43 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.26 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.941, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
4495, 3008, 2554
Rint0.023
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.107, 1.03
No. of reflections3008
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.30

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.563.281 (2)135.2
C1—H1B···O10.972.422.921 (2)111.4
Symmetry code: (i) x+2, y+1, z+1.
 

References

First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGe, Y.-Q., Dong, W.-L., Xia, Y., Wei, F. & Zhao, B.-X. (2007). Acta Cryst. E63, o1313–o1314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGe, Y. Q., Hao, B. Q., Duan, G. Y. & Wang, J. W. (2011). J. Lumin. 131, 1070–1076.  Web of Science CrossRef CAS Google Scholar
First citationGe, Y. Q., Jia, J., Li, Y., Yin, L. & Wang, J. W. (2009). Heterocycles, 42, 197–206.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, Y., Dong, Z. W., Zhao, B. X., Ge, X., Meng, N., Shin, D. S. & Miao, J. Y. (2007). Bioorg. Med. Chem. 15, 6893–6899.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds