metal-organic compounds
Tris(3-nitropentane-2,4-dionato-κ2O,O′)cobalt(III)
aDepartment of Chemistry, Otterbein University, Westerville, OH 43081, USA
*Correspondence e-mail: djohnston@otterbein.edu
The structure of the title compound, [Co(C5H6NO4)3], consists of a CoIII ion octahedrally coordinated by three bidentate 3-nitropentane-2,4-dionate ligands. The complex was prepared via the nitration of tris(2,4-pentanedionato-κ2O,O′)cobalt(III) with a solution of copper(II) nitrate in glacial acetic acid. The central C atom and the nitro group of one 3-nitropentane-2,4-dionate ligand are disordered over two positions with an occupancy ratio of 0.848 (4):0.152 (4). A second nitro group is also disordered over two orientations with an occupancy ratio of 0.892 (7):0.108 (7). Two of the ligand methyl groups form C—H⋯O interactions with two different nitro groups to form chains running along the c axis. Additional C—H⋯O interactions are found between ligand methyl groups and the cobalt-bound O atoms, also resulting in the formation of chains along the c axis.
Related literature
For the preparation of derivatized tris(2,4-pentanedionato) metal complexes, see: Collman et al. (1962, 1963); Collman (1965); Schirado et al. (1971); James (1974); Shalhoub (1980). For spectroscopic properties of the title compound, see: Singh & Sahai (1967, 1968); Larsson & Eskilsson (1969); Fleming & Thorton (1973, 1975); Tsiamis et al. (1987). For crystallographic studies of related compounds, see: Appleton et al. (1992); Abrahams et al. (1998); Tsiamis et al. (1998); von Chrzanowski et al. (2007). For a review of graph-set analysis of hydrogen-bonding patterns, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection: GIS (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); molecular graphics: PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and POV-RAY (Cason, 2004); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S160053681200668X/zl2451sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681200668X/zl2451Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681200668X/zl2451Isup3.mol
The complex was prepared according to the procedure of Collman et al. (1963). Approximately 5.37 g (0.023 mol) of finely ground copper(II) nitrate trihydrate was mixed with 100 ml (1.06 mol) of acetic anhydride. Cobalt(III) acetylacetonate (2.5 g, 0.0070 mol) was added to the mixture and stirred with cooling for approximately two hours. A combination of water (300 ml), ice (300 g), and sodium acetate (7.5 g, 0.055 mol) was then added and the mixture was stirred for an additional two hours. The dark-green precipitate was vacuum filtered and washed with water and cold ethanol. The crude product was recrystallized from boiling chloroform and hot ethanol. The final product consisted of large, dark green crystals that were obtained in an overall yield of 62% (2.14 g).
The IR spectrum (ATR cell) displayed strong peaks at 1561 cm-1 (νring), 1518 cm-1 (νas, NO2), 1341 cm-1 (νs, NO2), and 825 cm-1 (δC—H). Raman spectra (532 nm excitation) gave strong peaks at 1345 cm-1 (νs, NO2), 828 cm-1 (δC—H), 470 cm-1 and 450 cm-1 (νCo—O).
All hydrogen atoms were located in the difference map and refined with the atom positions constrained to an ideal tetrahedron with C—H distances of 0.98 Å. A riding model was used for all hydrogen atoms with Uiso(H) = 1.5 times Uiso(C).
One of the 3-nitropentane-2,4-dionato ligands was modeled as disordered over two positions for four atoms, C13/C13A, N3/N3A, O11/O11A, and O12/O12A and refined to give an occupancy ratio of 0.848 (4):0.152 (4). Carbon-carbon distances between similar atoms in the disordered ligand were restrained to be similar within a standard deviation of 0.02 Å. The nitro groups and their respective carbon atoms (C13/N3/O11/O12, C13A/N3A/O11A/O12A) were restrained to lie in a common plane, as were atoms C12, C13A, C14 and N3A. The anisotropic displacement parameters for the atom pairs N3/N3A and C13/C13A were constrained to be the same. The nitro group on a second ligand (N2, O9, O10) was modeled as a disordered group over two orientations and refined to give an occupancy ratio of 0.892 (7):0.108 (7).
Anisotropic displacement parameters were restrained to be similar (standard deviations of 0.01 Å2, 0.02 Å2) for 1,2 and 1,3-bonded atoms and approximately isotropic (standard deviation of 0.1 Å2) for all disordered oxygen atoms. Anisotropic displacement parameters were also restrained to be similar (with a standard deviation of 0.01 Å2) for all atoms within the disordered nitro groups.
Data collection: GIS (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); molecular graphics: PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and POV-RAY (Cason, 2004); software used to prepare material for publication: publCIF (Westrip, 2010).[Co(C5H6NO4)3] | Dx = 1.627 Mg m−3 |
Mr = 491.25 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I41cd | Cell parameters from 8816 reflections |
a = 32.7078 (18) Å | θ = 2.5–24.6° |
c = 7.4976 (6) Å | µ = 0.93 mm−1 |
V = 8020.9 (9) Å3 | T = 200 K |
Z = 16 | Block, green |
F(000) = 4032 | 0.48 × 0.40 × 0.32 mm |
Bruker SMART X2S benchtop diffractometer | 3393 independent reflections |
Radiation source: fine-focus sealed tube | 3151 reflections with I > 2σ(I) |
Doubly curved silicon crystal monochromator | Rint = 0.036 |
Detector resolution: 8.3330 pixels mm-1 | θmax = 25.1°, θmin = 2.5° |
ϕ and ω scans | h = −38→38 |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | k = −38→34 |
Tmin = 0.665, Tmax = 0.756 | l = −7→8 |
24724 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | H-atom parameters constrained |
wR(F2) = 0.061 | w = 1/[σ2(Fo2) + (0.0316P)2 + 2.8577P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
3393 reflections | Δρmax = 0.20 e Å−3 |
330 parameters | Δρmin = −0.19 e Å−3 |
159 restraints | Absolute structure: Flack (1983), 1466 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.003 (12) |
[Co(C5H6NO4)3] | Z = 16 |
Mr = 491.25 | Mo Kα radiation |
Tetragonal, I41cd | µ = 0.93 mm−1 |
a = 32.7078 (18) Å | T = 200 K |
c = 7.4976 (6) Å | 0.48 × 0.40 × 0.32 mm |
V = 8020.9 (9) Å3 |
Bruker SMART X2S benchtop diffractometer | 3393 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3151 reflections with I > 2σ(I) |
Tmin = 0.665, Tmax = 0.756 | Rint = 0.036 |
24724 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | H-atom parameters constrained |
wR(F2) = 0.061 | Δρmax = 0.20 e Å−3 |
S = 1.04 | Δρmin = −0.19 e Å−3 |
3393 reflections | Absolute structure: Flack (1983), 1466 Friedel pairs |
330 parameters | Absolute structure parameter: 0.003 (12) |
159 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Co1 | 0.623604 (9) | 0.363125 (9) | 0.26098 (5) | 0.02596 (9) | |
O1 | 0.60216 (5) | 0.41367 (5) | 0.1946 (3) | 0.0344 (4) | |
O2 | 0.57311 (5) | 0.33960 (5) | 0.3185 (2) | 0.0328 (4) | |
C1 | 0.55984 (10) | 0.46990 (8) | 0.1698 (5) | 0.0506 (8) | |
H1A | 0.5562 | 0.4848 | 0.2820 | 0.076* | |
H1B | 0.5357 | 0.4737 | 0.0944 | 0.076* | |
H1C | 0.5841 | 0.4803 | 0.1076 | 0.076* | |
C2 | 0.56542 (8) | 0.42488 (7) | 0.2088 (4) | 0.0335 (6) | |
C3 | 0.53378 (7) | 0.39769 (8) | 0.2526 (4) | 0.0343 (6) | |
C4 | 0.53853 (8) | 0.35653 (8) | 0.3056 (3) | 0.0321 (6) | |
C5 | 0.50367 (9) | 0.32949 (9) | 0.3579 (4) | 0.0457 (7) | |
H5A | 0.4921 | 0.3167 | 0.2511 | 0.069* | |
H5B | 0.4826 | 0.3458 | 0.4174 | 0.069* | |
H5C | 0.5135 | 0.3082 | 0.4394 | 0.069* | |
N1 | 0.49174 (8) | 0.41312 (8) | 0.2502 (4) | 0.0537 (7) | |
O7 | 0.48554 (8) | 0.44588 (8) | 0.3244 (4) | 0.0868 (9) | |
O8 | 0.46521 (7) | 0.39291 (9) | 0.1762 (4) | 0.0736 (8) | |
O3 | 0.61607 (5) | 0.34505 (5) | 0.0263 (3) | 0.0323 (4) | |
O4 | 0.64932 (5) | 0.31545 (5) | 0.3405 (2) | 0.0292 (4) | |
C6 | 0.61730 (9) | 0.30447 (8) | −0.2281 (4) | 0.0458 (7) | |
H6A | 0.5967 | 0.3245 | −0.2651 | 0.069* | |
H6B | 0.6063 | 0.2768 | −0.2436 | 0.069* | |
H6C | 0.6419 | 0.3077 | −0.3014 | 0.069* | |
C7 | 0.62781 (7) | 0.31108 (7) | −0.0377 (3) | 0.0308 (6) | |
C9 | 0.65864 (6) | 0.28479 (7) | 0.2463 (4) | 0.0271 (5) | |
C10 | 0.68264 (8) | 0.25280 (8) | 0.3421 (4) | 0.0360 (6) | |
H10A | 0.6953 | 0.2648 | 0.4484 | 0.054* | |
H10B | 0.7040 | 0.2421 | 0.2631 | 0.054* | |
H10C | 0.6644 | 0.2305 | 0.3778 | 0.054* | |
C8 | 0.64852 (7) | 0.28190 (7) | 0.0659 (3) | 0.0303 (6) | |
N2 | 0.66001 (8) | 0.24416 (7) | −0.0254 (4) | 0.0478 (6) | |
O9 | 0.64699 (12) | 0.21173 (8) | 0.0305 (5) | 0.0709 (11) | 0.892 (7) |
O10 | 0.68344 (13) | 0.24671 (10) | −0.1541 (5) | 0.0844 (13) | 0.892 (7) |
O9A | 0.6323 (5) | 0.2214 (6) | −0.064 (4) | 0.047 (5) | 0.108 (7) |
O10A | 0.6956 (5) | 0.2340 (7) | −0.042 (5) | 0.071 (6) | 0.108 (7) |
O5 | 0.67470 (5) | 0.38351 (5) | 0.1938 (2) | 0.0318 (4) | |
O6 | 0.62659 (5) | 0.38295 (5) | 0.4944 (3) | 0.0309 (4) | |
C11 | 0.72986 (8) | 0.42775 (9) | 0.1701 (4) | 0.0436 (7) | |
H11A | 0.7548 | 0.4176 | 0.2274 | 0.065* | |
H11B | 0.7301 | 0.4577 | 0.1704 | 0.065* | |
H11C | 0.7287 | 0.4178 | 0.0468 | 0.065* | |
C12 | 0.69317 (7) | 0.41265 (7) | 0.2705 (4) | 0.0330 (6) | |
C14 | 0.64901 (8) | 0.41223 (7) | 0.5448 (4) | 0.0358 (7) | |
C15 | 0.64112 (10) | 0.42602 (9) | 0.7323 (4) | 0.0495 (8) | |
H15A | 0.6184 | 0.4456 | 0.7331 | 0.074* | |
H15B | 0.6657 | 0.4391 | 0.7801 | 0.074* | |
H15C | 0.6340 | 0.4023 | 0.8062 | 0.074* | |
C13 | 0.67903 (11) | 0.42915 (11) | 0.4312 (5) | 0.0372 (8) | 0.848 (4) |
N3 | 0.69807 (11) | 0.46657 (10) | 0.4996 (6) | 0.0564 (9) | 0.848 (4) |
O11 | 0.73566 (11) | 0.46798 (13) | 0.5000 (8) | 0.0929 (16) | 0.848 (4) |
O12 | 0.67605 (8) | 0.49417 (7) | 0.5453 (5) | 0.0709 (11) | 0.848 (4) |
C13A | 0.6847 (5) | 0.4257 (5) | 0.4490 (19) | 0.0372 (8) | 0.152 (4) |
N3A | 0.7157 (6) | 0.4544 (5) | 0.521 (3) | 0.0564 (9) | 0.152 (4) |
O11A | 0.7310 (5) | 0.4489 (5) | 0.665 (2) | 0.073 (5) | 0.152 (4) |
O12A | 0.7248 (7) | 0.4836 (5) | 0.433 (3) | 0.073 (5) | 0.152 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.02761 (17) | 0.02064 (16) | 0.02963 (16) | 0.00184 (12) | −0.00204 (16) | −0.00131 (15) |
O1 | 0.0348 (10) | 0.0206 (8) | 0.0479 (12) | 0.0007 (7) | −0.0062 (8) | 0.0027 (8) |
O2 | 0.0318 (9) | 0.0250 (9) | 0.0416 (11) | −0.0002 (7) | −0.0010 (8) | −0.0023 (7) |
C1 | 0.068 (2) | 0.0282 (15) | 0.056 (2) | 0.0156 (14) | −0.0166 (17) | −0.0017 (13) |
C2 | 0.0436 (15) | 0.0251 (13) | 0.0318 (15) | 0.0094 (11) | −0.0087 (12) | −0.0073 (11) |
C3 | 0.0296 (13) | 0.0407 (14) | 0.0325 (15) | 0.0138 (11) | −0.0020 (13) | −0.0048 (13) |
C4 | 0.0341 (14) | 0.0344 (14) | 0.0280 (16) | −0.0011 (11) | −0.0006 (11) | −0.0076 (11) |
C5 | 0.0364 (15) | 0.0536 (18) | 0.0470 (18) | −0.0064 (14) | 0.0034 (14) | −0.0052 (15) |
N1 | 0.0492 (17) | 0.0667 (16) | 0.0451 (15) | 0.0238 (13) | 0.0066 (15) | 0.0083 (15) |
O7 | 0.087 (2) | 0.0720 (16) | 0.102 (2) | 0.0464 (15) | 0.0249 (16) | −0.0003 (15) |
O8 | 0.0335 (12) | 0.116 (2) | 0.0715 (19) | 0.0089 (14) | −0.0101 (12) | 0.0049 (16) |
O3 | 0.0397 (9) | 0.0281 (9) | 0.0290 (9) | 0.0003 (7) | −0.0060 (8) | 0.0002 (8) |
O4 | 0.0359 (9) | 0.0253 (9) | 0.0263 (9) | 0.0058 (7) | −0.0030 (8) | −0.0008 (7) |
C6 | 0.0594 (18) | 0.0432 (15) | 0.0348 (16) | −0.0087 (13) | −0.0015 (15) | −0.0039 (15) |
C7 | 0.0299 (13) | 0.0299 (14) | 0.0328 (15) | −0.0100 (10) | 0.0023 (11) | −0.0017 (11) |
C9 | 0.0229 (11) | 0.0222 (11) | 0.0360 (14) | −0.0025 (9) | 0.0036 (11) | 0.0003 (11) |
C10 | 0.0351 (14) | 0.0278 (13) | 0.0451 (17) | 0.0018 (11) | −0.0008 (13) | 0.0036 (12) |
C8 | 0.0342 (13) | 0.0230 (13) | 0.0338 (15) | −0.0024 (10) | 0.0076 (11) | −0.0051 (10) |
N2 | 0.0656 (17) | 0.0331 (14) | 0.0447 (16) | 0.0041 (12) | 0.0035 (14) | −0.0136 (12) |
O9 | 0.114 (3) | 0.0271 (14) | 0.072 (2) | −0.0078 (15) | 0.006 (2) | −0.0089 (15) |
O10 | 0.121 (3) | 0.063 (2) | 0.069 (3) | 0.0254 (19) | 0.045 (2) | −0.0107 (17) |
O9A | 0.061 (10) | 0.025 (9) | 0.055 (11) | 0.004 (8) | −0.020 (9) | −0.025 (8) |
O10A | 0.083 (11) | 0.044 (10) | 0.086 (13) | 0.002 (9) | 0.024 (10) | −0.038 (10) |
O5 | 0.0301 (9) | 0.0286 (9) | 0.0366 (10) | −0.0006 (7) | 0.0008 (8) | −0.0001 (8) |
O6 | 0.0381 (9) | 0.0234 (9) | 0.0311 (11) | 0.0006 (6) | −0.0008 (9) | −0.0033 (8) |
C11 | 0.0358 (15) | 0.0351 (15) | 0.060 (2) | −0.0033 (12) | −0.0018 (14) | 0.0147 (13) |
C12 | 0.0280 (12) | 0.0233 (12) | 0.0477 (16) | 0.0037 (9) | −0.0076 (13) | 0.0081 (14) |
C14 | 0.0441 (15) | 0.0231 (13) | 0.0402 (18) | 0.0078 (11) | −0.0053 (12) | −0.0057 (12) |
C15 | 0.068 (2) | 0.0368 (15) | 0.0434 (19) | 0.0009 (13) | −0.0029 (16) | −0.0134 (14) |
C13 | 0.0383 (18) | 0.0222 (14) | 0.0512 (19) | −0.0025 (13) | −0.0102 (15) | −0.0034 (13) |
N3 | 0.0388 (19) | 0.0424 (18) | 0.088 (2) | −0.0136 (14) | −0.002 (2) | −0.0241 (19) |
O11 | 0.0459 (19) | 0.082 (3) | 0.150 (5) | −0.0126 (18) | −0.016 (3) | −0.050 (3) |
O12 | 0.0668 (16) | 0.0290 (14) | 0.117 (3) | −0.0038 (13) | 0.0069 (18) | −0.0255 (16) |
C13A | 0.0383 (18) | 0.0222 (14) | 0.0512 (19) | −0.0025 (13) | −0.0102 (15) | −0.0034 (13) |
N3A | 0.0388 (19) | 0.0424 (18) | 0.088 (2) | −0.0136 (14) | −0.002 (2) | −0.0241 (19) |
O11A | 0.051 (8) | 0.081 (9) | 0.087 (10) | −0.017 (7) | −0.035 (8) | −0.021 (8) |
O12A | 0.068 (10) | 0.064 (9) | 0.086 (10) | −0.043 (8) | −0.006 (8) | −0.017 (8) |
Co1—O1 | 1.8635 (16) | C9—C10 | 1.493 (3) |
Co1—O5 | 1.8686 (17) | C10—H10A | 0.9800 |
Co1—O6 | 1.869 (2) | C10—H10B | 0.9800 |
Co1—O4 | 1.8694 (16) | C10—H10C | 0.9800 |
Co1—O2 | 1.8722 (17) | C8—N2 | 1.461 (3) |
Co1—O3 | 1.8721 (19) | N2—O9A | 1.208 (14) |
O1—C2 | 1.261 (3) | N2—O10A | 1.216 (15) |
O2—C4 | 1.263 (3) | N2—O9 | 1.217 (4) |
C1—C2 | 1.512 (3) | N2—O10 | 1.235 (4) |
C1—H1A | 0.9800 | O5—C12 | 1.267 (3) |
C1—H1B | 0.9800 | O6—C14 | 1.264 (3) |
C1—H1C | 0.9800 | C11—C12 | 1.501 (4) |
C2—C3 | 1.403 (4) | C11—H11A | 0.9800 |
C3—C4 | 1.412 (4) | C11—H11B | 0.9800 |
C3—N1 | 1.465 (3) | C11—H11C | 0.9800 |
C4—C5 | 1.495 (4) | C12—C13 | 1.399 (5) |
C5—H5A | 0.9800 | C12—C13A | 1.432 (13) |
C5—H5B | 0.9800 | C14—C13 | 1.412 (5) |
C5—H5C | 0.9800 | C14—C13A | 1.439 (13) |
N1—O8 | 1.224 (4) | C14—C15 | 1.499 (4) |
N1—O7 | 1.224 (3) | C15—H15A | 0.9800 |
O3—C7 | 1.270 (3) | C15—H15B | 0.9800 |
O4—C9 | 1.264 (3) | C15—H15C | 0.9800 |
C6—C7 | 1.485 (4) | C13—N3 | 1.466 (4) |
C6—H6A | 0.9800 | N3—O12 | 1.204 (4) |
C6—H6B | 0.9800 | N3—O11 | 1.230 (5) |
C6—H6C | 0.9800 | C13A—N3A | 1.482 (16) |
C7—C8 | 1.405 (4) | N3A—O12A | 1.201 (18) |
C9—C8 | 1.395 (4) | N3A—O11A | 1.202 (18) |
O1—Co1—O5 | 87.03 (7) | O4—C9—C10 | 114.4 (2) |
O1—Co1—O6 | 87.82 (8) | C8—C9—C10 | 122.9 (2) |
O5—Co1—O6 | 94.70 (7) | C9—C10—H10A | 109.5 |
O1—Co1—O4 | 174.00 (8) | C9—C10—H10B | 109.5 |
O5—Co1—O4 | 88.92 (7) | H10A—C10—H10B | 109.5 |
O6—Co1—O4 | 88.11 (7) | C9—C10—H10C | 109.5 |
O1—Co1—O2 | 95.40 (7) | H10A—C10—H10C | 109.5 |
O5—Co1—O2 | 176.10 (8) | H10B—C10—H10C | 109.5 |
O6—Co1—O2 | 88.46 (8) | C9—C8—C7 | 127.2 (2) |
O4—Co1—O2 | 88.89 (7) | C9—C8—N2 | 116.8 (2) |
O1—Co1—O3 | 88.84 (8) | C7—C8—N2 | 116.1 (2) |
O5—Co1—O3 | 88.69 (8) | O9A—N2—O10A | 121.6 (13) |
O6—Co1—O3 | 175.11 (7) | O9—N2—O10 | 123.0 (3) |
O4—Co1—O3 | 95.49 (7) | O9A—N2—C8 | 116.2 (9) |
O2—Co1—O3 | 88.30 (8) | O10A—N2—C8 | 121.6 (10) |
C2—O1—Co1 | 126.46 (16) | O9—N2—C8 | 119.0 (3) |
C4—O2—Co1 | 126.32 (16) | O10—N2—C8 | 117.9 (3) |
C2—C1—H1A | 109.5 | C12—O5—Co1 | 124.92 (17) |
C2—C1—H1B | 109.5 | C14—O6—Co1 | 124.96 (18) |
H1A—C1—H1B | 109.5 | C12—C11—H11A | 109.5 |
C2—C1—H1C | 109.5 | C12—C11—H11B | 109.5 |
H1A—C1—H1C | 109.5 | H11A—C11—H11B | 109.5 |
H1B—C1—H1C | 109.5 | C12—C11—H11C | 109.5 |
O1—C2—C3 | 122.6 (2) | H11A—C11—H11C | 109.5 |
O1—C2—C1 | 112.4 (2) | H11B—C11—H11C | 109.5 |
C3—C2—C1 | 125.0 (2) | O5—C12—C13 | 121.6 (3) |
C2—C3—C4 | 126.1 (2) | O5—C12—C13A | 123.8 (6) |
C2—C3—N1 | 118.1 (2) | O5—C12—C11 | 113.6 (3) |
C4—C3—N1 | 115.8 (2) | C13—C12—C11 | 124.7 (3) |
O2—C4—C3 | 122.5 (2) | C13A—C12—C11 | 121.7 (6) |
O2—C4—C5 | 113.8 (2) | O6—C14—C13 | 121.3 (3) |
C3—C4—C5 | 123.6 (2) | O6—C14—C13A | 123.6 (7) |
C4—C5—H5A | 109.5 | O6—C14—C15 | 114.1 (3) |
C4—C5—H5B | 109.5 | C13—C14—C15 | 124.6 (3) |
H5A—C5—H5B | 109.5 | C13A—C14—C15 | 121.0 (7) |
C4—C5—H5C | 109.5 | C14—C15—H15A | 109.5 |
H5A—C5—H5C | 109.5 | C14—C15—H15B | 109.5 |
H5B—C5—H5C | 109.5 | H15A—C15—H15B | 109.5 |
O8—N1—O7 | 124.2 (3) | C14—C15—H15C | 109.5 |
O8—N1—C3 | 119.0 (3) | H15A—C15—H15C | 109.5 |
O7—N1—C3 | 116.8 (3) | H15B—C15—H15C | 109.5 |
C7—O3—Co1 | 126.27 (17) | C12—C13—C14 | 126.7 (3) |
C9—O4—Co1 | 126.28 (17) | C12—C13—N3 | 118.9 (3) |
C7—C6—H6A | 109.5 | C14—C13—N3 | 114.3 (3) |
C7—C6—H6B | 109.5 | O12—N3—O11 | 124.7 (3) |
H6A—C6—H6B | 109.5 | O12—N3—C13 | 118.1 (3) |
C7—C6—H6C | 109.5 | O11—N3—C13 | 117.2 (4) |
H6A—C6—H6C | 109.5 | C12—C13A—C14 | 122.1 (11) |
H6B—C6—H6C | 109.5 | C12—C13A—N3A | 113.4 (11) |
O3—C7—C8 | 122.1 (2) | C14—C13A—N3A | 124.4 (12) |
O3—C7—C6 | 114.9 (2) | O12A—N3A—O11A | 120.5 (19) |
C8—C7—C6 | 123.0 (2) | O12A—N3A—C13A | 118.3 (17) |
O4—C9—C8 | 122.6 (2) | O11A—N3A—C13A | 121.2 (15) |
O5—Co1—O1—C2 | −177.2 (2) | C7—C8—N2—O9 | −120.7 (4) |
O6—Co1—O1—C2 | −82.3 (2) | C9—C8—N2—O10 | −120.0 (4) |
O2—Co1—O1—C2 | 5.9 (2) | C7—C8—N2—O10 | 61.0 (4) |
O3—Co1—O1—C2 | 94.1 (2) | O1—Co1—O5—C12 | 65.7 (2) |
O1—Co1—O2—C4 | 1.0 (2) | O6—Co1—O5—C12 | −21.9 (2) |
O6—Co1—O2—C4 | 88.7 (2) | O4—Co1—O5—C12 | −109.90 (19) |
O4—Co1—O2—C4 | 176.8 (2) | O3—Co1—O5—C12 | 154.58 (19) |
O3—Co1—O2—C4 | −87.6 (2) | O1—Co1—O6—C14 | −64.51 (19) |
Co1—O1—C2—C3 | −10.3 (4) | O5—Co1—O6—C14 | 22.32 (19) |
Co1—O1—C2—C1 | 170.89 (18) | O4—Co1—O6—C14 | 111.09 (19) |
O1—C2—C3—C4 | 7.7 (4) | O2—Co1—O6—C14 | −159.97 (19) |
C1—C2—C3—C4 | −173.7 (3) | Co1—O5—C12—C13 | 8.8 (4) |
O1—C2—C3—N1 | −174.7 (3) | Co1—O5—C12—C13A | 20.7 (10) |
C1—C2—C3—N1 | 3.9 (4) | Co1—O5—C12—C11 | −169.52 (16) |
Co1—O2—C4—C3 | −3.4 (4) | Co1—O6—C14—C13 | −9.6 (4) |
Co1—O2—C4—C5 | 178.68 (17) | Co1—O6—C14—C13A | −21.4 (10) |
C2—C3—C4—O2 | −0.3 (4) | Co1—O6—C14—C15 | 171.42 (18) |
N1—C3—C4—O2 | −178.0 (3) | O5—C12—C13—C14 | 12.8 (5) |
C2—C3—C4—C5 | 177.4 (3) | C13A—C12—C13—C14 | −93 (4) |
N1—C3—C4—C5 | −0.3 (4) | C11—C12—C13—C14 | −169.1 (3) |
C2—C3—N1—O8 | 133.5 (3) | O5—C12—C13—N3 | −171.0 (3) |
C4—C3—N1—O8 | −48.7 (4) | C13A—C12—C13—N3 | 83 (4) |
C2—C3—N1—O7 | −46.8 (4) | C11—C12—C13—N3 | 7.0 (5) |
C4—C3—N1—O7 | 131.1 (3) | O6—C14—C13—C12 | −12.4 (5) |
O1—Co1—O3—C7 | 173.7 (2) | C13A—C14—C13—C12 | 94 (4) |
O5—Co1—O3—C7 | 86.68 (19) | C15—C14—C13—C12 | 166.5 (3) |
O4—Co1—O3—C7 | −2.11 (19) | O6—C14—C13—N3 | 171.4 (3) |
O2—Co1—O3—C7 | −90.83 (19) | C13A—C14—C13—N3 | −83 (4) |
O5—Co1—O4—C9 | −84.85 (18) | C15—C14—C13—N3 | −9.8 (5) |
O6—Co1—O4—C9 | −179.59 (18) | C12—C13—N3—O12 | 130.7 (4) |
O2—Co1—O4—C9 | 91.91 (19) | C14—C13—N3—O12 | −52.7 (6) |
O3—Co1—O4—C9 | 3.73 (19) | C12—C13—N3—O11 | −46.7 (7) |
Co1—O3—C7—C8 | 0.4 (3) | C14—C13—N3—O11 | 129.9 (5) |
Co1—O3—C7—C6 | 179.31 (17) | O5—C12—C13A—C14 | −12.7 (19) |
Co1—O4—C9—C8 | −3.6 (3) | C13—C12—C13A—C14 | 68 (4) |
Co1—O4—C9—C10 | 174.29 (15) | C11—C12—C13A—C14 | 178.3 (9) |
O4—C9—C8—C7 | 0.8 (4) | O5—C12—C13A—N3A | 168.2 (9) |
C10—C9—C8—C7 | −176.8 (2) | C13—C12—C13A—N3A | −111 (5) |
O4—C9—C8—N2 | −178.0 (2) | C11—C12—C13A—N3A | −0.8 (15) |
C10—C9—C8—N2 | 4.3 (3) | O6—C14—C13A—C12 | 13.1 (19) |
O3—C7—C8—C9 | 0.9 (4) | C13—C14—C13A—C12 | −67 (4) |
C6—C7—C8—C9 | −178.0 (2) | C15—C14—C13A—C12 | 179.4 (10) |
O3—C7—C8—N2 | 179.7 (2) | O6—C14—C13A—N3A | −167.9 (11) |
C6—C7—C8—N2 | 0.9 (4) | C13—C14—C13A—N3A | 112 (5) |
C9—C8—N2—O9A | 108.5 (17) | C15—C14—C13A—N3A | −1.6 (18) |
C7—C8—N2—O9A | −70.5 (17) | C12—C13A—N3A—O12A | 51 (2) |
C9—C8—N2—O10A | −63 (2) | C14—C13A—N3A—O12A | −128 (2) |
C7—C8—N2—O10A | 118 (2) | C12—C13A—N3A—O11A | −130.2 (19) |
C9—C8—N2—O9 | 58.3 (4) | C14—C13A—N3A—O11A | 51 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1B···O7i | 0.98 | 2.33 | 3.087 (4) | 134 |
C11—H11B···O12ii | 0.98 | 2.55 | 3.240 (4) | 128 |
C10—H10C···O5iii | 0.98 | 2.46 | 3.433 (3) | 176 |
C15—H15C···O3iv | 0.98 | 2.57 | 3.542 (4) | 174 |
Symmetry codes: (i) −x+1, y, z−1/2; (ii) x, −y+1, z−1/2; (iii) −y+1, x−1/2, z+1/4; (iv) x, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | [Co(C5H6NO4)3] |
Mr | 491.25 |
Crystal system, space group | Tetragonal, I41cd |
Temperature (K) | 200 |
a, c (Å) | 32.7078 (18), 7.4976 (6) |
V (Å3) | 8020.9 (9) |
Z | 16 |
Radiation type | Mo Kα |
µ (mm−1) | 0.93 |
Crystal size (mm) | 0.48 × 0.40 × 0.32 |
Data collection | |
Diffractometer | Bruker SMART X2S benchtop diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.665, 0.756 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 24724, 3393, 3151 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.061, 1.04 |
No. of reflections | 3393 |
No. of parameters | 330 |
No. of restraints | 159 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.19 |
Absolute structure | Flack (1983), 1466 Friedel pairs |
Absolute structure parameter | 0.003 (12) |
Computer programs: GIS (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and POV-RAY (Cason, 2004), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1B···O7i | 0.98 | 2.33 | 3.087 (4) | 133.8 |
C11—H11B···O12ii | 0.98 | 2.55 | 3.240 (4) | 127.8 |
C10—H10C···O5iii | 0.98 | 2.46 | 3.433 (3) | 175.6 |
C15—H15C···O3iv | 0.98 | 2.57 | 3.542 (4) | 174.3 |
Symmetry codes: (i) −x+1, y, z−1/2; (ii) x, −y+1, z−1/2; (iii) −y+1, x−1/2, z+1/4; (iv) x, y, z+1. |
Acknowledgements
This work was supported in part by the National Science Foundation through grant No. CHE-0942850.
References
Abrahams, B. F., Hoskins, B. F., McFadyen, D. W. & Perrin, L. C. (1998). Acta Cryst. C54, 1807–1809. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Appleton, T. G., Gahan, L. R. & Oliver, P. J. (1992). Aust. J. Chem. 45, 797–805. CSD CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). GIS, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cason, C. J. (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Williamstown, Victoria, Australia. Google Scholar
Chrzanowski, L. S. von, Lutz, M. & Spek, A. L. (2007). Acta Cryst. C63, m283–m288. Web of Science CSD CrossRef IUCr Journals Google Scholar
Collman, J. P. (1965). Angew. Chem. Int. Ed. 4, 132–138. CrossRef Google Scholar
Collman, J. P., Goldby, S., Young, W. L. III & Marshall, R. (1962). Inorg. Chem. 1, 704–710. CrossRef CAS Web of Science Google Scholar
Collman, J. P., Young, W. L. III & Kauffman, G. B. (1963). Inorg. Synth. 7, 205–207. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fleming, C. A. & Thorton, D. A. (1973). J. Mol. Struct. 17, 79–89. CrossRef CAS Web of Science Google Scholar
Fleming, C. A. & Thorton, D. A. (1975). J. Mol. Struct. 25, 271–279. CrossRef CAS Web of Science Google Scholar
James, B. D. (1974). J. Chem. Educ. 51, 568. CrossRef Google Scholar
Larsson, R. & Eskilsson, O. (1969). Acta Chem. Scand. 23, 1765–1779. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Schirado, T., Gennari, E., Merello, R., Decinti, A. & Bunel, S. (1971). J. Inorg. Nucl. Chem. 33, 3417–3426. CrossRef CAS Web of Science Google Scholar
Shalhoub, G. M. (1980). J. Chem. Educ. 57, 525–528. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, P. R. & Sahai, R. (1967). Aust. J. Chem. 20, 649–655. CrossRef CAS Web of Science Google Scholar
Singh, P. R. & Sahai, R. (1968). Inorg. Nucl. Chem. Lett. 4, 513–516. CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tsiamis, C., Cambanis, S. & Hadjikostas, C. (1987). Inorg. Chem. 26, 26–32. CrossRef CAS Web of Science Google Scholar
Tsiamis, C., Stergiou, A. C., Anesti, V., Blaton, N. M. & Peeters, O. M. (1998). Inorg. Chim. Acta, 269, 332–336. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The electrophilic substitution chemistry of the 2,4-pentanedionato (acetylacetonate, or acac) ligand has been studied for many years (Collman, et al., 1962; Collman, et al., 1963; Collman, 1965; Schirado, et al., 1971), but relatively few of these derivatives have been studied crystallographically, especially for the tri-substituted complexes. The nitro derivative of the cobalt complex is readily prepared and its synthesis and characterization have been described as part of several educational laboratory activities (James, 1974; Shalhoub, 1980).
The average cobalt-oxygen bond length in the title compound is 1.869 (4) Å, slightly shorter than the average cobalt-oxygen bond length observed for the [Co(acac)3] complex determined at a similar temperature (von Chrzanowski, et al., 2007). All three nitro groups are twisted with respect to their 2,4-pentanedionato ligands (Fig. 1), forming angles of 49.3 (1), 59.3 (2), and 50.3 (2) degrees for the major components and 67.2 (2) and 51.6 (8) degrees for the minor disorder components. These are similar to the angle of 50.7 degrees observed for the mono-nitro cobalt complex (Appleton et al., 1992). The disorder in the positioning of one chelate ring has been observed previously (as large thermal parameters) for analogous complexes of cobalt and manganese (Appleton et al., 1992).
Analysis of packing (Fig. 2) and close contacts shows two different types of C—H···O interactions (Table 1). The first type, shown in Figure 3(a) and 3(b), forms between methyl group hydrogen atoms and the nitro group on an adjacent molecule. The second type of C—H···O, shown in Figure 3(c) and 3(d), forms between methyl group hydrogen atoms and the cobalt-bound oxygen atom on an adjacent molecule. This second type of interaction is commonly seen in 2,4-pentanedionato complexes (von Chrzanowski et al., 2007). These hydrogen-bonding interactions result in the formation of four different types of C(6) chains (Bernstein et al., 1995), shown in Figure 4(a) through 4(d). In all four cases, the primary direction of the chain is along the c axis.