metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m312-m313

Tris(3-nitro­pentane-2,4-dionato-κ2O,O′)­cobalt(III)

aDepartment of Chemistry, Otterbein University, Westerville, OH 43081, USA
*Correspondence e-mail: djohnston@otterbein.edu

(Received 4 February 2012; accepted 14 February 2012; online 24 February 2012)

The structure of the title compound, [Co(C5H6NO4)3], consists of a CoIII ion octahedrally coordinated by three bidentate 3-nitro­pentane-2,4-dionate ligands. The complex was prepared via the nitration of tris­(2,4-penta­nedionato-κ2O,O′)cobalt(III) with a solution of copper(II) nitrate in glacial acetic acid. The central C atom and the nitro group of one 3-nitro­pentane-2,4-dionate ligand are disordered over two positions with an occupancy ratio of 0.848 (4):0.152 (4). A second nitro group is also disordered over two orientations with an occupancy ratio of 0.892 (7):0.108 (7). Two of the ligand methyl groups form C—H⋯O inter­actions with two different nitro groups to form chains running along the c axis. Additional C—H⋯O inter­actions are found between ligand methyl groups and the cobalt-bound O atoms, also resulting in the formation of chains along the c axis.

Related literature

For the preparation of derivatized tris­(2,4-penta­nedionato) metal complexes, see: Collman et al. (1962[Collman, J. P., Goldby, S., Young, W. L. III & Marshall, R. (1962). Inorg. Chem. 1, 704-710.], 1963[Collman, J. P., Young, W. L. III & Kauffman, G. B. (1963). Inorg. Synth. 7, 205-207.]); Collman (1965[Collman, J. P. (1965). Angew. Chem. Int. Ed. 4, 132-138.]); Schirado et al. (1971[Schirado, T., Gennari, E., Merello, R., Decinti, A. & Bunel, S. (1971). J. Inorg. Nucl. Chem. 33, 3417-3426.]); James (1974[James, B. D. (1974). J. Chem. Educ. 51, 568.]); Shalhoub (1980[Shalhoub, G. M. (1980). J. Chem. Educ. 57, 525-528.]). For spectroscopic properties of the title compound, see: Singh & Sahai (1967[Singh, P. R. & Sahai, R. (1967). Aust. J. Chem. 20, 649-655.], 1968[Singh, P. R. & Sahai, R. (1968). Inorg. Nucl. Chem. Lett. 4, 513-516.]); Larsson & Eskilsson (1969[Larsson, R. & Eskilsson, O. (1969). Acta Chem. Scand. 23, 1765-1779.]); Fleming & Thorton (1973[Fleming, C. A. & Thorton, D. A. (1973). J. Mol. Struct. 17, 79-89.], 1975[Fleming, C. A. & Thorton, D. A. (1975). J. Mol. Struct. 25, 271-279.]); Tsiamis et al. (1987[Tsiamis, C., Cambanis, S. & Hadjikostas, C. (1987). Inorg. Chem. 26, 26-32.]). For crystallographic studies of related compounds, see: Appleton et al. (1992[Appleton, T. G., Gahan, L. R. & Oliver, P. J. (1992). Aust. J. Chem. 45, 797-805.]); Abrahams et al. (1998[Abrahams, B. F., Hoskins, B. F., McFadyen, D. W. & Perrin, L. C. (1998). Acta Cryst. C54, 1807-1809.]); Tsiamis et al. (1998[Tsiamis, C., Stergiou, A. C., Anesti, V., Blaton, N. M. & Peeters, O. M. (1998). Inorg. Chim. Acta, 269, 332-336.]); von Chrzanowski et al. (2007[Chrzanowski, L. S. von, Lutz, M. & Spek, A. L. (2007). Acta Cryst. C63, m283-m288.]). For a review of graph-set analysis of hydrogen-bonding patterns, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C5H6NO4)3]

  • Mr = 491.25

  • Tetragonal, I 41 c d

  • a = 32.7078 (18) Å

  • c = 7.4976 (6) Å

  • V = 8020.9 (9) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 200 K

  • 0.48 × 0.40 × 0.32 mm

Data collection
  • Bruker SMART X2S benchtop diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). GIS, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.665, Tmax = 0.756

  • 24724 measured reflections

  • 3393 independent reflections

  • 3151 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.061

  • S = 1.04

  • 3393 reflections

  • 330 parameters

  • 159 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1466 Friedel pairs

  • Flack parameter: 0.003 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O7i 0.98 2.33 3.087 (4) 134
C11—H11B⋯O12ii 0.98 2.55 3.240 (4) 128
C10—H10C⋯O5iii 0.98 2.46 3.433 (3) 176
C15—H15C⋯O3iv 0.98 2.57 3.542 (4) 174
Symmetry codes: (i) [-x+1, y, z-{\script{1\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [-y+1, x-{\script{1\over 2}}, z+{\script{1\over 4}}]; (iv) x, y, z+1.

Data collection: GIS (Bruker, 2009[Bruker (2009). GIS, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). GIS, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and POV-RAY (Cason, 2004[Cason, C. J. (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Williamstown, Victoria, Australia.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The electrophilic substitution chemistry of the 2,4-pentanedionato (acetylacetonate, or acac) ligand has been studied for many years (Collman, et al., 1962; Collman, et al., 1963; Collman, 1965; Schirado, et al., 1971), but relatively few of these derivatives have been studied crystallographically, especially for the tri-substituted complexes. The nitro derivative of the cobalt complex is readily prepared and its synthesis and characterization have been described as part of several educational laboratory activities (James, 1974; Shalhoub, 1980).

The average cobalt-oxygen bond length in the title compound is 1.869 (4) Å, slightly shorter than the average cobalt-oxygen bond length observed for the [Co(acac)3] complex determined at a similar temperature (von Chrzanowski, et al., 2007). All three nitro groups are twisted with respect to their 2,4-pentanedionato ligands (Fig. 1), forming angles of 49.3 (1), 59.3 (2), and 50.3 (2) degrees for the major components and 67.2 (2) and 51.6 (8) degrees for the minor disorder components. These are similar to the angle of 50.7 degrees observed for the mono-nitro cobalt complex (Appleton et al., 1992). The disorder in the positioning of one chelate ring has been observed previously (as large thermal parameters) for analogous complexes of cobalt and manganese (Appleton et al., 1992).

Analysis of packing (Fig. 2) and close contacts shows two different types of C—H···O interactions (Table 1). The first type, shown in Figure 3(a) and 3(b), forms between methyl group hydrogen atoms and the nitro group on an adjacent molecule. The second type of C—H···O, shown in Figure 3(c) and 3(d), forms between methyl group hydrogen atoms and the cobalt-bound oxygen atom on an adjacent molecule. This second type of interaction is commonly seen in 2,4-pentanedionato complexes (von Chrzanowski et al., 2007). These hydrogen-bonding interactions result in the formation of four different types of C(6) chains (Bernstein et al., 1995), shown in Figure 4(a) through 4(d). In all four cases, the primary direction of the chain is along the c axis.

Related literature top

For the preparation of derivatized tris(2,4-pentanedionato) metal complexes, see: Collman et al. (1962, 1963); Collman (1965); Schirado et al. (1971); James (1974); Shalhoub (1980). For spectroscopic properties of the title compound, see: Singh & Sahai (1967, 1968); Larsson & Eskilsson (1969); Fleming & Thorton (1973, 1975); Tsiamis et al. (1987). For crystallographic studies of related compounds, see: Appleton et al. (1992); Abrahams et al. (1998); Tsiamis et al. (1998); von Chrzanowski et al. (2007). For a review of graph-set analysis of hydrogen-bonding patterns, see: Bernstein et al. (1995).

Experimental top

The complex was prepared according to the procedure of Collman et al. (1963). Approximately 5.37 g (0.023 mol) of finely ground copper(II) nitrate trihydrate was mixed with 100 ml (1.06 mol) of acetic anhydride. Cobalt(III) acetylacetonate (2.5 g, 0.0070 mol) was added to the mixture and stirred with cooling for approximately two hours. A combination of water (300 ml), ice (300 g), and sodium acetate (7.5 g, 0.055 mol) was then added and the mixture was stirred for an additional two hours. The dark-green precipitate was vacuum filtered and washed with water and cold ethanol. The crude product was recrystallized from boiling chloroform and hot ethanol. The final product consisted of large, dark green crystals that were obtained in an overall yield of 62% (2.14 g).

The IR spectrum (ATR cell) displayed strong peaks at 1561 cm-1 (νring), 1518 cm-1 (νas, NO2), 1341 cm-1 (νs, NO2), and 825 cm-1 (δC—H). Raman spectra (532 nm excitation) gave strong peaks at 1345 cm-1 (νs, NO2), 828 cm-1 (δC—H), 470 cm-1 and 450 cm-1 (νCo—O).

Refinement top

All hydrogen atoms were located in the difference map and refined with the atom positions constrained to an ideal tetrahedron with C—H distances of 0.98 Å. A riding model was used for all hydrogen atoms with Uiso(H) = 1.5 times Uiso(C).

One of the 3-nitropentane-2,4-dionato ligands was modeled as disordered over two positions for four atoms, C13/C13A, N3/N3A, O11/O11A, and O12/O12A and refined to give an occupancy ratio of 0.848 (4):0.152 (4). Carbon-carbon distances between similar atoms in the disordered ligand were restrained to be similar within a standard deviation of 0.02 Å. The nitro groups and their respective carbon atoms (C13/N3/O11/O12, C13A/N3A/O11A/O12A) were restrained to lie in a common plane, as were atoms C12, C13A, C14 and N3A. The anisotropic displacement parameters for the atom pairs N3/N3A and C13/C13A were constrained to be the same. The nitro group on a second ligand (N2, O9, O10) was modeled as a disordered group over two orientations and refined to give an occupancy ratio of 0.892 (7):0.108 (7).

Anisotropic displacement parameters were restrained to be similar (standard deviations of 0.01 Å2, 0.02 Å2) for 1,2 and 1,3-bonded atoms and approximately isotropic (standard deviation of 0.1 Å2) for all disordered oxygen atoms. Anisotropic displacement parameters were also restrained to be similar (with a standard deviation of 0.01 Å2) for all atoms within the disordered nitro groups.

Computing details top

Data collection: GIS (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); molecular graphics: PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and POV-RAY (Cason, 2004); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom labeling scheme and drawn with 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of the title compound viewed along the c axis. The minor components of the disordered ligands are not shown.
[Figure 3] Fig. 3. Hydrogen-bond interactions in the title compound. The C—H···O contacts are shown with dashed lines. (a) The C1—H1B···O7i contact, (b) the C11—H11B···O12ii contact, (c) the C10—H10C···O5iii contact, (d) the C15—H15C···O3iv contact. [Symmetry codes: (i) -x + 1, y, z - 1/2; (ii) x, -y + 1, z - 1/2; (iii) -y + 1, x - 1/2, z + 1/4; (iv) x, y, z + 1.]
[Figure 4] Fig. 4. The four different types of C(6) hydrogen-bonded chains formed by the title compound. The C—H···O contacts are shown with dashed lines. (a) The C1—H1B···O7i chain, viewed along the b axis, (b) the C11—H11B···O12ii chain, viewed along the a axis, (c) the C10—H10C···O5iii chain, viewed along the c axis (d) the C15—H15C···O3iv chain, viewed along the a axis. [Symmetry codes: (i) -x + 1, y, z - 1/2; (ii) x, -y + 1, z - 1/2; (iii) -y + 1, x - 1/2, z + 1/4; (iv) x, y, z + 1.]
Tris(3-nitropentane-2,4-dionato-κ2O,O')cobalt(III) top
Crystal data top
[Co(C5H6NO4)3]Dx = 1.627 Mg m3
Mr = 491.25Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41cdCell parameters from 8816 reflections
a = 32.7078 (18) Åθ = 2.5–24.6°
c = 7.4976 (6) ŵ = 0.93 mm1
V = 8020.9 (9) Å3T = 200 K
Z = 16Block, green
F(000) = 40320.48 × 0.40 × 0.32 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
3393 independent reflections
Radiation source: fine-focus sealed tube3151 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.036
Detector resolution: 8.3330 pixels mm-1θmax = 25.1°, θmin = 2.5°
ϕ and ω scansh = 3838
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 3834
Tmin = 0.665, Tmax = 0.756l = 78
24724 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0316P)2 + 2.8577P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3393 reflectionsΔρmax = 0.20 e Å3
330 parametersΔρmin = 0.19 e Å3
159 restraintsAbsolute structure: Flack (1983), 1466 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (12)
Crystal data top
[Co(C5H6NO4)3]Z = 16
Mr = 491.25Mo Kα radiation
Tetragonal, I41cdµ = 0.93 mm1
a = 32.7078 (18) ÅT = 200 K
c = 7.4976 (6) Å0.48 × 0.40 × 0.32 mm
V = 8020.9 (9) Å3
Data collection top
Bruker SMART X2S benchtop
diffractometer
3393 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3151 reflections with I > 2σ(I)
Tmin = 0.665, Tmax = 0.756Rint = 0.036
24724 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.061Δρmax = 0.20 e Å3
S = 1.04Δρmin = 0.19 e Å3
3393 reflectionsAbsolute structure: Flack (1983), 1466 Friedel pairs
330 parametersAbsolute structure parameter: 0.003 (12)
159 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.623604 (9)0.363125 (9)0.26098 (5)0.02596 (9)
O10.60216 (5)0.41367 (5)0.1946 (3)0.0344 (4)
O20.57311 (5)0.33960 (5)0.3185 (2)0.0328 (4)
C10.55984 (10)0.46990 (8)0.1698 (5)0.0506 (8)
H1A0.55620.48480.28200.076*
H1B0.53570.47370.09440.076*
H1C0.58410.48030.10760.076*
C20.56542 (8)0.42488 (7)0.2088 (4)0.0335 (6)
C30.53378 (7)0.39769 (8)0.2526 (4)0.0343 (6)
C40.53853 (8)0.35653 (8)0.3056 (3)0.0321 (6)
C50.50367 (9)0.32949 (9)0.3579 (4)0.0457 (7)
H5A0.49210.31670.25110.069*
H5B0.48260.34580.41740.069*
H5C0.51350.30820.43940.069*
N10.49174 (8)0.41312 (8)0.2502 (4)0.0537 (7)
O70.48554 (8)0.44588 (8)0.3244 (4)0.0868 (9)
O80.46521 (7)0.39291 (9)0.1762 (4)0.0736 (8)
O30.61607 (5)0.34505 (5)0.0263 (3)0.0323 (4)
O40.64932 (5)0.31545 (5)0.3405 (2)0.0292 (4)
C60.61730 (9)0.30447 (8)0.2281 (4)0.0458 (7)
H6A0.59670.32450.26510.069*
H6B0.60630.27680.24360.069*
H6C0.64190.30770.30140.069*
C70.62781 (7)0.31108 (7)0.0377 (3)0.0308 (6)
C90.65864 (6)0.28479 (7)0.2463 (4)0.0271 (5)
C100.68264 (8)0.25280 (8)0.3421 (4)0.0360 (6)
H10A0.69530.26480.44840.054*
H10B0.70400.24210.26310.054*
H10C0.66440.23050.37780.054*
C80.64852 (7)0.28190 (7)0.0659 (3)0.0303 (6)
N20.66001 (8)0.24416 (7)0.0254 (4)0.0478 (6)
O90.64699 (12)0.21173 (8)0.0305 (5)0.0709 (11)0.892 (7)
O100.68344 (13)0.24671 (10)0.1541 (5)0.0844 (13)0.892 (7)
O9A0.6323 (5)0.2214 (6)0.064 (4)0.047 (5)0.108 (7)
O10A0.6956 (5)0.2340 (7)0.042 (5)0.071 (6)0.108 (7)
O50.67470 (5)0.38351 (5)0.1938 (2)0.0318 (4)
O60.62659 (5)0.38295 (5)0.4944 (3)0.0309 (4)
C110.72986 (8)0.42775 (9)0.1701 (4)0.0436 (7)
H11A0.75480.41760.22740.065*
H11B0.73010.45770.17040.065*
H11C0.72870.41780.04680.065*
C120.69317 (7)0.41265 (7)0.2705 (4)0.0330 (6)
C140.64901 (8)0.41223 (7)0.5448 (4)0.0358 (7)
C150.64112 (10)0.42602 (9)0.7323 (4)0.0495 (8)
H15A0.61840.44560.73310.074*
H15B0.66570.43910.78010.074*
H15C0.63400.40230.80620.074*
C130.67903 (11)0.42915 (11)0.4312 (5)0.0372 (8)0.848 (4)
N30.69807 (11)0.46657 (10)0.4996 (6)0.0564 (9)0.848 (4)
O110.73566 (11)0.46798 (13)0.5000 (8)0.0929 (16)0.848 (4)
O120.67605 (8)0.49417 (7)0.5453 (5)0.0709 (11)0.848 (4)
C13A0.6847 (5)0.4257 (5)0.4490 (19)0.0372 (8)0.152 (4)
N3A0.7157 (6)0.4544 (5)0.521 (3)0.0564 (9)0.152 (4)
O11A0.7310 (5)0.4489 (5)0.665 (2)0.073 (5)0.152 (4)
O12A0.7248 (7)0.4836 (5)0.433 (3)0.073 (5)0.152 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02761 (17)0.02064 (16)0.02963 (16)0.00184 (12)0.00204 (16)0.00131 (15)
O10.0348 (10)0.0206 (8)0.0479 (12)0.0007 (7)0.0062 (8)0.0027 (8)
O20.0318 (9)0.0250 (9)0.0416 (11)0.0002 (7)0.0010 (8)0.0023 (7)
C10.068 (2)0.0282 (15)0.056 (2)0.0156 (14)0.0166 (17)0.0017 (13)
C20.0436 (15)0.0251 (13)0.0318 (15)0.0094 (11)0.0087 (12)0.0073 (11)
C30.0296 (13)0.0407 (14)0.0325 (15)0.0138 (11)0.0020 (13)0.0048 (13)
C40.0341 (14)0.0344 (14)0.0280 (16)0.0011 (11)0.0006 (11)0.0076 (11)
C50.0364 (15)0.0536 (18)0.0470 (18)0.0064 (14)0.0034 (14)0.0052 (15)
N10.0492 (17)0.0667 (16)0.0451 (15)0.0238 (13)0.0066 (15)0.0083 (15)
O70.087 (2)0.0720 (16)0.102 (2)0.0464 (15)0.0249 (16)0.0003 (15)
O80.0335 (12)0.116 (2)0.0715 (19)0.0089 (14)0.0101 (12)0.0049 (16)
O30.0397 (9)0.0281 (9)0.0290 (9)0.0003 (7)0.0060 (8)0.0002 (8)
O40.0359 (9)0.0253 (9)0.0263 (9)0.0058 (7)0.0030 (8)0.0008 (7)
C60.0594 (18)0.0432 (15)0.0348 (16)0.0087 (13)0.0015 (15)0.0039 (15)
C70.0299 (13)0.0299 (14)0.0328 (15)0.0100 (10)0.0023 (11)0.0017 (11)
C90.0229 (11)0.0222 (11)0.0360 (14)0.0025 (9)0.0036 (11)0.0003 (11)
C100.0351 (14)0.0278 (13)0.0451 (17)0.0018 (11)0.0008 (13)0.0036 (12)
C80.0342 (13)0.0230 (13)0.0338 (15)0.0024 (10)0.0076 (11)0.0051 (10)
N20.0656 (17)0.0331 (14)0.0447 (16)0.0041 (12)0.0035 (14)0.0136 (12)
O90.114 (3)0.0271 (14)0.072 (2)0.0078 (15)0.006 (2)0.0089 (15)
O100.121 (3)0.063 (2)0.069 (3)0.0254 (19)0.045 (2)0.0107 (17)
O9A0.061 (10)0.025 (9)0.055 (11)0.004 (8)0.020 (9)0.025 (8)
O10A0.083 (11)0.044 (10)0.086 (13)0.002 (9)0.024 (10)0.038 (10)
O50.0301 (9)0.0286 (9)0.0366 (10)0.0006 (7)0.0008 (8)0.0001 (8)
O60.0381 (9)0.0234 (9)0.0311 (11)0.0006 (6)0.0008 (9)0.0033 (8)
C110.0358 (15)0.0351 (15)0.060 (2)0.0033 (12)0.0018 (14)0.0147 (13)
C120.0280 (12)0.0233 (12)0.0477 (16)0.0037 (9)0.0076 (13)0.0081 (14)
C140.0441 (15)0.0231 (13)0.0402 (18)0.0078 (11)0.0053 (12)0.0057 (12)
C150.068 (2)0.0368 (15)0.0434 (19)0.0009 (13)0.0029 (16)0.0134 (14)
C130.0383 (18)0.0222 (14)0.0512 (19)0.0025 (13)0.0102 (15)0.0034 (13)
N30.0388 (19)0.0424 (18)0.088 (2)0.0136 (14)0.002 (2)0.0241 (19)
O110.0459 (19)0.082 (3)0.150 (5)0.0126 (18)0.016 (3)0.050 (3)
O120.0668 (16)0.0290 (14)0.117 (3)0.0038 (13)0.0069 (18)0.0255 (16)
C13A0.0383 (18)0.0222 (14)0.0512 (19)0.0025 (13)0.0102 (15)0.0034 (13)
N3A0.0388 (19)0.0424 (18)0.088 (2)0.0136 (14)0.002 (2)0.0241 (19)
O11A0.051 (8)0.081 (9)0.087 (10)0.017 (7)0.035 (8)0.021 (8)
O12A0.068 (10)0.064 (9)0.086 (10)0.043 (8)0.006 (8)0.017 (8)
Geometric parameters (Å, º) top
Co1—O11.8635 (16)C9—C101.493 (3)
Co1—O51.8686 (17)C10—H10A0.9800
Co1—O61.869 (2)C10—H10B0.9800
Co1—O41.8694 (16)C10—H10C0.9800
Co1—O21.8722 (17)C8—N21.461 (3)
Co1—O31.8721 (19)N2—O9A1.208 (14)
O1—C21.261 (3)N2—O10A1.216 (15)
O2—C41.263 (3)N2—O91.217 (4)
C1—C21.512 (3)N2—O101.235 (4)
C1—H1A0.9800O5—C121.267 (3)
C1—H1B0.9800O6—C141.264 (3)
C1—H1C0.9800C11—C121.501 (4)
C2—C31.403 (4)C11—H11A0.9800
C3—C41.412 (4)C11—H11B0.9800
C3—N11.465 (3)C11—H11C0.9800
C4—C51.495 (4)C12—C131.399 (5)
C5—H5A0.9800C12—C13A1.432 (13)
C5—H5B0.9800C14—C131.412 (5)
C5—H5C0.9800C14—C13A1.439 (13)
N1—O81.224 (4)C14—C151.499 (4)
N1—O71.224 (3)C15—H15A0.9800
O3—C71.270 (3)C15—H15B0.9800
O4—C91.264 (3)C15—H15C0.9800
C6—C71.485 (4)C13—N31.466 (4)
C6—H6A0.9800N3—O121.204 (4)
C6—H6B0.9800N3—O111.230 (5)
C6—H6C0.9800C13A—N3A1.482 (16)
C7—C81.405 (4)N3A—O12A1.201 (18)
C9—C81.395 (4)N3A—O11A1.202 (18)
O1—Co1—O587.03 (7)O4—C9—C10114.4 (2)
O1—Co1—O687.82 (8)C8—C9—C10122.9 (2)
O5—Co1—O694.70 (7)C9—C10—H10A109.5
O1—Co1—O4174.00 (8)C9—C10—H10B109.5
O5—Co1—O488.92 (7)H10A—C10—H10B109.5
O6—Co1—O488.11 (7)C9—C10—H10C109.5
O1—Co1—O295.40 (7)H10A—C10—H10C109.5
O5—Co1—O2176.10 (8)H10B—C10—H10C109.5
O6—Co1—O288.46 (8)C9—C8—C7127.2 (2)
O4—Co1—O288.89 (7)C9—C8—N2116.8 (2)
O1—Co1—O388.84 (8)C7—C8—N2116.1 (2)
O5—Co1—O388.69 (8)O9A—N2—O10A121.6 (13)
O6—Co1—O3175.11 (7)O9—N2—O10123.0 (3)
O4—Co1—O395.49 (7)O9A—N2—C8116.2 (9)
O2—Co1—O388.30 (8)O10A—N2—C8121.6 (10)
C2—O1—Co1126.46 (16)O9—N2—C8119.0 (3)
C4—O2—Co1126.32 (16)O10—N2—C8117.9 (3)
C2—C1—H1A109.5C12—O5—Co1124.92 (17)
C2—C1—H1B109.5C14—O6—Co1124.96 (18)
H1A—C1—H1B109.5C12—C11—H11A109.5
C2—C1—H1C109.5C12—C11—H11B109.5
H1A—C1—H1C109.5H11A—C11—H11B109.5
H1B—C1—H1C109.5C12—C11—H11C109.5
O1—C2—C3122.6 (2)H11A—C11—H11C109.5
O1—C2—C1112.4 (2)H11B—C11—H11C109.5
C3—C2—C1125.0 (2)O5—C12—C13121.6 (3)
C2—C3—C4126.1 (2)O5—C12—C13A123.8 (6)
C2—C3—N1118.1 (2)O5—C12—C11113.6 (3)
C4—C3—N1115.8 (2)C13—C12—C11124.7 (3)
O2—C4—C3122.5 (2)C13A—C12—C11121.7 (6)
O2—C4—C5113.8 (2)O6—C14—C13121.3 (3)
C3—C4—C5123.6 (2)O6—C14—C13A123.6 (7)
C4—C5—H5A109.5O6—C14—C15114.1 (3)
C4—C5—H5B109.5C13—C14—C15124.6 (3)
H5A—C5—H5B109.5C13A—C14—C15121.0 (7)
C4—C5—H5C109.5C14—C15—H15A109.5
H5A—C5—H5C109.5C14—C15—H15B109.5
H5B—C5—H5C109.5H15A—C15—H15B109.5
O8—N1—O7124.2 (3)C14—C15—H15C109.5
O8—N1—C3119.0 (3)H15A—C15—H15C109.5
O7—N1—C3116.8 (3)H15B—C15—H15C109.5
C7—O3—Co1126.27 (17)C12—C13—C14126.7 (3)
C9—O4—Co1126.28 (17)C12—C13—N3118.9 (3)
C7—C6—H6A109.5C14—C13—N3114.3 (3)
C7—C6—H6B109.5O12—N3—O11124.7 (3)
H6A—C6—H6B109.5O12—N3—C13118.1 (3)
C7—C6—H6C109.5O11—N3—C13117.2 (4)
H6A—C6—H6C109.5C12—C13A—C14122.1 (11)
H6B—C6—H6C109.5C12—C13A—N3A113.4 (11)
O3—C7—C8122.1 (2)C14—C13A—N3A124.4 (12)
O3—C7—C6114.9 (2)O12A—N3A—O11A120.5 (19)
C8—C7—C6123.0 (2)O12A—N3A—C13A118.3 (17)
O4—C9—C8122.6 (2)O11A—N3A—C13A121.2 (15)
O5—Co1—O1—C2177.2 (2)C7—C8—N2—O9120.7 (4)
O6—Co1—O1—C282.3 (2)C9—C8—N2—O10120.0 (4)
O2—Co1—O1—C25.9 (2)C7—C8—N2—O1061.0 (4)
O3—Co1—O1—C294.1 (2)O1—Co1—O5—C1265.7 (2)
O1—Co1—O2—C41.0 (2)O6—Co1—O5—C1221.9 (2)
O6—Co1—O2—C488.7 (2)O4—Co1—O5—C12109.90 (19)
O4—Co1—O2—C4176.8 (2)O3—Co1—O5—C12154.58 (19)
O3—Co1—O2—C487.6 (2)O1—Co1—O6—C1464.51 (19)
Co1—O1—C2—C310.3 (4)O5—Co1—O6—C1422.32 (19)
Co1—O1—C2—C1170.89 (18)O4—Co1—O6—C14111.09 (19)
O1—C2—C3—C47.7 (4)O2—Co1—O6—C14159.97 (19)
C1—C2—C3—C4173.7 (3)Co1—O5—C12—C138.8 (4)
O1—C2—C3—N1174.7 (3)Co1—O5—C12—C13A20.7 (10)
C1—C2—C3—N13.9 (4)Co1—O5—C12—C11169.52 (16)
Co1—O2—C4—C33.4 (4)Co1—O6—C14—C139.6 (4)
Co1—O2—C4—C5178.68 (17)Co1—O6—C14—C13A21.4 (10)
C2—C3—C4—O20.3 (4)Co1—O6—C14—C15171.42 (18)
N1—C3—C4—O2178.0 (3)O5—C12—C13—C1412.8 (5)
C2—C3—C4—C5177.4 (3)C13A—C12—C13—C1493 (4)
N1—C3—C4—C50.3 (4)C11—C12—C13—C14169.1 (3)
C2—C3—N1—O8133.5 (3)O5—C12—C13—N3171.0 (3)
C4—C3—N1—O848.7 (4)C13A—C12—C13—N383 (4)
C2—C3—N1—O746.8 (4)C11—C12—C13—N37.0 (5)
C4—C3—N1—O7131.1 (3)O6—C14—C13—C1212.4 (5)
O1—Co1—O3—C7173.7 (2)C13A—C14—C13—C1294 (4)
O5—Co1—O3—C786.68 (19)C15—C14—C13—C12166.5 (3)
O4—Co1—O3—C72.11 (19)O6—C14—C13—N3171.4 (3)
O2—Co1—O3—C790.83 (19)C13A—C14—C13—N383 (4)
O5—Co1—O4—C984.85 (18)C15—C14—C13—N39.8 (5)
O6—Co1—O4—C9179.59 (18)C12—C13—N3—O12130.7 (4)
O2—Co1—O4—C991.91 (19)C14—C13—N3—O1252.7 (6)
O3—Co1—O4—C93.73 (19)C12—C13—N3—O1146.7 (7)
Co1—O3—C7—C80.4 (3)C14—C13—N3—O11129.9 (5)
Co1—O3—C7—C6179.31 (17)O5—C12—C13A—C1412.7 (19)
Co1—O4—C9—C83.6 (3)C13—C12—C13A—C1468 (4)
Co1—O4—C9—C10174.29 (15)C11—C12—C13A—C14178.3 (9)
O4—C9—C8—C70.8 (4)O5—C12—C13A—N3A168.2 (9)
C10—C9—C8—C7176.8 (2)C13—C12—C13A—N3A111 (5)
O4—C9—C8—N2178.0 (2)C11—C12—C13A—N3A0.8 (15)
C10—C9—C8—N24.3 (3)O6—C14—C13A—C1213.1 (19)
O3—C7—C8—C90.9 (4)C13—C14—C13A—C1267 (4)
C6—C7—C8—C9178.0 (2)C15—C14—C13A—C12179.4 (10)
O3—C7—C8—N2179.7 (2)O6—C14—C13A—N3A167.9 (11)
C6—C7—C8—N20.9 (4)C13—C14—C13A—N3A112 (5)
C9—C8—N2—O9A108.5 (17)C15—C14—C13A—N3A1.6 (18)
C7—C8—N2—O9A70.5 (17)C12—C13A—N3A—O12A51 (2)
C9—C8—N2—O10A63 (2)C14—C13A—N3A—O12A128 (2)
C7—C8—N2—O10A118 (2)C12—C13A—N3A—O11A130.2 (19)
C9—C8—N2—O958.3 (4)C14—C13A—N3A—O11A51 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O7i0.982.333.087 (4)134
C11—H11B···O12ii0.982.553.240 (4)128
C10—H10C···O5iii0.982.463.433 (3)176
C15—H15C···O3iv0.982.573.542 (4)174
Symmetry codes: (i) x+1, y, z1/2; (ii) x, y+1, z1/2; (iii) y+1, x1/2, z+1/4; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Co(C5H6NO4)3]
Mr491.25
Crystal system, space groupTetragonal, I41cd
Temperature (K)200
a, c (Å)32.7078 (18), 7.4976 (6)
V3)8020.9 (9)
Z16
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.48 × 0.40 × 0.32
Data collection
DiffractometerBruker SMART X2S benchtop
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.665, 0.756
No. of measured, independent and
observed [I > 2σ(I)] reflections
24724, 3393, 3151
Rint0.036
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.061, 1.04
No. of reflections3393
No. of parameters330
No. of restraints159
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.19
Absolute structureFlack (1983), 1466 Friedel pairs
Absolute structure parameter0.003 (12)

Computer programs: GIS (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and POV-RAY (Cason, 2004), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O7i0.982.333.087 (4)133.8
C11—H11B···O12ii0.982.553.240 (4)127.8
C10—H10C···O5iii0.982.463.433 (3)175.6
C15—H15C···O3iv0.982.573.542 (4)174.3
Symmetry codes: (i) x+1, y, z1/2; (ii) x, y+1, z1/2; (iii) y+1, x1/2, z+1/4; (iv) x, y, z+1.
 

Acknowledgements

This work was supported in part by the National Science Foundation through grant No. CHE-0942850.

References

First citationAbrahams, B. F., Hoskins, B. F., McFadyen, D. W. & Perrin, L. C. (1998). Acta Cryst. C54, 1807–1809.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAppleton, T. G., Gahan, L. R. & Oliver, P. J. (1992). Aust. J. Chem. 45, 797–805.  CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). GIS, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCason, C. J. (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Williamstown, Victoria, Australia.  Google Scholar
First citationChrzanowski, L. S. von, Lutz, M. & Spek, A. L. (2007). Acta Cryst. C63, m283–m288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCollman, J. P. (1965). Angew. Chem. Int. Ed. 4, 132–138.  CrossRef Google Scholar
First citationCollman, J. P., Goldby, S., Young, W. L. III & Marshall, R. (1962). Inorg. Chem. 1, 704–710.  CrossRef CAS Web of Science Google Scholar
First citationCollman, J. P., Young, W. L. III & Kauffman, G. B. (1963). Inorg. Synth. 7, 205–207.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFleming, C. A. & Thorton, D. A. (1973). J. Mol. Struct. 17, 79–89.  CrossRef CAS Web of Science Google Scholar
First citationFleming, C. A. & Thorton, D. A. (1975). J. Mol. Struct. 25, 271–279.  CrossRef CAS Web of Science Google Scholar
First citationJames, B. D. (1974). J. Chem. Educ. 51, 568.  CrossRef Google Scholar
First citationLarsson, R. & Eskilsson, O. (1969). Acta Chem. Scand. 23, 1765–1779.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchirado, T., Gennari, E., Merello, R., Decinti, A. & Bunel, S. (1971). J. Inorg. Nucl. Chem. 33, 3417–3426.  CrossRef CAS Web of Science Google Scholar
First citationShalhoub, G. M. (1980). J. Chem. Educ. 57, 525–528.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, P. R. & Sahai, R. (1967). Aust. J. Chem. 20, 649–655.  CrossRef CAS Web of Science Google Scholar
First citationSingh, P. R. & Sahai, R. (1968). Inorg. Nucl. Chem. Lett. 4, 513–516.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsiamis, C., Cambanis, S. & Hadjikostas, C. (1987). Inorg. Chem. 26, 26–32.  CrossRef CAS Web of Science Google Scholar
First citationTsiamis, C., Stergiou, A. C., Anesti, V., Blaton, N. M. & Peeters, O. M. (1998). Inorg. Chim. Acta, 269, 332–336.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m312-m313
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds