organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o867-o868

3-{[(4Z)-1,2-Di­methyl-5-oxoimidazol-4-yl­­idene]meth­yl}-4-hy­dr­oxy­benzo­nitrile

aDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
*Correspondence e-mail: kyuchen@fcu.edu.tw

(Received 9 February 2012; accepted 20 February 2012; online 29 February 2012)

In the title compound, C13H11N3O2, an intra­molecular O—H⋯N hydrogen bond generates an S(7) ring. The dihedral angle between the mean plane of the benzene ring and the imidazolidinone ring is 3.05 (2)°. In the crystal, inversion-related mol­ecules are linked by dual C—H⋯Ocarbon­yl hydrogen bonds to form a dimer with an R22(14) graph-set motif. A C—H⋯Ohy­droxy inter­action links pairs of mol­ecules into another type of cyclic dimer with an R22(18) motif. The mol­ecules are further linked by C—H⋯N inter­actions to form layers parallel to (001). Offset ππ stacking [3.3877 (8) Å] is observed in the crystal structure, with an inter­planar spacing between the planes of neighboring benzene rings of 3.444 (1) Å.

Related literature

For the spectroscopy and preparation of the title compound, see: Chuang et al. (2011[Chuang, W.-T., Hsieh, C.-C., Lai, C.-H., Lai, C.-H., Shih, C.-W., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Org. Chem. 76, 8189-8202.]). For the applications of proton-transfer dyes, see: Chen & Pang (2010[Chen, W.-H. & Pang, Y. (2010). Tetrahedron Lett. 51, 1914-1918.]); Gryko et al. (2010[Gryko, D. T., Piechowska, J. & Galezowski, M. (2010). J. Org. Chem. 75, 1297-1300.]); Han et al. (2010[Han, D. Y., Kim, J. M., Kim, J., Jung, H. S., Lee, Y. H., Zhang, J. F. & Kim, J. S. (2010). Tetrahedron Lett. 51, 1947-1951.]); Helal et al. (2010[Helal, A., Lee, S. H., Kim, S. H. & Kim, H.-S. (2010). Tetrahedron Lett. 51, 3531-3535.]); Ikeda et al. (2010[Ikeda, S., Toganoh, M., Easwaramoorthi, S., Lim, J. M., Kim, D. & Furuta, H. (2010). J. Org. Chem. 75, 8637-8649.]); Ito et al. (2011[Ito, Y., Amimoto, K. & Kawato, T. (2011). Dyes Pigm. 89, 319-323.]); Lim et al. (2011[Lim, C.-K., Seo, J., Kim, S., Kwon, I. C., Ahn, C.-H. & Park, S. Y. (2011). Dyes Pigm. 90, 284-289.]); Lins et al. (2010[Lins, G. O. W., Campo, L. F., Rodembusch, F. S. & Stefani, V. (2010). Dyes Pigm. 84, 114-120.]); Maupin et al. (2011[Maupin, C. M., Castillo, N., Taraphder, S., Tu, C., McKenna, R., Silverman, D. N. & Voth, G. A. (2011). J. Am. Chem. Soc. 133, 6223-6234.]); Santos et al. (2011[Santos, R. C., Silva Faleiro, N. V., Campo, L. F., Scroferneker, M. L., Corbellini, V. A., Rodembusch, F. S. & Stefani, V. (2011). Tetrahedron Lett. 52, 3048-3053.]); Tang et al. (2011[Tang, K.-C., Chang, M.-J., Lin, T.-Y., Pan, H.-A., Fang, T.-C., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Am. Chem. Soc. 133, 17738-17745.]). For a related structure, see: Chen et al. (2007[Chen, K.-Y., Cheng, Y.-M., Lai, C.-H., Hsu, C.-C., Ho, M.-L., Lee, G.-H. & Chou, P.-T. (2007). J. Am. Chem. Soc. 129, 4534-4535.]). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11N3O2

  • Mr = 241.25

  • Monoclinic, C 2/c

  • a = 24.9655 (10) Å

  • b = 3.8349 (1) Å

  • c = 26.7584 (10) Å

  • β = 115.488 (5)°

  • V = 2312.52 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 K

  • 0.24 × 0.2 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.811, Tmax = 0.999

  • 15085 measured reflections

  • 2048 independent reflections

  • 1364 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.112

  • S = 0.94

  • 2048 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2 0.82 1.85 2.591 (2) 150
C12—H12⋯O1i 0.93 2.47 3.262 (2) 143
C5—H5C⋯O2ii 0.96 2.67 3.566 (3) 156
C4—H4A⋯N3iii 0.96 2.63 3.436 (3) 142
C5—H5A⋯N3iv 0.96 2.64 3.586 (3) 169
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, y+{\script{3\over 2}}, z]; (iv) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The excited-state intramolecular proton transfer (ESIPT) reaction of the title compound has been investigated recently (Chuang et al., 2011), which incorporates transfer of a hydroxy proton to the imine nitrogen through an intramolecular seven-membered-ring hydrogen-bonding system. The proton transfer dyes have found many important applications. Prototypical examples are probes for solvation dynamics (Chen & Pang, 2010; Lins et al., 2010) and biological environments (Lim et al., 2011; Maupin et al., 2011), fluorescence microscopy imaging (Santos et al., 2011), near-infrared fluorescent dyes (Ikeda et al., 2010), photochromic materials (Ito et al., 2011), chemosensors (Han et al., 2010; Helal et al., 2010) and recent application in the field of organic light emitting devices (Gryko et al., 2010; Tang et al., 2011).

The molecular structure of the title compound is shown in Fig. 1. As expected, the molecule possesses an intramolecular O—H···N hydrogen bond, which generates an S(7) ring (Chen et al., 2007). The dihedral angle between the mean plane of the benzene ring and the imidazolidinone ring is 3.05 (2)°. In the crystal (Fig. 2), inversion-related molecules are linked by pairs of C12—H12···O1 hydrogen bonds, forming a cyclic dimer with an R22(14) graph-set motif, Fig. 2 (Bernstein et al., 1995). In addition, the C5—H5C···O2 interaction links a pair of molecules into another type of cyclic dimer with an R22(18) graph-set motif. Molecules are further stabilized by intermolecular C—H···N interactions involving the methyl groups of C4 and C5 to form layers parallel to (001). See Table 1 for numerical details of the hdrogen bonds and symmetry operators. Offset ππ stacking is observed in the crystal structure with an interplanar spacing between planes of neighboring benzene rings of 3.444 (1) Å. The closest centroid–centroid distance [symmetry code: x, -1 + y, z] is 4.8350 (12) Å (Cg1 and Cg2 are the centroids of the N1/N2/C1–C3 and C7–C12 rings, respectively).

Related literature top

For the spectroscopy and preparation of the title compound, see: Chuang et al. (2011). For the applications of proton-transfer dyes, see: Chen & Pang (2010); Gryko et al. (2010); Han et al. (2010); Helal et al. (2010); Ikeda et al. (2010); Ito et al. (2011); Lim et al. (2011); Lins et al. (2010); Maupin et al. (2011); Santos et al. (2011); Tang et al. (2011). For a related structure, see: Chen et al. (2007). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized according to the literature (Chuang et al., 2011). Yellow needle-shaped crystals suitable for the crystallographic studies reported here were isolated over a period of six weeks by slow evaporation from a chloroform solution.

Refinement top

H atoms bonded to O and C atoms were located in a difference electron density map. In the final model, H atoms were repositioned geometrically and refined using a riding model [C—H = 0.93 Å for Csp2 H atoms, 0.96 for Csp3 H atoms, 0.82 Å for hydroxy H atoms and Uiso(H) = 1.2 (Csp2) or 1.5 (Csp3, O) Ueq(C/O)]. The hydroxy H atoms and Csp3 H atoms were allowed to rotate but not to tip to best fit the experimental electron density.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A section of the crystal packing of the title compound, viewed down the c axis. Green dashed lines denote the intermolecular C12—H12···O1 hydrogen bonds [symmetry code: -x + 1, -y + 1, -z + 1].
3-{[(4Z)-1,2-Dimethyl-5-oxoimidazol-4-ylidene]methyl}- 4-hydroxybenzonitrile top
Crystal data top
C13H11N3O2F(000) = 1008
Mr = 241.25Dx = 1.386 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3648 reflections
a = 24.9655 (10) Åθ = 3.1–26.9°
b = 3.8349 (1) ŵ = 0.10 mm1
c = 26.7584 (10) ÅT = 150 K
β = 115.488 (5)°Prism, colourless
V = 2312.52 (17) Å30.24 × 0.2 × 0.15 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
2048 independent reflections
Radiation source: fine-focus sealed tube1364 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2828
Tmin = 0.811, Tmax = 0.999k = 44
15085 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0695P)2]
where P = (Fo2 + 2Fc2)/3
2048 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C13H11N3O2V = 2312.52 (17) Å3
Mr = 241.25Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.9655 (10) ŵ = 0.10 mm1
b = 3.8349 (1) ÅT = 150 K
c = 26.7584 (10) Å0.24 × 0.2 × 0.15 mm
β = 115.488 (5)°
Data collection top
Bruker SMART CCD
diffractometer
2048 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1364 reflections with I > 2σ(I)
Tmin = 0.811, Tmax = 0.999Rint = 0.067
15085 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 0.94Δρmax = 0.25 e Å3
2048 reflectionsΔρmin = 0.29 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.41612 (5)0.5235 (4)0.49910 (5)0.0339 (4)
O20.56473 (6)0.0638 (3)0.71292 (5)0.0339 (4)
H20.52990.08550.69070.051*
N10.38975 (6)0.5881 (4)0.57176 (6)0.0246 (4)
N20.46849 (6)0.3562 (4)0.64190 (6)0.0251 (4)
N30.74916 (8)0.3544 (5)0.59904 (8)0.0484 (6)
C10.41673 (8)0.5046 (5)0.62728 (8)0.0245 (5)
C20.42684 (8)0.4890 (5)0.54770 (8)0.0235 (5)
C30.47832 (7)0.3369 (5)0.59435 (7)0.0221 (4)
C40.33058 (8)0.7365 (5)0.54035 (8)0.0331 (5)
H4A0.32440.92410.56100.050*
H4B0.30120.55940.53390.050*
H4C0.32740.82330.50550.050*
C50.38931 (9)0.5833 (5)0.66510 (8)0.0347 (5)
H5A0.34990.48790.65030.052*
H5B0.38740.83140.66890.052*
H5C0.41270.48180.70070.052*
C60.52658 (8)0.2123 (5)0.58951 (7)0.0231 (5)
H60.52420.22990.55390.028*
C70.58150 (7)0.0561 (4)0.62927 (7)0.0212 (5)
C80.59742 (8)0.0138 (5)0.68578 (8)0.0247 (5)
C90.65172 (8)0.1766 (5)0.71763 (8)0.0291 (5)
H90.66190.22640.75460.035*
C100.69024 (8)0.2644 (5)0.69540 (8)0.0277 (5)
H100.72620.37150.71730.033*
C110.67552 (8)0.1933 (5)0.64034 (8)0.0251 (5)
C120.62173 (8)0.0365 (5)0.60796 (8)0.0241 (5)
H120.61210.00870.57090.029*
C130.71618 (8)0.2836 (5)0.61677 (8)0.0323 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0263 (8)0.0464 (9)0.0299 (9)0.0084 (6)0.0128 (6)0.0040 (7)
O20.0225 (7)0.0537 (10)0.0266 (8)0.0042 (6)0.0116 (6)0.0030 (7)
N10.0157 (8)0.0296 (10)0.0305 (9)0.0027 (7)0.0119 (7)0.0007 (8)
N20.0192 (9)0.0305 (10)0.0287 (9)0.0006 (7)0.0132 (7)0.0024 (8)
N30.0312 (11)0.0575 (14)0.0624 (14)0.0070 (9)0.0257 (10)0.0083 (11)
C10.0210 (11)0.0246 (11)0.0303 (11)0.0034 (9)0.0133 (9)0.0035 (9)
C20.0198 (10)0.0266 (11)0.0261 (12)0.0005 (8)0.0118 (9)0.0009 (9)
C30.0189 (10)0.0239 (11)0.0259 (10)0.0016 (8)0.0118 (8)0.0012 (8)
C40.0192 (10)0.0351 (12)0.0439 (13)0.0077 (9)0.0124 (10)0.0028 (10)
C50.0338 (12)0.0395 (13)0.0385 (13)0.0029 (10)0.0230 (11)0.0006 (10)
C60.0205 (10)0.0249 (11)0.0249 (10)0.0020 (8)0.0108 (8)0.0015 (9)
C70.0172 (10)0.0187 (10)0.0279 (11)0.0028 (8)0.0099 (9)0.0025 (8)
C80.0185 (10)0.0256 (11)0.0314 (12)0.0036 (8)0.0119 (9)0.0027 (9)
C90.0248 (11)0.0308 (12)0.0273 (11)0.0016 (9)0.0070 (9)0.0026 (9)
C100.0181 (10)0.0244 (11)0.0363 (12)0.0012 (8)0.0075 (9)0.0005 (9)
C110.0180 (10)0.0211 (10)0.0368 (12)0.0005 (8)0.0124 (9)0.0039 (9)
C120.0206 (10)0.0245 (11)0.0281 (11)0.0003 (8)0.0115 (9)0.0008 (9)
C130.0209 (11)0.0307 (12)0.0425 (13)0.0032 (9)0.0109 (10)0.0009 (10)
Geometric parameters (Å, º) top
O1—C21.217 (2)C5—H5A0.9600
O2—C81.339 (2)C5—H5B0.9600
O2—H20.8200C5—H5C0.9600
N1—C11.379 (2)C6—C71.454 (2)
N1—C21.389 (2)C6—H60.9300
N1—C41.464 (2)C7—C121.397 (2)
N2—C11.308 (2)C7—C81.414 (2)
N2—C31.398 (2)C8—C91.400 (3)
N3—C131.146 (2)C9—C101.373 (2)
C1—C51.476 (2)C9—H90.9300
C2—C31.473 (2)C10—C111.383 (3)
C3—C61.353 (2)C10—H100.9300
C4—H4A0.9600C11—C121.384 (3)
C4—H4B0.9600C11—C131.449 (3)
C4—H4C0.9600C12—H120.9300
C8—O2—H2109.5H5A—C5—H5C109.5
C1—N1—C2108.77 (15)H5B—C5—H5C109.5
C1—N1—C4127.81 (15)C3—C6—C7132.33 (17)
C2—N1—C4123.33 (15)C3—C6—H6113.8
C1—N2—C3106.78 (15)C7—C6—H6113.8
N2—C1—N1112.63 (16)C12—C7—C8117.87 (17)
N2—C1—C5125.00 (17)C12—C7—C6115.02 (16)
N1—C1—C5122.36 (16)C8—C7—C6127.10 (16)
O1—C2—N1125.56 (17)O2—C8—C9115.19 (17)
O1—C2—C3131.25 (17)O2—C8—C7125.55 (17)
N1—C2—C3103.19 (15)C9—C8—C7119.26 (17)
C6—C3—N2128.19 (17)C10—C9—C8121.40 (18)
C6—C3—C2123.15 (17)C10—C9—H9119.3
N2—C3—C2108.63 (14)C8—C9—H9119.3
N1—C4—H4A109.5C9—C10—C11119.90 (17)
N1—C4—H4B109.5C9—C10—H10120.1
H4A—C4—H4B109.5C11—C10—H10120.1
N1—C4—H4C109.5C10—C11—C12119.61 (17)
H4A—C4—H4C109.5C10—C11—C13120.11 (17)
H4B—C4—H4C109.5C12—C11—C13120.28 (18)
C1—C5—H5A109.5C11—C12—C7121.95 (18)
C1—C5—H5B109.5C11—C12—H12119.0
H5A—C5—H5B109.5C7—C12—H12119.0
C1—C5—H5C109.5N3—C13—C11178.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.821.852.591 (2)150
C12—H12···O1i0.932.473.262 (2)143
C5—H5C···O2ii0.962.673.566 (3)156
C4—H4A···N3iii0.962.633.436 (3)142
C5—H5A···N3iv0.962.643.586 (3)169
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+3/2; (iii) x1/2, y+3/2, z; (iv) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC13H11N3O2
Mr241.25
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)24.9655 (10), 3.8349 (1), 26.7584 (10)
β (°) 115.488 (5)
V3)2312.52 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.24 × 0.2 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.811, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
15085, 2048, 1364
Rint0.067
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.112, 0.94
No. of reflections2048
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.29

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.821.852.591 (2)150
C12—H12···O1i0.932.473.262 (2)143
C5—H5C···O2ii0.962.673.566 (3)156
C4—H4A···N3iii0.962.633.436 (3)142
C5—H5A···N3iv0.962.643.586 (3)169
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+3/2; (iii) x1/2, y+3/2, z; (iv) x1/2, y+1/2, z.
 

Acknowledgements

This work was supported by the National Science Council (grant No. NSC 99-2113-M-035-001-MY2) and Feng Chia University, Taiwan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, K.-Y., Cheng, Y.-M., Lai, C.-H., Hsu, C.-C., Ho, M.-L., Lee, G.-H. & Chou, P.-T. (2007). J. Am. Chem. Soc. 129, 4534–4535.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChen, W.-H. & Pang, Y. (2010). Tetrahedron Lett. 51, 1914–1918.  Web of Science CrossRef CAS Google Scholar
First citationChuang, W.-T., Hsieh, C.-C., Lai, C.-H., Lai, C.-H., Shih, C.-W., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Org. Chem. 76, 8189–8202.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGryko, D. T., Piechowska, J. & Galezowski, M. (2010). J. Org. Chem. 75, 1297–1300.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHan, D. Y., Kim, J. M., Kim, J., Jung, H. S., Lee, Y. H., Zhang, J. F. & Kim, J. S. (2010). Tetrahedron Lett. 51, 1947–1951.  Web of Science CSD CrossRef CAS Google Scholar
First citationHelal, A., Lee, S. H., Kim, S. H. & Kim, H.-S. (2010). Tetrahedron Lett. 51, 3531–3535.  Web of Science CrossRef CAS Google Scholar
First citationIkeda, S., Toganoh, M., Easwaramoorthi, S., Lim, J. M., Kim, D. & Furuta, H. (2010). J. Org. Chem. 75, 8637–8649.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationIto, Y., Amimoto, K. & Kawato, T. (2011). Dyes Pigm. 89, 319–323.  Web of Science CSD CrossRef CAS Google Scholar
First citationLim, C.-K., Seo, J., Kim, S., Kwon, I. C., Ahn, C.-H. & Park, S. Y. (2011). Dyes Pigm. 90, 284–289.  Web of Science CrossRef CAS Google Scholar
First citationLins, G. O. W., Campo, L. F., Rodembusch, F. S. & Stefani, V. (2010). Dyes Pigm. 84, 114–120.  Web of Science CrossRef CAS Google Scholar
First citationMaupin, C. M., Castillo, N., Taraphder, S., Tu, C., McKenna, R., Silverman, D. N. & Voth, G. A. (2011). J. Am. Chem. Soc. 133, 6223–6234.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSantos, R. C., Silva Faleiro, N. V., Campo, L. F., Scroferneker, M. L., Corbellini, V. A., Rodembusch, F. S. & Stefani, V. (2011). Tetrahedron Lett. 52, 3048–3053.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, K.-C., Chang, M.-J., Lin, T.-Y., Pan, H.-A., Fang, T.-C., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Am. Chem. Soc. 133, 17738–17745.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o867-o868
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds