organic compounds
3-{[(4Z)-1,2-Dimethyl-5-oxoimidazol-4-ylidene]methyl}-4-hydroxybenzonitrile
aDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
*Correspondence e-mail: kyuchen@fcu.edu.tw
In the title compound, C13H11N3O2, an intramolecular O—H⋯N hydrogen bond generates an S(7) ring. The dihedral angle between the mean plane of the benzene ring and the imidazolidinone ring is 3.05 (2)°. In the crystal, inversion-related molecules are linked by dual C—H⋯Ocarbonyl hydrogen bonds to form a dimer with an R22(14) graph-set motif. A C—H⋯Ohydroxy interaction links pairs of molecules into another type of cyclic dimer with an R22(18) motif. The molecules are further linked by C—H⋯N interactions to form layers parallel to (001). Offset π–π stacking [3.3877 (8) Å] is observed in the with an interplanar spacing between the planes of neighboring benzene rings of 3.444 (1) Å.
Related literature
For the spectroscopy and preparation of the title compound, see: Chuang et al. (2011). For the applications of proton-transfer dyes, see: Chen & Pang (2010); Gryko et al. (2010); Han et al. (2010); Helal et al. (2010); Ikeda et al. (2010); Ito et al. (2011); Lim et al. (2011); Lins et al. (2010); Maupin et al. (2011); Santos et al. (2011); Tang et al. (2011). For a related structure, see: Chen et al. (2007). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812007532/zl2452sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812007532/zl2452Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812007532/zl2452Isup3.cml
The title compound was synthesized according to the literature (Chuang et al., 2011). Yellow needle-shaped crystals suitable for the crystallographic studies reported here were isolated over a period of six weeks by slow evaporation from a chloroform solution.
H atoms bonded to O and C atoms were located in a difference
In the final model, H atoms were repositioned geometrically and refined using a riding model [C—H = 0.93 Å for Csp2 H atoms, 0.96 for Csp3 H atoms, 0.82 Å for hydroxy H atoms and Uiso(H) = 1.2 (Csp2) or 1.5 (Csp3, O) Ueq(C/O)]. The hydroxy H atoms and Csp3 H atoms were allowed to rotate but not to tip to best fit the experimental electron density.Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C13H11N3O2 | F(000) = 1008 |
Mr = 241.25 | Dx = 1.386 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 3648 reflections |
a = 24.9655 (10) Å | θ = 3.1–26.9° |
b = 3.8349 (1) Å | µ = 0.10 mm−1 |
c = 26.7584 (10) Å | T = 150 K |
β = 115.488 (5)° | Prism, colourless |
V = 2312.52 (17) Å3 | 0.24 × 0.2 × 0.15 mm |
Z = 8 |
Bruker SMART CCD diffractometer | 2048 independent reflections |
Radiation source: fine-focus sealed tube | 1364 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.067 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −28→28 |
Tmin = 0.811, Tmax = 0.999 | k = −4→4 |
15085 measured reflections | l = −31→31 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 0.94 | w = 1/[σ2(Fo2) + (0.0695P)2] where P = (Fo2 + 2Fc2)/3 |
2048 reflections | (Δ/σ)max = 0.001 |
166 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
C13H11N3O2 | V = 2312.52 (17) Å3 |
Mr = 241.25 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 24.9655 (10) Å | µ = 0.10 mm−1 |
b = 3.8349 (1) Å | T = 150 K |
c = 26.7584 (10) Å | 0.24 × 0.2 × 0.15 mm |
β = 115.488 (5)° |
Bruker SMART CCD diffractometer | 2048 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1364 reflections with I > 2σ(I) |
Tmin = 0.811, Tmax = 0.999 | Rint = 0.067 |
15085 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 0.94 | Δρmax = 0.25 e Å−3 |
2048 reflections | Δρmin = −0.29 e Å−3 |
166 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.41612 (5) | 0.5235 (4) | 0.49910 (5) | 0.0339 (4) | |
O2 | 0.56473 (6) | 0.0638 (3) | 0.71292 (5) | 0.0339 (4) | |
H2 | 0.5299 | 0.0855 | 0.6907 | 0.051* | |
N1 | 0.38975 (6) | 0.5881 (4) | 0.57176 (6) | 0.0246 (4) | |
N2 | 0.46849 (6) | 0.3562 (4) | 0.64190 (6) | 0.0251 (4) | |
N3 | 0.74916 (8) | −0.3544 (5) | 0.59904 (8) | 0.0484 (6) | |
C1 | 0.41673 (8) | 0.5046 (5) | 0.62728 (8) | 0.0245 (5) | |
C2 | 0.42684 (8) | 0.4890 (5) | 0.54770 (8) | 0.0235 (5) | |
C3 | 0.47832 (7) | 0.3369 (5) | 0.59435 (7) | 0.0221 (4) | |
C4 | 0.33058 (8) | 0.7365 (5) | 0.54035 (8) | 0.0331 (5) | |
H4A | 0.3244 | 0.9241 | 0.5610 | 0.050* | |
H4B | 0.3012 | 0.5594 | 0.5339 | 0.050* | |
H4C | 0.3274 | 0.8233 | 0.5055 | 0.050* | |
C5 | 0.38931 (9) | 0.5833 (5) | 0.66510 (8) | 0.0347 (5) | |
H5A | 0.3499 | 0.4879 | 0.6503 | 0.052* | |
H5B | 0.3874 | 0.8314 | 0.6689 | 0.052* | |
H5C | 0.4127 | 0.4818 | 0.7007 | 0.052* | |
C6 | 0.52658 (8) | 0.2123 (5) | 0.58951 (7) | 0.0231 (5) | |
H6 | 0.5242 | 0.2299 | 0.5539 | 0.028* | |
C7 | 0.58150 (7) | 0.0561 (4) | 0.62927 (7) | 0.0212 (5) | |
C8 | 0.59742 (8) | −0.0138 (5) | 0.68578 (8) | 0.0247 (5) | |
C9 | 0.65172 (8) | −0.1766 (5) | 0.71763 (8) | 0.0291 (5) | |
H9 | 0.6619 | −0.2264 | 0.7546 | 0.035* | |
C10 | 0.69024 (8) | −0.2644 (5) | 0.69540 (8) | 0.0277 (5) | |
H10 | 0.7262 | −0.3715 | 0.7173 | 0.033* | |
C11 | 0.67552 (8) | −0.1933 (5) | 0.64034 (8) | 0.0251 (5) | |
C12 | 0.62173 (8) | −0.0365 (5) | 0.60796 (8) | 0.0241 (5) | |
H12 | 0.6121 | 0.0087 | 0.5709 | 0.029* | |
C13 | 0.71618 (8) | −0.2836 (5) | 0.61677 (8) | 0.0323 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0263 (8) | 0.0464 (9) | 0.0299 (9) | 0.0084 (6) | 0.0128 (6) | 0.0040 (7) |
O2 | 0.0225 (7) | 0.0537 (10) | 0.0266 (8) | 0.0042 (6) | 0.0116 (6) | 0.0030 (7) |
N1 | 0.0157 (8) | 0.0296 (10) | 0.0305 (9) | 0.0027 (7) | 0.0119 (7) | −0.0007 (8) |
N2 | 0.0192 (9) | 0.0305 (10) | 0.0287 (9) | −0.0006 (7) | 0.0132 (7) | −0.0024 (8) |
N3 | 0.0312 (11) | 0.0575 (14) | 0.0624 (14) | 0.0070 (9) | 0.0257 (10) | −0.0083 (11) |
C1 | 0.0210 (11) | 0.0246 (11) | 0.0303 (11) | −0.0034 (9) | 0.0133 (9) | −0.0035 (9) |
C2 | 0.0198 (10) | 0.0266 (11) | 0.0261 (12) | −0.0005 (8) | 0.0118 (9) | −0.0009 (9) |
C3 | 0.0189 (10) | 0.0239 (11) | 0.0259 (10) | −0.0016 (8) | 0.0118 (8) | −0.0012 (8) |
C4 | 0.0192 (10) | 0.0351 (12) | 0.0439 (13) | 0.0077 (9) | 0.0124 (10) | 0.0028 (10) |
C5 | 0.0338 (12) | 0.0395 (13) | 0.0385 (13) | 0.0029 (10) | 0.0230 (11) | −0.0006 (10) |
C6 | 0.0205 (10) | 0.0249 (11) | 0.0249 (10) | −0.0020 (8) | 0.0108 (8) | −0.0015 (9) |
C7 | 0.0172 (10) | 0.0187 (10) | 0.0279 (11) | −0.0028 (8) | 0.0099 (9) | −0.0025 (8) |
C8 | 0.0185 (10) | 0.0256 (11) | 0.0314 (12) | −0.0036 (8) | 0.0119 (9) | −0.0027 (9) |
C9 | 0.0248 (11) | 0.0308 (12) | 0.0273 (11) | −0.0016 (9) | 0.0070 (9) | 0.0026 (9) |
C10 | 0.0181 (10) | 0.0244 (11) | 0.0363 (12) | 0.0012 (8) | 0.0075 (9) | 0.0005 (9) |
C11 | 0.0180 (10) | 0.0211 (10) | 0.0368 (12) | 0.0005 (8) | 0.0124 (9) | −0.0039 (9) |
C12 | 0.0206 (10) | 0.0245 (11) | 0.0281 (11) | 0.0003 (8) | 0.0115 (9) | −0.0008 (9) |
C13 | 0.0209 (11) | 0.0307 (12) | 0.0425 (13) | 0.0032 (9) | 0.0109 (10) | −0.0009 (10) |
O1—C2 | 1.217 (2) | C5—H5A | 0.9600 |
O2—C8 | 1.339 (2) | C5—H5B | 0.9600 |
O2—H2 | 0.8200 | C5—H5C | 0.9600 |
N1—C1 | 1.379 (2) | C6—C7 | 1.454 (2) |
N1—C2 | 1.389 (2) | C6—H6 | 0.9300 |
N1—C4 | 1.464 (2) | C7—C12 | 1.397 (2) |
N2—C1 | 1.308 (2) | C7—C8 | 1.414 (2) |
N2—C3 | 1.398 (2) | C8—C9 | 1.400 (3) |
N3—C13 | 1.146 (2) | C9—C10 | 1.373 (2) |
C1—C5 | 1.476 (2) | C9—H9 | 0.9300 |
C2—C3 | 1.473 (2) | C10—C11 | 1.383 (3) |
C3—C6 | 1.353 (2) | C10—H10 | 0.9300 |
C4—H4A | 0.9600 | C11—C12 | 1.384 (3) |
C4—H4B | 0.9600 | C11—C13 | 1.449 (3) |
C4—H4C | 0.9600 | C12—H12 | 0.9300 |
C8—O2—H2 | 109.5 | H5A—C5—H5C | 109.5 |
C1—N1—C2 | 108.77 (15) | H5B—C5—H5C | 109.5 |
C1—N1—C4 | 127.81 (15) | C3—C6—C7 | 132.33 (17) |
C2—N1—C4 | 123.33 (15) | C3—C6—H6 | 113.8 |
C1—N2—C3 | 106.78 (15) | C7—C6—H6 | 113.8 |
N2—C1—N1 | 112.63 (16) | C12—C7—C8 | 117.87 (17) |
N2—C1—C5 | 125.00 (17) | C12—C7—C6 | 115.02 (16) |
N1—C1—C5 | 122.36 (16) | C8—C7—C6 | 127.10 (16) |
O1—C2—N1 | 125.56 (17) | O2—C8—C9 | 115.19 (17) |
O1—C2—C3 | 131.25 (17) | O2—C8—C7 | 125.55 (17) |
N1—C2—C3 | 103.19 (15) | C9—C8—C7 | 119.26 (17) |
C6—C3—N2 | 128.19 (17) | C10—C9—C8 | 121.40 (18) |
C6—C3—C2 | 123.15 (17) | C10—C9—H9 | 119.3 |
N2—C3—C2 | 108.63 (14) | C8—C9—H9 | 119.3 |
N1—C4—H4A | 109.5 | C9—C10—C11 | 119.90 (17) |
N1—C4—H4B | 109.5 | C9—C10—H10 | 120.1 |
H4A—C4—H4B | 109.5 | C11—C10—H10 | 120.1 |
N1—C4—H4C | 109.5 | C10—C11—C12 | 119.61 (17) |
H4A—C4—H4C | 109.5 | C10—C11—C13 | 120.11 (17) |
H4B—C4—H4C | 109.5 | C12—C11—C13 | 120.28 (18) |
C1—C5—H5A | 109.5 | C11—C12—C7 | 121.95 (18) |
C1—C5—H5B | 109.5 | C11—C12—H12 | 119.0 |
H5A—C5—H5B | 109.5 | C7—C12—H12 | 119.0 |
C1—C5—H5C | 109.5 | N3—C13—C11 | 178.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···N2 | 0.82 | 1.85 | 2.591 (2) | 150 |
C12—H12···O1i | 0.93 | 2.47 | 3.262 (2) | 143 |
C5—H5C···O2ii | 0.96 | 2.67 | 3.566 (3) | 156 |
C4—H4A···N3iii | 0.96 | 2.63 | 3.436 (3) | 142 |
C5—H5A···N3iv | 0.96 | 2.64 | 3.586 (3) | 169 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y, −z+3/2; (iii) x−1/2, y+3/2, z; (iv) x−1/2, y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C13H11N3O2 |
Mr | 241.25 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 150 |
a, b, c (Å) | 24.9655 (10), 3.8349 (1), 26.7584 (10) |
β (°) | 115.488 (5) |
V (Å3) | 2312.52 (17) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.24 × 0.2 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.811, 0.999 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15085, 2048, 1364 |
Rint | 0.067 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.112, 0.94 |
No. of reflections | 2048 |
No. of parameters | 166 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.29 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···N2 | 0.82 | 1.85 | 2.591 (2) | 150 |
C12—H12···O1i | 0.93 | 2.47 | 3.262 (2) | 143 |
C5—H5C···O2ii | 0.96 | 2.67 | 3.566 (3) | 156 |
C4—H4A···N3iii | 0.96 | 2.63 | 3.436 (3) | 142 |
C5—H5A···N3iv | 0.96 | 2.64 | 3.586 (3) | 169 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y, −z+3/2; (iii) x−1/2, y+3/2, z; (iv) x−1/2, y+1/2, z. |
Acknowledgements
This work was supported by the National Science Council (grant No. NSC 99-2113-M-035-001-MY2) and Feng Chia University, Taiwan.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, K.-Y., Cheng, Y.-M., Lai, C.-H., Hsu, C.-C., Ho, M.-L., Lee, G.-H. & Chou, P.-T. (2007). J. Am. Chem. Soc. 129, 4534–4535. Web of Science CSD CrossRef PubMed CAS Google Scholar
Chen, W.-H. & Pang, Y. (2010). Tetrahedron Lett. 51, 1914–1918. Web of Science CrossRef CAS Google Scholar
Chuang, W.-T., Hsieh, C.-C., Lai, C.-H., Lai, C.-H., Shih, C.-W., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Org. Chem. 76, 8189–8202. Web of Science CSD CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gryko, D. T., Piechowska, J. & Galezowski, M. (2010). J. Org. Chem. 75, 1297–1300. Web of Science CrossRef CAS PubMed Google Scholar
Han, D. Y., Kim, J. M., Kim, J., Jung, H. S., Lee, Y. H., Zhang, J. F. & Kim, J. S. (2010). Tetrahedron Lett. 51, 1947–1951. Web of Science CSD CrossRef CAS Google Scholar
Helal, A., Lee, S. H., Kim, S. H. & Kim, H.-S. (2010). Tetrahedron Lett. 51, 3531–3535. Web of Science CrossRef CAS Google Scholar
Ikeda, S., Toganoh, M., Easwaramoorthi, S., Lim, J. M., Kim, D. & Furuta, H. (2010). J. Org. Chem. 75, 8637–8649. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ito, Y., Amimoto, K. & Kawato, T. (2011). Dyes Pigm. 89, 319–323. Web of Science CSD CrossRef CAS Google Scholar
Lim, C.-K., Seo, J., Kim, S., Kwon, I. C., Ahn, C.-H. & Park, S. Y. (2011). Dyes Pigm. 90, 284–289. Web of Science CrossRef CAS Google Scholar
Lins, G. O. W., Campo, L. F., Rodembusch, F. S. & Stefani, V. (2010). Dyes Pigm. 84, 114–120. Web of Science CrossRef CAS Google Scholar
Maupin, C. M., Castillo, N., Taraphder, S., Tu, C., McKenna, R., Silverman, D. N. & Voth, G. A. (2011). J. Am. Chem. Soc. 133, 6223–6234. Web of Science CrossRef CAS PubMed Google Scholar
Santos, R. C., Silva Faleiro, N. V., Campo, L. F., Scroferneker, M. L., Corbellini, V. A., Rodembusch, F. S. & Stefani, V. (2011). Tetrahedron Lett. 52, 3048–3053. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tang, K.-C., Chang, M.-J., Lin, T.-Y., Pan, H.-A., Fang, T.-C., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Am. Chem. Soc. 133, 17738–17745. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The excited-state intramolecular proton transfer (ESIPT) reaction of the title compound has been investigated recently (Chuang et al., 2011), which incorporates transfer of a hydroxy proton to the imine nitrogen through an intramolecular seven-membered-ring hydrogen-bonding system. The proton transfer dyes have found many important applications. Prototypical examples are probes for solvation dynamics (Chen & Pang, 2010; Lins et al., 2010) and biological environments (Lim et al., 2011; Maupin et al., 2011), fluorescence microscopy imaging (Santos et al., 2011), near-infrared fluorescent dyes (Ikeda et al., 2010), photochromic materials (Ito et al., 2011), chemosensors (Han et al., 2010; Helal et al., 2010) and recent application in the field of organic light emitting devices (Gryko et al., 2010; Tang et al., 2011).
The molecular structure of the title compound is shown in Fig. 1. As expected, the molecule possesses an intramolecular O—H···N hydrogen bond, which generates an S(7) ring (Chen et al., 2007). The dihedral angle between the mean plane of the benzene ring and the imidazolidinone ring is 3.05 (2)°. In the crystal (Fig. 2), inversion-related molecules are linked by pairs of C12—H12···O1 hydrogen bonds, forming a cyclic dimer with an R22(14) graph-set motif, Fig. 2 (Bernstein et al., 1995). In addition, the C5—H5C···O2 interaction links a pair of molecules into another type of cyclic dimer with an R22(18) graph-set motif. Molecules are further stabilized by intermolecular C—H···N interactions involving the methyl groups of C4 and C5 to form layers parallel to (001). See Table 1 for numerical details of the hdrogen bonds and symmetry operators. Offset π–π stacking is observed in the crystal structure with an interplanar spacing between planes of neighboring benzene rings of 3.444 (1) Å. The closest centroid–centroid distance [symmetry code: x, -1 + y, z] is 4.8350 (12) Å (Cg1 and Cg2 are the centroids of the N1/N2/C1–C3 and C7–C12 rings, respectively).