metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m290-m291

(2,2′-Bi­pyridine-6,6′-di­carboxyl­ato-κ3N,N′,O6)(6′-carb­­oxy-2,2′-bi­pyridine-6-carboxyl­ato-κ3N,N′,O6)rhodium(III)

aCollege of Life Sciences, Inner Mongolia University, Hohhot 010021, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
*Correspondence e-mail: haiquansu@yahoo.com

(Received 18 January 2012; accepted 4 February 2012; online 17 February 2012)

The RhIII ion in the title compound, [Rh(C12H6N2O4)(C12H7N2O4)], is coordinated by four N atoms and two O atoms from two chelating ligands L and HL (H2L = 2,2′-bipyridine-6,6′-dicarb­oxy­lic acid) to form a distorted octa­hedral geometry. Face-to-face π-stacking inter­actions are observed between inversion-related pyridine rings, with a centroid-to-centroid distance of 3.581 (1) Å [the perpendicular distance between the rings is 3.3980 (7) Å]. Inter­molecular O—H⋯O hydrogen bonds link adjacent mol­ecules into one-dimensional supra­molecular chains along the c axis, while several inter­molecular C—H⋯O inter­actions are also observed.

Related literature

For structures and photophysical properties of LnIII (Ln is a lanthanide) complexes with the title ligand, see: Bünzli et al. (2000[Bünzli, J.-C. G., Charbonnière, L. J. & Ziessel, R. F. (2000). J. Chem. Soc. Dalton Trans. pp. 1917-1923.]). For Rh complexes with pyridyl triazole ligands, see: Burke et al. (2004[Burke, H. M., Gallagher, J. F., Indelli, M. T. & Vos, J. G. (2004). Inorg. Chim. Acta, 357, 2989-3000.]). For an Mn–Rh coordination polymer with the 2-methyl­pyrazine-5-carb­oxy­lic acid ligand, see: Chapman et al. (2002[Chapman, C. T., Ciurtin, D. M., Smith, M. D. & zur Loye, H.-C. (2002). Solid State Sci. 4, 1187-1191.]). For a catena-poly diaqua CdII complex with the title ligand, see: Knight et al. (2006[Knight, J. C., Amoroso, A. J., Edwards, P. G. & Ooi, L.-L. (2006). Acta Cryst. E62, m3306-m3308.]). For a review reporting the properties of coordination polymer networks via O and N atoms, see: Robin & Fromm (2006[Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127-2157.]). For the structures and thermal properties of five Ln complexes with the title ligand, see: Wang et al. (2010[Wang, C., Wang, Z., Gu, F. & Guo, G. (2010). J. Mol. Struct. 979, 92-100.]). For a related NiII complex with the title ligand, see: Wang et al. (2009[Wang, H., Su, H., Xu, J., Bai, F. & Gao, Y. (2009). Acta Cryst. E65, m352-m353.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh(C12H6N2O4)(C12H7N2O4)]

  • Mr = 588.29

  • Monoclinic, P 21 /c

  • a = 9.3308 (4) Å

  • b = 13.6186 (6) Å

  • c = 16.9974 (8) Å

  • β = 100.696 (1)°

  • V = 2122.37 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 296 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • 15424 measured reflections

  • 5269 independent reflections

  • 4714 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.061

  • S = 1.03

  • 5269 reflections

  • 335 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected geometric parameters (Å, °)

Rh1—N1 1.9529 (13)
Rh1—N4 1.9571 (14)
Rh1—O1 2.0226 (12)
Rh1—O5 2.0316 (13)
Rh1—N3 2.0689 (15)
Rh1—N2 2.0808 (14)
N2—C6—C5—N1 −2.1 (2)
N4—C15—C16—N3 −1.8 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O7i 0.82 1.64 2.443 (2) 168
C2—H2⋯O6ii 0.93 2.51 3.326 (2) 147
C4—H4A⋯O5iii 0.93 2.54 3.341 (2) 145
C7—H7⋯O5iii 0.93 2.51 3.304 (2) 143
C9—H9⋯O8iv 0.93 2.36 3.097 (2) 136
C12—H12⋯O1v 0.93 2.59 3.194 (2) 123
C17—H17⋯O7vi 0.93 2.42 3.148 (2) 136
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y, -z; (iv) -x+1, -y, -z; (v) -x, -y+1, -z; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thanks to diverse coordination modes and aromatic cores, many multidentate ligands containing N- or O-donors, such as pyridine-2,6-dicarboxylic acid, 2,2'-dipyridine-4,4'-dicarboxylic acid and 2,2'-dipyridine-5,5'-dicarboxylic acid, have been widely used in metal–organic coordination chemistry (Robin & Fromm, 2006; Wang et al., 2009). However, the study of complexes with the title ligand (H2L = 2,2'-bipyridine-6,6'-dicarboxylic acid) is still rare. Some X-ray crystal structures constructed from the title ligand and metal ions, such as [Ln2L3(H2O)3].xH2O (x = 1, Ln = Eu, Tb; x = 0, Ln = Gd) (Bünzli et al., 2000), [Ln3L4(HL)(H2O)2].12H2O (Ln = Ce, Nd, Pr) (Wang et al., 2010), [Ln2L3(H2O)3].3H2O (Ln = Er, Tm) (Wang et al., 2010), [NiL2].4H2O (Wang et al., 2009) and [CdL]n.2nH2O (Knight et al., 2006), have been investigated previously. Here we isolated a new compound constructed from the title ligand and rhodium(III) under hydrothermal conditions. A careful literature survey showed that it is the first compound constructed from rhodium(III) and the title ligand.

The structure of the title compound (Fig. 1) shows that the six-coordinated RhIII atom is surrounded by four N atoms and two O atoms from the two chelated ligands to form a distorted octahedral geometry. The Rh—N bond lengths are in the range of 1.9529 (13)–2.0808 (14) Å and the Rh—O bond lengths are 2.0226 (12) and 2.0316 (13) Å (Table 1), which are comparable to other distances reported in RhIII complexes (Burke et al., 2004; Chapman et al., 2002). The coordinated bipyridine fragments are nearly coplanar [see torsion angles of 2.1 (2) and 1.8 (2)° in Table 1].

Face-to-face π-stacking interactions between inversion-related pyridine rings with Cg1···Cg2ii distance of 3.581 (1) Å (the perpendicular distance between the rings is 3.3980 (7) Å) are observed in the crystal structure: Cg1 and Cg2 are the centroids of the pyridine rings (N1,C1–C5) and (N2,C6–C10), respectively (symmetry code: ii = -x, -y, -z). A similar situation of face-to-face π-stacking interactions was observed in our early work (Wang et al., 2009).

The one-dimensional chain structure of the title compound via hydrogen bonds is illustrated in Fig. 2. The hydrogen-bond donor O4 is connected to the acceptor O7 from the adjacent molecule to form one-dimensional infinite chains along the c-axis (O4—H4···O7i = 1.64 Å, i = x, -y + 1/2, z - 1/2, Table 2). Several intermolecular C—H···O interactions contribute to stabilize the crystal structure.

Related literature top

For structures and photophysical properties of LnIII complexes with the title ligand, see: Bünzli et al. (2000). For Rh complexes with pyridyl triazole ligands, see: Burke et al. (2004). For an Mn–Rh coordination polymer with the 2-methylpyrazine-5-carboxylic acid ligand, see: Chapman et al. (2002). For a catena-poly diaqua CdII complex with the title ligand, see: Knight et al. (2006). For a review reporting the properties of coordination polymer networks via O and N atoms, see: Robin & Fromm (2006). For the structures and thermal properties of five LnIII complexes with the title ligand, see: Wang et al. (2010). For a related NiII complex with the title ligand, see: Wang et al. (2009).

Experimental top

The title compound was obtained by the reaction of the mixture of RhCl3 and 2,2'-dipyridine-6,6'-dicarboxylic acid in a molar ratio of 1:3 and 10 ml of water under hydrothermal conditions (at 433 K for 3 d and cooled to room temperature with a 3°C h-1 rate). The orange block crystals were washed with water (yield: 40%).

Refinement top

The H atoms were placed in geometrically idealized positions (C—H = 0.95 Å and O—H = 0.82–0.84 Å) with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The one-dimensional chain structure of the title compound via hydrogen bonds along the c-axis.
(2,2'-Bipyridine-6,6'-dicarboxylato- κ3N,N',O6)(6'-carboxy-2,2'-bipyridine-6-carboxylato- κ3N,N',O6)rhodium(III) top
Crystal data top
[Rh(C12H6N2O4)(C12H7N2O4)]Z = 4
Mr = 588.29F(000) = 1176
Monoclinic, P21/cDx = 1.841 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.3308 (4) ŵ = 0.87 mm1
b = 13.6186 (6) ÅT = 296 K
c = 16.9974 (8) ÅBlock, orange
β = 100.696 (1)°0.2 × 0.2 × 0.2 mm
V = 2122.37 (16) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4714 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 28.3°, θmin = 1.9°
ϕ and ω scansh = 1012
15424 measured reflectionsk = 1718
5269 independent reflectionsl = 2220
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0317P)2 + 1.1072P]
where P = (Fo2 + 2Fc2)/3
5269 reflections(Δ/σ)max < 0.001
335 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Rh(C12H6N2O4)(C12H7N2O4)]V = 2122.37 (16) Å3
Mr = 588.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3308 (4) ŵ = 0.87 mm1
b = 13.6186 (6) ÅT = 296 K
c = 16.9974 (8) Å0.2 × 0.2 × 0.2 mm
β = 100.696 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4714 reflections with I > 2σ(I)
15424 measured reflectionsRint = 0.017
5269 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.03Δρmax = 0.42 e Å3
5269 reflectionsΔρmin = 0.58 e Å3
335 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.159112 (14)0.237745 (9)0.067212 (7)0.02121 (5)
N10.08891 (15)0.12682 (10)0.12226 (8)0.0225 (3)
N20.24130 (15)0.12072 (10)0.01055 (8)0.0237 (3)
O50.02277 (15)0.23972 (9)0.01957 (8)0.0298 (3)
N40.19640 (17)0.35997 (10)0.01389 (9)0.0265 (3)
C60.20550 (18)0.03125 (12)0.03847 (10)0.0250 (3)
C50.11551 (18)0.03481 (12)0.10163 (10)0.0241 (3)
O10.05205 (14)0.31499 (9)0.13993 (8)0.0287 (3)
N30.35387 (16)0.27865 (11)0.13906 (9)0.0261 (3)
O40.26900 (19)0.24099 (12)0.14737 (10)0.0473 (4)
H40.30000.28890.16810.071*
C40.0559 (2)0.04235 (13)0.13826 (11)0.0298 (4)
H4A0.07390.10710.12580.036*
C210.0203 (2)0.25889 (13)0.18174 (12)0.0297 (4)
C110.0918 (2)0.38968 (13)0.04605 (11)0.0299 (4)
O70.32750 (17)0.11501 (10)0.27890 (8)0.0415 (3)
C200.4329 (2)0.23263 (13)0.20224 (11)0.0297 (4)
O80.42615 (17)0.06416 (10)0.17725 (9)0.0409 (3)
C240.3925 (2)0.12843 (13)0.21996 (11)0.0299 (4)
O30.4556 (2)0.26903 (12)0.04658 (11)0.0534 (4)
O60.13732 (17)0.33511 (12)0.11836 (9)0.0457 (4)
C10.00247 (19)0.14967 (13)0.17412 (10)0.0257 (3)
C150.3070 (2)0.41706 (13)0.04922 (11)0.0305 (4)
C30.0313 (2)0.02061 (14)0.19393 (11)0.0330 (4)
H30.07090.07150.21950.040*
C70.2492 (2)0.05583 (13)0.00854 (11)0.0314 (4)
H70.22450.11570.02870.038*
C90.3635 (2)0.03691 (15)0.08131 (12)0.0344 (4)
H90.41610.04030.12270.041*
C160.3976 (2)0.37045 (13)0.11932 (12)0.0308 (4)
C230.0336 (2)0.31820 (14)0.06556 (11)0.0317 (4)
C80.3306 (2)0.05271 (15)0.05210 (12)0.0349 (4)
H80.36230.11040.07260.042*
O20.10279 (18)0.29013 (11)0.22277 (11)0.0498 (4)
C180.5979 (2)0.36721 (17)0.22862 (14)0.0457 (5)
H180.67980.39690.25880.055*
C20.0601 (2)0.07623 (14)0.21197 (11)0.0320 (4)
H20.11990.09090.24850.038*
C130.2164 (3)0.54139 (15)0.04621 (14)0.0434 (5)
H130.22550.60300.06840.052*
C100.31789 (19)0.12252 (13)0.04881 (11)0.0277 (3)
C140.3194 (2)0.51125 (14)0.01885 (14)0.0399 (5)
H140.39490.55270.04170.048*
C120.1004 (2)0.48196 (14)0.07888 (12)0.0386 (4)
H120.03030.50340.12160.046*
C190.5562 (2)0.27527 (16)0.24857 (14)0.0419 (5)
H190.60920.24200.29220.050*
C220.3551 (2)0.22076 (15)0.08135 (11)0.0321 (4)
C170.5179 (2)0.41533 (15)0.16363 (13)0.0400 (5)
H170.54520.47780.14990.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.02553 (8)0.01557 (7)0.02292 (7)0.00143 (4)0.00549 (5)0.00021 (4)
N10.0264 (7)0.0176 (6)0.0235 (7)0.0014 (5)0.0043 (5)0.0010 (5)
N20.0262 (7)0.0203 (6)0.0246 (7)0.0007 (5)0.0046 (6)0.0018 (5)
O50.0323 (7)0.0257 (6)0.0296 (7)0.0020 (5)0.0010 (5)0.0006 (5)
N40.0340 (8)0.0190 (7)0.0284 (7)0.0008 (6)0.0108 (6)0.0010 (5)
C60.0266 (8)0.0215 (8)0.0258 (8)0.0009 (6)0.0021 (7)0.0012 (6)
C50.0275 (8)0.0195 (7)0.0240 (8)0.0005 (6)0.0014 (6)0.0003 (6)
O10.0349 (7)0.0197 (6)0.0336 (7)0.0008 (5)0.0119 (5)0.0026 (5)
N30.0277 (7)0.0221 (7)0.0289 (7)0.0024 (6)0.0063 (6)0.0041 (6)
O40.0565 (10)0.0437 (9)0.0410 (9)0.0150 (7)0.0075 (7)0.0115 (6)
C40.0366 (10)0.0196 (8)0.0317 (9)0.0019 (7)0.0019 (7)0.0027 (7)
C210.0312 (9)0.0253 (8)0.0332 (9)0.0002 (7)0.0079 (7)0.0035 (7)
C110.0402 (10)0.0248 (8)0.0268 (9)0.0052 (7)0.0114 (7)0.0022 (7)
O70.0612 (9)0.0309 (7)0.0357 (7)0.0079 (7)0.0174 (7)0.0000 (6)
C200.0286 (9)0.0299 (9)0.0299 (9)0.0033 (7)0.0038 (7)0.0067 (7)
O80.0523 (9)0.0313 (7)0.0405 (8)0.0085 (6)0.0122 (7)0.0078 (6)
C240.0309 (9)0.0282 (9)0.0279 (9)0.0074 (7)0.0017 (7)0.0018 (7)
O30.0542 (10)0.0489 (10)0.0556 (10)0.0211 (8)0.0065 (8)0.0042 (8)
O60.0470 (9)0.0529 (9)0.0332 (7)0.0040 (7)0.0036 (6)0.0070 (7)
C10.0287 (8)0.0245 (8)0.0241 (8)0.0007 (6)0.0054 (7)0.0010 (6)
C150.0354 (10)0.0216 (8)0.0375 (10)0.0036 (7)0.0147 (8)0.0020 (7)
C30.0392 (10)0.0278 (9)0.0321 (9)0.0053 (7)0.0072 (8)0.0079 (7)
C70.0356 (10)0.0226 (8)0.0348 (10)0.0005 (7)0.0036 (8)0.0027 (7)
C90.0336 (10)0.0385 (11)0.0330 (10)0.0039 (8)0.0109 (8)0.0068 (8)
C160.0324 (9)0.0247 (8)0.0374 (10)0.0050 (7)0.0116 (8)0.0067 (7)
C230.0390 (10)0.0301 (9)0.0266 (9)0.0047 (8)0.0080 (8)0.0009 (7)
C80.0359 (10)0.0306 (10)0.0379 (10)0.0073 (8)0.0057 (8)0.0094 (8)
O20.0586 (10)0.0346 (8)0.0667 (11)0.0002 (7)0.0390 (9)0.0092 (7)
C180.0322 (10)0.0469 (13)0.0547 (13)0.0081 (9)0.0003 (9)0.0187 (10)
C20.0367 (10)0.0336 (9)0.0275 (9)0.0027 (8)0.0109 (7)0.0024 (7)
C130.0599 (14)0.0240 (9)0.0528 (13)0.0031 (9)0.0273 (11)0.0111 (8)
C100.0272 (8)0.0289 (9)0.0272 (8)0.0008 (7)0.0054 (7)0.0024 (7)
C140.0459 (12)0.0233 (9)0.0554 (13)0.0066 (8)0.0224 (10)0.0000 (8)
C120.0537 (12)0.0296 (10)0.0354 (10)0.0080 (9)0.0159 (9)0.0084 (8)
C190.0343 (10)0.0438 (12)0.0427 (12)0.0021 (9)0.0055 (9)0.0096 (9)
C220.0350 (10)0.0329 (10)0.0328 (10)0.0022 (7)0.0179 (8)0.0034 (7)
C170.0366 (11)0.0323 (10)0.0518 (12)0.0106 (8)0.0101 (9)0.0113 (9)
Geometric parameters (Å, º) top
Rh1—N11.9529 (13)C20—C241.513 (3)
Rh1—N41.9571 (14)O8—C241.215 (2)
Rh1—O12.0226 (12)O3—C221.206 (3)
Rh1—O52.0316 (13)O6—C231.213 (2)
Rh1—N32.0689 (15)C1—C21.377 (2)
Rh1—N22.0808 (14)C15—C141.396 (3)
N1—C51.337 (2)C15—C161.471 (3)
N1—C11.337 (2)C3—C21.391 (3)
N2—C101.341 (2)C3—H30.9300
N2—C61.371 (2)C7—C81.390 (3)
O5—C231.317 (2)C7—H70.9300
N4—C111.336 (2)C9—C81.374 (3)
N4—C151.342 (2)C9—C101.390 (3)
C6—C71.382 (2)C9—H90.9300
C6—C51.481 (2)C16—C171.374 (3)
C5—C41.389 (2)C8—H80.9300
O1—C211.313 (2)C18—C191.372 (3)
N3—C201.340 (2)C18—C171.379 (3)
N3—C161.376 (2)C18—H180.9300
O4—C221.283 (3)C2—H20.9300
O4—H40.8200C13—C121.382 (3)
C4—C31.389 (3)C13—C141.386 (3)
C4—H4A0.9300C13—H130.9300
C21—O21.208 (2)C10—C221.513 (3)
C21—C11.512 (2)C14—H140.9300
C11—C121.383 (3)C12—H120.9300
C11—C231.511 (3)C19—H190.9300
O7—C241.277 (2)C17—H170.9300
C20—C191.394 (3)
N1—Rh1—N4169.74 (6)N1—C1—C2119.94 (16)
N1—Rh1—O182.06 (5)N1—C1—C21113.40 (15)
N4—Rh1—O189.49 (5)C2—C1—C21126.61 (16)
N1—Rh1—O592.80 (5)N4—C15—C14118.48 (18)
N4—Rh1—O581.31 (6)N4—C15—C16113.04 (15)
O1—Rh1—O589.77 (5)C14—C15—C16128.44 (18)
N1—Rh1—N3105.16 (6)C4—C3—C2120.91 (17)
N4—Rh1—N380.34 (6)C4—C3—H3119.5
O1—Rh1—N388.77 (5)C2—C3—H3119.5
O5—Rh1—N3161.60 (5)C6—C7—C8119.09 (18)
N1—Rh1—N279.31 (6)C6—C7—H7120.5
N4—Rh1—N2108.94 (6)C8—C7—H7120.5
O1—Rh1—N2161.35 (5)C8—C9—C10119.73 (18)
O5—Rh1—N290.23 (5)C8—C9—H9120.1
N3—Rh1—N296.93 (6)C10—C9—H9120.1
C5—N1—C1123.71 (15)C17—C16—N3121.32 (19)
C5—N1—Rh1120.29 (12)C17—C16—C15122.71 (17)
C1—N1—Rh1115.65 (11)N3—C16—C15115.96 (16)
C10—N2—C6118.36 (15)O6—C23—O5123.79 (19)
C10—N2—Rh1128.91 (12)O6—C23—C11121.25 (18)
C6—N2—Rh1112.71 (11)O5—C23—C11114.92 (16)
C23—O5—Rh1113.81 (12)C9—C8—C7119.00 (17)
C11—N4—C15123.93 (15)C9—C8—H8120.5
C11—N4—Rh1116.31 (12)C7—C8—H8120.5
C15—N4—Rh1118.27 (12)C19—C18—C17119.67 (19)
N2—C6—C7121.85 (16)C19—C18—H18120.2
N2—C6—C5115.40 (14)C17—C18—H18120.2
C7—C6—C5122.74 (15)C1—C2—C3118.00 (17)
N1—C5—C4118.83 (16)C1—C2—H2121.0
N1—C5—C6112.24 (14)C3—C2—H2121.0
C4—C5—C6128.90 (15)C12—C13—C14121.48 (18)
C21—O1—Rh1112.97 (10)C12—C13—H13119.3
C20—N3—C16118.43 (16)C14—C13—H13119.3
C20—N3—Rh1129.77 (12)N2—C10—C9121.95 (17)
C16—N3—Rh1111.63 (12)N2—C10—C22118.83 (16)
C22—O4—H4109.5C9—C10—C22119.23 (16)
C5—C4—C3118.54 (16)C13—C14—C15118.33 (19)
C5—C4—H4A120.7C13—C14—H14120.8
C3—C4—H4A120.7C15—C14—H14120.8
O2—C21—O1123.68 (17)C13—C12—C11118.02 (19)
O2—C21—C1120.73 (17)C13—C12—H12121.0
O1—C21—C1115.58 (15)C11—C12—H12121.0
N4—C11—C12119.57 (18)C18—C19—C20118.9 (2)
N4—C11—C23113.49 (15)C18—C19—H19120.6
C12—C11—C23126.69 (18)C20—C19—H19120.6
N3—C20—C19122.11 (18)O3—C22—O4128.0 (2)
N3—C20—C24118.53 (16)O3—C22—C10120.88 (19)
C19—C20—C24119.22 (18)O4—C22—C10111.14 (16)
O8—C24—O7125.35 (18)C16—C17—C18119.59 (19)
O8—C24—C20117.09 (17)C16—C17—H17120.2
O7—C24—C20117.56 (16)C18—C17—H17120.2
N4—Rh1—N1—C5142.4 (3)Rh1—N4—C11—C12170.67 (14)
O1—Rh1—N1—C5177.26 (13)C15—N4—C11—C23169.87 (16)
O5—Rh1—N1—C587.88 (13)Rh1—N4—C11—C234.10 (19)
N3—Rh1—N1—C596.19 (13)C16—N3—C20—C190.7 (3)
N2—Rh1—N1—C51.83 (12)Rh1—N3—C20—C19174.12 (15)
N4—Rh1—N1—C131.0 (4)C16—N3—C20—C24174.99 (16)
O1—Rh1—N1—C13.86 (12)Rh1—N3—C20—C2410.2 (2)
O5—Rh1—N1—C185.52 (12)N3—C20—C24—O875.6 (2)
N3—Rh1—N1—C190.41 (13)C19—C20—C24—O8100.2 (2)
N2—Rh1—N1—C1175.23 (13)N3—C20—C24—O7105.1 (2)
N1—Rh1—N2—C10178.45 (16)C19—C20—C24—O779.0 (2)
N4—Rh1—N2—C104.76 (16)C5—N1—C1—C22.6 (3)
O1—Rh1—N2—C10175.62 (15)Rh1—N1—C1—C2175.79 (13)
O5—Rh1—N2—C1085.64 (15)C5—N1—C1—C21174.92 (15)
N3—Rh1—N2—C1077.37 (15)Rh1—N1—C1—C211.77 (19)
N1—Rh1—N2—C60.49 (11)O2—C21—C1—N1175.54 (19)
N4—Rh1—N2—C6173.19 (11)O1—C21—C1—N13.0 (2)
O1—Rh1—N2—C62.3 (2)O2—C21—C1—C21.8 (3)
O5—Rh1—N2—C692.31 (12)O1—C21—C1—C2179.66 (17)
N3—Rh1—N2—C6104.68 (12)C11—N4—C15—C144.0 (3)
N1—Rh1—O5—C23168.90 (13)Rh1—N4—C15—C14169.55 (14)
N4—Rh1—O5—C232.66 (12)C11—N4—C15—C16173.52 (16)
O1—Rh1—O5—C2386.86 (12)Rh1—N4—C15—C168.0 (2)
N3—Rh1—O5—C231.4 (2)C5—C4—C3—C20.9 (3)
N2—Rh1—O5—C23111.79 (13)N2—C6—C7—C80.6 (3)
N1—Rh1—N4—C1151.6 (4)C5—C6—C7—C8178.45 (16)
O1—Rh1—N4—C1186.07 (13)C20—N3—C16—C171.0 (3)
O5—Rh1—N4—C113.78 (12)Rh1—N3—C16—C17174.67 (15)
N3—Rh1—N4—C11174.92 (13)C20—N3—C16—C15179.72 (16)
N2—Rh1—N4—C1191.02 (13)Rh1—N3—C16—C154.57 (19)
N1—Rh1—N4—C15115.0 (3)N4—C15—C16—C17178.97 (17)
O1—Rh1—N4—C1580.54 (13)C14—C15—C16—C173.8 (3)
O5—Rh1—N4—C15170.39 (14)N4—C15—C16—N31.8 (2)
N3—Rh1—N4—C158.30 (13)C14—C15—C16—N3175.46 (18)
N2—Rh1—N4—C15102.37 (13)Rh1—O5—C23—O6176.56 (16)
C10—N2—C6—C71.6 (2)Rh1—O5—C23—C111.25 (19)
Rh1—N2—C6—C7179.84 (14)N4—C11—C23—O6179.66 (17)
C10—N2—C6—C5177.49 (15)C12—C11—C23—O65.3 (3)
Rh1—N2—C6—C50.70 (18)N4—C11—C23—O51.8 (2)
C1—N1—C5—C42.9 (3)C12—C11—C23—O5172.54 (18)
Rh1—N1—C5—C4175.79 (12)C10—C9—C8—C71.4 (3)
C1—N1—C5—C6175.50 (15)C6—C7—C8—C90.9 (3)
Rh1—N1—C5—C62.7 (2)N1—C1—C2—C30.5 (3)
N2—C6—C5—N12.1 (2)C21—C1—C2—C3176.71 (18)
C7—C6—C5—N1178.79 (16)C4—C3—C2—C11.2 (3)
N2—C6—C5—C4176.16 (17)C6—N2—C10—C91.2 (3)
C7—C6—C5—C43.0 (3)Rh1—N2—C10—C9179.03 (13)
N1—Rh1—O1—C215.47 (13)C6—N2—C10—C22178.66 (15)
N4—Rh1—O1—C21168.69 (13)Rh1—N2—C10—C220.8 (2)
O5—Rh1—O1—C2187.39 (13)C8—C9—C10—N20.3 (3)
N3—Rh1—O1—C21110.96 (13)C8—C9—C10—C22179.85 (18)
N2—Rh1—O1—C212.7 (2)C12—C13—C14—C152.5 (3)
N1—Rh1—N3—C2010.65 (17)N4—C15—C14—C130.3 (3)
N4—Rh1—N3—C20178.22 (16)C16—C15—C14—C13176.87 (19)
O1—Rh1—N3—C2092.09 (16)C14—C13—C12—C111.7 (3)
O5—Rh1—N3—C20177.68 (16)N4—C11—C12—C131.9 (3)
N2—Rh1—N3—C2070.10 (16)C23—C11—C12—C13172.14 (18)
N1—Rh1—N3—C16164.44 (12)C17—C18—C19—C200.0 (3)
N4—Rh1—N3—C166.69 (12)N3—C20—C19—C180.2 (3)
O1—Rh1—N3—C1683.00 (12)C24—C20—C19—C18175.48 (19)
O5—Rh1—N3—C162.6 (2)N2—C10—C22—O379.9 (2)
N2—Rh1—N3—C16114.81 (12)C9—C10—C22—O3100.3 (2)
N1—C5—C4—C31.1 (3)N2—C10—C22—O4100.8 (2)
C6—C5—C4—C3177.02 (17)C9—C10—C22—O479.0 (2)
Rh1—O1—C21—O2172.48 (18)N3—C16—C17—C180.9 (3)
Rh1—O1—C21—C16.0 (2)C15—C16—C17—C18179.95 (19)
C15—N4—C11—C124.9 (3)C19—C18—C17—C160.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O7i0.821.642.443 (2)168
C2—H2···O6ii0.932.513.326 (2)147
C4—H4A···O5iii0.932.543.341 (2)145
C7—H7···O5iii0.932.513.304 (2)143
C9—H9···O8iv0.932.363.097 (2)136
C12—H12···O1v0.932.593.194 (2)123
C17—H17···O7vi0.932.423.148 (2)136
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x, y, z; (iv) x+1, y, z; (v) x, y+1, z; (vi) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Rh(C12H6N2O4)(C12H7N2O4)]
Mr588.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.3308 (4), 13.6186 (6), 16.9974 (8)
β (°) 100.696 (1)
V3)2122.37 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15424, 5269, 4714
Rint0.017
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.061, 1.03
No. of reflections5269
No. of parameters335
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.58

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2006), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Rh1—N11.9529 (13)Rh1—O52.0316 (13)
Rh1—N41.9571 (14)Rh1—N32.0689 (15)
Rh1—O12.0226 (12)Rh1—N22.0808 (14)
N1—Rh1—N4169.74 (6)O1—Rh1—N388.77 (5)
N1—Rh1—O182.06 (5)O5—Rh1—N3161.60 (5)
N4—Rh1—O189.49 (5)N1—Rh1—N279.31 (6)
N1—Rh1—O592.80 (5)N4—Rh1—N2108.94 (6)
N4—Rh1—O581.31 (6)O1—Rh1—N2161.35 (5)
O1—Rh1—O589.77 (5)O5—Rh1—N290.23 (5)
N1—Rh1—N3105.16 (6)N3—Rh1—N296.93 (6)
N4—Rh1—N380.34 (6)
N2—C6—C5—N12.1 (2)N4—C15—C16—N31.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O7i0.821.642.443 (2)167.9
C2—H2···O6ii0.932.513.326 (2)146.7
C4—H4A···O5iii0.932.543.341 (2)145.1
C7—H7···O5iii0.932.513.304 (2)143.2
C9—H9···O8iv0.932.363.097 (2)136.3
C12—H12···O1v0.932.593.194 (2)122.9
C17—H17···O7vi0.932.423.148 (2)135.5
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x, y, z; (iv) x+1, y, z; (v) x, y+1, z; (vi) x+1, y+1/2, z+1/2.
 

Acknowledgements

This project was supported by the National Natural Science Foundation of China (grant No. 21166014) and a Key Grant of the Inner Mongolia Natural Science Foundation of China (grant No. 2010ZD01).

References

First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBünzli, J.-C. G., Charbonnière, L. J. & Ziessel, R. F. (2000). J. Chem. Soc. Dalton Trans. pp. 1917–1923.  Google Scholar
First citationBurke, H. M., Gallagher, J. F., Indelli, M. T. & Vos, J. G. (2004). Inorg. Chim. Acta, 357, 2989–3000.  Web of Science CSD CrossRef CAS Google Scholar
First citationChapman, C. T., Ciurtin, D. M., Smith, M. D. & zur Loye, H.-C. (2002). Solid State Sci. 4, 1187–1191.  Web of Science CSD CrossRef CAS Google Scholar
First citationKnight, J. C., Amoroso, A. J., Edwards, P. G. & Ooi, L.-L. (2006). Acta Cryst. E62, m3306–m3308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRobin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Su, H., Xu, J., Bai, F. & Gao, Y. (2009). Acta Cryst. E65, m352–m353.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, C., Wang, Z., Gu, F. & Guo, G. (2010). J. Mol. Struct. 979, 92–100.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m290-m291
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds