organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Bi­phenyl-4-yl)propan-2-ol

aDepartment of Chemistry, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
*Correspondence e-mail: phvr@up.ac.za

(Received 23 January 2012; accepted 27 January 2012; online 4 February 2012)

The title compound, C15H16O, crystallizes with two independent mol­ecules in the asymmetric unit. Due to the space-group symmetry, this results in the formation of a tetra­mer where the four mol­ecules are connected by O—H⋯O hydrogen bonds. The mol­ecules pack parallel to the c axis. Both mol­ecules in the asymmetric unit are nonplanar and the dihedral angles between connected aromatic rings in each mol­ecule are 7.96 (12) and 9.75 (13)°. This contrasts with the gas phase density functional theory (DFT) optimized conformation, where this dihedral angle is 39.33°.

Related literature

For some previous studies of biphenyl derivitives, see: Britton & Gleason (1991[Britton, D. & Gleason, W. B. (1991). Acta Cryst. C47, 2127-2131.]); Britton & Young (2003[Britton, D. & Young, V. G. Jr (2003). Acta Cryst. E59, o1849-o1851.]); Brock (1980[Brock, C. P. (1980). Acta Cryst. B36, 968-971.]); Brock & Haller (1980[Brock, C. P. & Haller, K. L. (1980). J. Phys. Chem. 88, 3570-3574.]); Mohamed et al. (2003[Mohamed, A. K., Auner, N. & Bolte, M. (2003). Acta Cryst. E59, o476-o477.]). For details of GAUSSIAN03, see: Frisch et al. (2003[Frisch, M. J., et al. (2003). GAUSSIAN03. Gaussian Inc., Pittsburgh, Pennsylvania, USA.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16O

  • Mr = 212.28

  • Monoclinic, C 2/c

  • a = 12.4406 (14) Å

  • b = 15.5754 (18) Å

  • c = 25.741 (3) Å

  • β = 102.332 (2)°

  • V = 4872.7 (10) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 K

  • 0.46 × 0.36 × 0.08 mm

Data collection
  • Bruker P4 diffractometer with SMART 1000 CCD area detector

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.931, Tmax = 0.994

  • 12927 measured reflections

  • 4590 independent reflections

  • 2859 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.147

  • S = 1.01

  • 4590 reflections

  • 391 parameters

  • 3 restraints

  • All H-atom parameters refined

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.90 (1) 1.99 (2) 2.804 (2) 150 (4)
O2—H2A⋯O1 0.90 (1) 2.09 (4) 2.804 (2) 136 (4)
O1—H1B⋯O1i 0.87 (3) 1.90 (3) 2.767 (3) 174 (4)
O2—H2B⋯O2i 0.89 (1) 2.03 (1) 2.926 (3) 177 (4)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and POV-RAY (Cason, 2004[Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty Ltd, Victoria, Australia. http://www.povray.org.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The studies of the series of biphenyl derivatives have attracted considerable attention for some time now. This included the para-monosubstituted derivatives 4-bromobiphenyl (Brock, 1980) and 4-hydroxylbiphenyl (Brock & Haller, 1980), as well as some para-disubstituted derivatives such as 4,4'-dibromobiphenyl (Mohamed et al., 2003), 4,4'-iodocyanobiphenyl (Britton & Gleason, 1991) and 4,4'-dicyanobiphenyl (Britton & Young, 2003). Particular interest has been shown in their packing motifs as well as the inter-ring dihedral angles which are found to be approximately 40° in the solid state in the majority of structures. The structure of the corresponding 2-(4-biphenyl)-2-propanol compound, was undertaken as part of the investigation into the conformational properties of para monosubstituted and para disubstituted biphenyls. Of significance is that this compound crystallizes in a significantly more planar conformation than what is expected, although it is still non-planar.

2-(4-biphenyl)-2-propanol crystallizes with two independent molecules in the asymmetric unit. The presence of a twofold rotational axis results in the formation of a hydrogen bonded tetramer. The four H atoms of the hydroxyl groups occupy both sets of possible hydrogen positions, illustrated by the two possible bonding schemes (H···OA—H···OB—H) and (H—OA···H—OB···H). Both sets of H atom positions were refined with occupancies of 0.5. The two molecules in the asymmetric unit have similar geometrical parameters. The molecules are non-planar: the two aromatic rings in each molecule are slightly twisted around C—C inter ring bond by 7.96 (3)° and 9.75 (3)°. This contrasts to the gas phase DFT (6–31+G**) optimized conformation where this dihedral angle is 39.33° (GAUSSIAN03, Frisch et al., 2003). The anisotropic displacement ellipsoids and atom labelling for the compound is shown in Fig.1. The lengths of the central C—C bonds connecting the two aromatic rings in each of the two molecules are equal to 1.491 (3) and 1.489 (2) Å. The bond length and bond angle are within the expected values. The H···O distances are 1.99 (2), 2.09 (4), 1.90 (3) and 2.034 (11) Å. The molecules pack parallel to the c axis (Fig. 2). The volume per non H atom in the crystal is 19.03 Å3, in line with that calculated for other biphenyl derivatives structures. This would suggest that the closer packing resulting from the intermolecular hydrogen bonds as well as the more planar biphenyl systems does not significantly change the packing requirements in the crystals.

Related literature top

For some previous studies of biphenyl derivitives, see: Britton & Gleason (1991); Britton & Young (2003); Brock (1980); Brock & Haller (1980); Mohamed et al. (2003). For details of GAUSSIAN03, see: Frisch et al. (2003).

Experimental top

The title compound was obtained from Aldrich Chemical Co. Inc. Crystals were grown from distilled hexane, acetone, benzene, dichloromethane, chloroform, carbon tetrachloride, and acetonitrile in an attempt to search for multiple polymorphs. Several habits were found, viz. prisms, clear plates, and striated plates but all proved to be isostructural. A prism grown from distilled hexane was used for the structure determination.

Geometry optimization for 2-(4-biphenyl)-2-propanol was performed using the program GAUSSIAN03 and applying the B3LYP-functional with the 6-31+G** basis set level (Frisch et al., 2003). This optimized structure displayed no negative vibrational frequencies.

Refinement top

All H atom positions were obtained from difference Fourier maps and were freely refined. Isotropic displacement parameters for the H atoms were set at 1.2 times the equivalent isotropic displacement parameter of the atom to which each H atom is bonded (1.5 times for the methyl H atoms). The two independent molecules, plus two further molecules generated by a crystallographic 2-fold rotation axis, form a hydrogen bonded tetramer. The hydroxyl H atoms involved in the hydrogen bonding are, of necessity, disordered and two H atom positions were observed for each hydroxyl group and each hydrogen position was refined with a sof of 0.5.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008) and SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), Mercury (Macrae et al., 2008) and POV-RAY (Cason, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the asymmetric unit of the title compound, with the atom numbering. This shows one of the two possible orientations of the hydrogen bonding scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Drawing of the unit cell content of the title compound.
2-(Biphenyl-4-yl)propan-2-ol top
Crystal data top
C15H16OF(000) = 1824
Mr = 212.28Dx = 1.157 Mg m3
Monoclinic, C2/cMelting point: 366.1 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 12.4406 (14) ÅCell parameters from 4663 reflections
b = 15.5754 (18) Åθ = 2.4–26.0°
c = 25.741 (3) ŵ = 0.07 mm1
β = 102.332 (2)°T = 295 K
V = 4872.7 (10) Å3Plate, colourless
Z = 160.46 × 0.36 × 0.08 mm
Data collection top
Bruker P4
diffractometer with SMART 1000 CCD area detector
4590 independent reflections
Radiation source: fine-focus sealed tube2859 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.3 pixels mm-1θmax = 26.5°, θmin = 2.4°
ϕ and ω scansh = 157
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1815
Tmin = 0.931, Tmax = 0.994l = 3131
12927 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.147All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0639P)2 + 1.7634P]
where P = (Fo2 + 2Fc2)/3
4590 reflections(Δ/σ)max = 0.001
391 parametersΔρmax = 0.13 e Å3
3 restraintsΔρmin = 0.14 e Å3
Crystal data top
C15H16OV = 4872.7 (10) Å3
Mr = 212.28Z = 16
Monoclinic, C2/cMo Kα radiation
a = 12.4406 (14) ŵ = 0.07 mm1
b = 15.5754 (18) ÅT = 295 K
c = 25.741 (3) Å0.46 × 0.36 × 0.08 mm
β = 102.332 (2)°
Data collection top
Bruker P4
diffractometer with SMART 1000 CCD area detector
4590 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2859 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.994Rint = 0.029
12927 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0463 restraints
wR(F2) = 0.147All H-atom parameters refined
S = 1.01Δρmax = 0.13 e Å3
4590 reflectionsΔρmin = 0.14 e Å3
391 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.22391 (12)0.49260 (10)0.05345 (6)0.0485 (4)
C20.28952 (16)0.44401 (13)0.09272 (7)0.0646 (5)
H20.3512 (17)0.4133 (13)0.0851 (7)0.078*
C30.26765 (16)0.43652 (13)0.14308 (7)0.0650 (5)
H30.3152 (16)0.4000 (13)0.1686 (8)0.078*
C40.17907 (13)0.47641 (11)0.15649 (7)0.0530 (4)
C50.11288 (16)0.52481 (14)0.11731 (8)0.0687 (5)
H50.0523 (17)0.5571 (13)0.1256 (8)0.082*
C60.13494 (16)0.53305 (13)0.06735 (8)0.0654 (5)
H60.0899 (16)0.5687 (13)0.0427 (8)0.078*
C70.24761 (13)0.50013 (10)0.00067 (6)0.0510 (4)
C80.17499 (17)0.53907 (14)0.04217 (8)0.0715 (6)
H80.1095 (18)0.5621 (14)0.0353 (8)0.086*
C90.1975 (2)0.54432 (17)0.09240 (9)0.0839 (7)
H90.1447 (19)0.5734 (15)0.1189 (9)0.101*
C100.2925 (2)0.51127 (15)0.10229 (8)0.0790 (6)
H100.3063 (18)0.5144 (14)0.1383 (9)0.095*
C110.36620 (19)0.47263 (16)0.06195 (8)0.0795 (6)
H110.4342 (19)0.4466 (14)0.0681 (8)0.095*
C120.34381 (17)0.46705 (14)0.01181 (8)0.0693 (5)
H120.3974 (17)0.4414 (13)0.0170 (8)0.083*
C130.15214 (15)0.46972 (12)0.21136 (7)0.0599 (5)
C140.2251 (2)0.40631 (18)0.24767 (9)0.0803 (6)
H14A0.222 (2)0.3454 (19)0.2307 (10)0.120*
H14B0.199 (2)0.4014 (17)0.2819 (11)0.120*
H14C0.301 (2)0.4270 (17)0.2564 (10)0.120*
C150.1579 (2)0.55713 (16)0.23792 (10)0.0855 (7)
H15A0.104 (2)0.6003 (19)0.2143 (11)0.128*
H15B0.236 (2)0.5802 (18)0.2442 (11)0.128*
H15C0.139 (2)0.5516 (17)0.2739 (12)0.128*
O10.03981 (11)0.44009 (9)0.20377 (5)0.0678 (4)
H1A0.047 (3)0.3863 (12)0.1923 (16)0.081*0.50
H1B0.012 (4)0.443 (2)0.2319 (15)0.081*0.50
C160.00267 (14)0.24680 (11)0.00238 (8)0.0573 (4)
C170.07693 (17)0.27485 (15)0.04215 (9)0.0787 (6)
H170.1405 (19)0.3030 (15)0.0365 (8)0.094*
C180.05831 (18)0.26437 (15)0.09270 (9)0.0805 (7)
H180.1060 (19)0.2895 (15)0.1211 (9)0.097*
C190.03521 (14)0.22565 (11)0.10169 (8)0.0608 (5)
C200.11092 (17)0.19968 (15)0.05718 (9)0.0774 (6)
H200.1768 (19)0.1719 (14)0.0629 (8)0.093*
C210.09266 (17)0.20967 (15)0.00691 (9)0.0766 (6)
H210.1457 (18)0.1882 (14)0.0227 (9)0.092*
C220.02432 (14)0.25405 (11)0.05698 (8)0.0594 (5)
C230.04138 (19)0.21334 (18)0.10009 (10)0.0887 (7)
H230.100 (2)0.1765 (16)0.0918 (9)0.106*
C240.0217 (2)0.2200 (2)0.15056 (11)0.1001 (8)
H240.064 (2)0.1888 (18)0.1788 (11)0.120*
C250.0651 (2)0.26587 (16)0.15981 (11)0.0867 (7)
H250.0803 (19)0.2704 (15)0.1976 (10)0.104*
C260.1323 (2)0.30524 (17)0.11834 (11)0.0952 (7)
H260.195 (2)0.3407 (17)0.1234 (10)0.114*
C270.1118 (2)0.29994 (15)0.06773 (10)0.0849 (7)
H270.1563 (19)0.3281 (16)0.0394 (10)0.102*
C280.05169 (16)0.20597 (13)0.15723 (8)0.0696 (5)
C290.1704 (2)0.2169 (2)0.16242 (13)0.1090 (10)
H29A0.214 (3)0.168 (2)0.1416 (13)0.163*
H29B0.173 (3)0.209 (2)0.1994 (14)0.163*
H29C0.191 (3)0.276 (2)0.1486 (14)0.163*
C300.0115 (3)0.11470 (18)0.17181 (12)0.1097 (10)
H30A0.053 (3)0.075 (2)0.1448 (14)0.165*
H30B0.023 (3)0.103 (2)0.2069 (14)0.165*
H30C0.070 (3)0.116 (2)0.1726 (13)0.165*
O20.01619 (14)0.26127 (10)0.19536 (6)0.0871 (5)
H2A0.000 (4)0.3133 (16)0.1811 (19)0.104*0.50
H2B0.007 (5)0.259 (3)0.2287 (9)0.104*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0478 (9)0.0447 (9)0.0519 (10)0.0059 (7)0.0082 (7)0.0009 (7)
C20.0578 (11)0.0760 (13)0.0614 (11)0.0171 (9)0.0157 (9)0.0078 (10)
C30.0634 (11)0.0742 (13)0.0569 (11)0.0143 (10)0.0115 (9)0.0145 (10)
C40.0543 (10)0.0526 (10)0.0523 (9)0.0055 (8)0.0116 (8)0.0004 (8)
C50.0636 (11)0.0817 (14)0.0641 (12)0.0198 (10)0.0210 (10)0.0090 (10)
C60.0638 (11)0.0740 (13)0.0585 (11)0.0184 (9)0.0134 (9)0.0121 (9)
C70.0531 (9)0.0477 (9)0.0508 (9)0.0077 (7)0.0080 (7)0.0051 (8)
C80.0641 (12)0.0897 (15)0.0605 (12)0.0096 (11)0.0129 (10)0.0086 (10)
C90.0842 (15)0.1084 (19)0.0564 (12)0.0126 (13)0.0089 (11)0.0125 (12)
C100.0921 (16)0.0942 (16)0.0522 (12)0.0060 (12)0.0189 (11)0.0031 (11)
C110.0799 (14)0.0985 (17)0.0646 (13)0.0091 (12)0.0253 (11)0.0048 (12)
C120.0671 (12)0.0843 (14)0.0565 (11)0.0109 (10)0.0133 (9)0.0008 (10)
C130.0632 (11)0.0641 (11)0.0536 (10)0.0071 (9)0.0155 (8)0.0003 (8)
C140.0842 (15)0.1001 (18)0.0554 (12)0.0009 (13)0.0121 (11)0.0148 (12)
C150.1139 (19)0.0788 (15)0.0682 (14)0.0162 (13)0.0292 (14)0.0145 (12)
O10.0656 (8)0.0812 (9)0.0623 (8)0.0060 (7)0.0260 (6)0.0004 (7)
C160.0517 (10)0.0466 (10)0.0703 (12)0.0018 (8)0.0058 (8)0.0028 (8)
C170.0620 (12)0.0926 (16)0.0821 (15)0.0288 (11)0.0170 (11)0.0167 (12)
C180.0665 (13)0.0997 (17)0.0731 (14)0.0284 (11)0.0101 (11)0.0239 (12)
C190.0587 (10)0.0523 (10)0.0711 (12)0.0050 (8)0.0129 (9)0.0118 (9)
C200.0628 (12)0.0896 (15)0.0781 (15)0.0270 (11)0.0113 (11)0.0060 (12)
C210.0636 (12)0.0893 (15)0.0710 (14)0.0240 (11)0.0012 (10)0.0047 (11)
C220.0541 (10)0.0458 (10)0.0749 (13)0.0044 (8)0.0063 (9)0.0015 (9)
C230.0703 (14)0.1149 (19)0.0760 (15)0.0245 (13)0.0046 (11)0.0042 (13)
C240.0944 (18)0.129 (2)0.0716 (16)0.0171 (16)0.0056 (13)0.0087 (15)
C250.0967 (17)0.0844 (16)0.0806 (16)0.0126 (13)0.0224 (14)0.0113 (13)
C260.1011 (18)0.0903 (17)0.102 (2)0.0217 (14)0.0382 (16)0.0034 (15)
C270.0867 (15)0.0809 (15)0.0872 (17)0.0247 (12)0.0190 (13)0.0080 (12)
C280.0766 (12)0.0622 (12)0.0710 (13)0.0150 (10)0.0182 (10)0.0169 (10)
C290.0908 (18)0.147 (3)0.098 (2)0.0350 (18)0.0402 (16)0.0268 (19)
C300.182 (3)0.0733 (17)0.0754 (16)0.0030 (19)0.0314 (19)0.0039 (13)
O20.0979 (11)0.0883 (11)0.0762 (11)0.0292 (9)0.0213 (9)0.0268 (9)
Geometric parameters (Å, º) top
C1—C21.381 (2)C16—C171.380 (3)
C1—C61.385 (2)C16—C211.385 (3)
C1—C71.489 (2)C16—C221.491 (3)
C2—C31.385 (3)C17—C181.379 (3)
C2—H20.96 (2)C17—H170.94 (2)
C3—C41.372 (2)C18—C191.373 (3)
C3—H30.97 (2)C18—H180.92 (2)
C4—C51.382 (2)C19—C201.379 (3)
C4—C131.523 (2)C19—C281.518 (3)
C5—C61.377 (3)C20—C211.370 (3)
C5—H50.97 (2)C20—H200.97 (2)
C6—H60.93 (2)C21—H210.96 (2)
C7—C81.383 (2)C22—C271.379 (3)
C7—C121.388 (3)C22—C231.384 (3)
C8—C91.383 (3)C23—C241.376 (3)
C8—H80.94 (2)C23—H230.98 (2)
C9—C101.362 (3)C24—C251.357 (4)
C9—H90.95 (2)C24—H240.94 (3)
C10—C111.369 (3)C25—C261.354 (4)
C10—H100.98 (2)C25—H251.03 (2)
C11—C121.380 (3)C26—C271.382 (3)
C11—H110.98 (2)C26—H260.99 (3)
C12—H120.97 (2)C27—H270.93 (2)
C13—O11.445 (2)C28—O21.437 (2)
C13—C151.518 (3)C28—C291.521 (3)
C13—C141.520 (3)C28—C301.527 (3)
C14—H14A1.04 (3)C29—H29A1.01 (4)
C14—H14B1.00 (3)C29—H29B0.97 (4)
C14—H14C0.97 (3)C29—H29C1.00 (3)
C15—H15A1.04 (3)C30—H30A0.98 (4)
C15—H15B1.01 (3)C30—H30B0.96 (3)
C15—H15C1.01 (3)C30—H30C1.01 (4)
O1—H1A0.900 (10)O2—H2A0.895 (10)
O1—H1B0.87 (3)O2—H2B0.893 (10)
C2—C1—C6116.10 (16)C17—C16—C21115.77 (19)
C2—C1—C7121.57 (15)C17—C16—C22122.35 (17)
C6—C1—C7122.32 (15)C21—C16—C22121.87 (17)
C1—C2—C3121.83 (17)C18—C17—C16121.90 (19)
C1—C2—H2119.8 (12)C18—C17—H17121.1 (13)
C3—C2—H2118.4 (12)C16—C17—H17117.0 (14)
C4—C3—C2121.75 (17)C19—C18—C17122.01 (19)
C4—C3—H3120.2 (12)C19—C18—H18118.4 (14)
C2—C3—H3118.0 (12)C17—C18—H18119.2 (14)
C3—C4—C5116.69 (16)C18—C19—C20116.20 (19)
C3—C4—C13123.36 (16)C18—C19—C28122.48 (17)
C5—C4—C13119.96 (16)C20—C19—C28121.16 (17)
C6—C5—C4121.73 (17)C21—C20—C19122.00 (19)
C6—C5—H5118.5 (12)C21—C20—H20120.8 (13)
C4—C5—H5119.7 (12)C19—C20—H20117.2 (13)
C5—C6—C1121.90 (17)C20—C21—C16122.09 (19)
C5—C6—H6118.7 (12)C20—C21—H21119.2 (13)
C1—C6—H6119.4 (12)C16—C21—H21118.6 (13)
C8—C7—C12116.94 (17)C27—C22—C23115.7 (2)
C8—C7—C1122.00 (16)C27—C22—C16122.54 (18)
C12—C7—C1121.06 (16)C23—C22—C16121.79 (18)
C9—C8—C7121.3 (2)C24—C23—C22121.9 (2)
C9—C8—H8120.7 (13)C24—C23—H23122.5 (14)
C7—C8—H8118.1 (13)C22—C23—H23115.4 (14)
C10—C9—C8120.6 (2)C25—C24—C23120.9 (2)
C10—C9—H9122.5 (14)C25—C24—H24118.5 (17)
C8—C9—H9116.8 (14)C23—C24—H24120.4 (17)
C9—C10—C11119.5 (2)C26—C25—C24118.7 (3)
C9—C10—H10119.6 (13)C26—C25—H25120.4 (13)
C11—C10—H10121.0 (13)C24—C25—H25120.9 (13)
C10—C11—C12120.0 (2)C25—C26—C27120.6 (2)
C10—C11—H11121.4 (13)C25—C26—H26121.5 (15)
C12—C11—H11118.6 (13)C27—C26—H26117.8 (15)
C11—C12—C7121.67 (19)C22—C27—C26122.1 (2)
C11—C12—H12119.8 (12)C22—C27—H27116.9 (15)
C7—C12—H12118.5 (12)C26—C27—H27121.0 (15)
O1—C13—C15107.35 (17)O2—C28—C19110.14 (15)
O1—C13—C14108.02 (16)O2—C28—C29108.26 (18)
C15—C13—C14109.97 (18)C19—C28—C29112.9 (2)
O1—C13—C4107.11 (14)O2—C28—C30106.0 (2)
C15—C13—C4110.96 (16)C19—C28—C30108.45 (18)
C14—C13—C4113.18 (16)C29—C28—C30110.8 (2)
C13—C14—H14A111.6 (14)C28—C29—H29A106.7 (19)
C13—C14—H14B108.9 (15)C28—C29—H29B108 (2)
H14A—C14—H14B108 (2)H29A—C29—H29B107 (3)
C13—C14—H14C110.4 (16)C28—C29—H29C104 (2)
H14A—C14—H14C111 (2)H29A—C29—H29C116 (3)
H14B—C14—H14C107 (2)H29B—C29—H29C114 (3)
C13—C15—H15A110.6 (15)C28—C30—H30A108 (2)
C13—C15—H15B109.9 (17)C28—C30—H30B107 (2)
H15A—C15—H15B109 (2)H30A—C30—H30B113 (3)
C13—C15—H15C109.8 (16)C28—C30—H30C105 (2)
H15A—C15—H15C110 (2)H30A—C30—H30C114 (3)
H15B—C15—H15C107 (2)H30B—C30—H30C109 (3)
C13—O1—H1A100 (3)C28—O2—H2A102 (3)
C13—O1—H1B114 (3)C28—O2—H2B117 (3)
H1A—O1—H1B114 (4)H2A—O2—H2B111 (5)
C6—C1—C2—C30.2 (3)C21—C16—C17—C181.6 (3)
C7—C1—C2—C3179.76 (17)C22—C16—C17—C18177.0 (2)
C1—C2—C3—C40.6 (3)C16—C17—C18—C190.2 (4)
C2—C3—C4—C50.3 (3)C17—C18—C19—C201.6 (3)
C2—C3—C4—C13179.94 (18)C17—C18—C19—C28173.9 (2)
C3—C4—C5—C60.3 (3)C18—C19—C20—C211.8 (3)
C13—C4—C5—C6179.45 (18)C28—C19—C20—C21173.8 (2)
C4—C5—C6—C10.7 (3)C19—C20—C21—C160.3 (4)
C2—C1—C6—C50.4 (3)C17—C16—C21—C201.4 (3)
C7—C1—C6—C5179.15 (18)C22—C16—C21—C20177.3 (2)
C2—C1—C7—C8171.37 (18)C17—C16—C22—C279.5 (3)
C6—C1—C7—C88.1 (3)C21—C16—C22—C27171.9 (2)
C2—C1—C7—C127.8 (3)C17—C16—C22—C23169.1 (2)
C6—C1—C7—C12172.69 (18)C21—C16—C22—C239.5 (3)
C12—C7—C8—C90.2 (3)C27—C22—C23—C241.4 (4)
C1—C7—C8—C9178.97 (19)C16—C22—C23—C24179.9 (2)
C7—C8—C9—C100.2 (4)C22—C23—C24—C251.3 (4)
C8—C9—C10—C110.1 (4)C23—C24—C25—C260.0 (4)
C9—C10—C11—C120.3 (4)C24—C25—C26—C271.0 (4)
C10—C11—C12—C70.2 (3)C23—C22—C27—C260.3 (3)
C8—C7—C12—C110.0 (3)C16—C22—C27—C26179.0 (2)
C1—C7—C12—C11179.18 (18)C25—C26—C27—C220.9 (4)
C3—C4—C13—O1125.65 (18)C18—C19—C28—O223.1 (3)
C5—C4—C13—O154.6 (2)C20—C19—C28—O2161.64 (19)
C3—C4—C13—C15117.5 (2)C18—C19—C28—C29144.2 (2)
C5—C4—C13—C1562.3 (2)C20—C19—C28—C2940.5 (3)
C3—C4—C13—C146.7 (3)C18—C19—C28—C3092.5 (3)
C5—C4—C13—C14173.51 (19)C20—C19—C28—C3082.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.90 (1)1.99 (2)2.804 (2)150 (4)
O2—H2A···O10.90 (1)2.09 (4)2.804 (2)136 (4)
O1—H1B···O1i0.87 (3)1.90 (3)2.767 (3)174 (4)
O2—H2B···O2i0.89 (1)2.03 (1)2.926 (3)177 (4)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H16O
Mr212.28
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)12.4406 (14), 15.5754 (18), 25.741 (3)
β (°) 102.332 (2)
V3)4872.7 (10)
Z16
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.46 × 0.36 × 0.08
Data collection
DiffractometerBruker P4
diffractometer with SMART 1000 CCD area detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.931, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
12927, 4590, 2859
Rint0.029
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.147, 1.01
No. of reflections4590
No. of parameters391
No. of restraints3
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.13, 0.14

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008) and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), Mercury (Macrae et al., 2008) and POV-RAY (Cason, 2004), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.900 (10)1.99 (2)2.804 (2)150 (4)
O2—H2A···O10.895 (10)2.09 (4)2.804 (2)136 (4)
O1—H1B···O1i0.87 (3)1.90 (3)2.767 (3)174 (4)
O2—H2B···O2i0.893 (10)2.034 (11)2.926 (3)177 (4)
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

The authors thank the University of Pretoria for financial support.

References

First citationBritton, D. & Gleason, W. B. (1991). Acta Cryst. C47, 2127–2131.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBritton, D. & Young, V. G. Jr (2003). Acta Cryst. E59, o1849–o1851.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrock, C. P. (1980). Acta Cryst. B36, 968–971.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBrock, C. P. & Haller, K. L. (1980). J. Phys. Chem. 88, 3570–3574.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty Ltd, Victoria, Australia. http://www.povray.org.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2003). GAUSSIAN03. Gaussian Inc., Pittsburgh, Pennsylvania, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, A. K., Auner, N. & Bolte, M. (2003). Acta Cryst. E59, o476–o477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds