organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Methyl-3,3-bis­­(morpholin-4-yl)-1-[2-(morpholin-4-yl)eth­yl]-2,3-di­hydro-1H-indol-2-one

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: slcao@cnu.edu.cn

(Received 8 February 2012; accepted 17 February 2012; online 24 February 2012)

In the title compound, C23H34N4O4, the morpholine rings adopt chair conformations. The N atom of the indol-2-one group is linked to the N atom of one morpholine ring through a flexible ethyl group with an almost cif conformation. In the crystal, molecules are linked by C—H⋯O interactions into infinite chains along the c direction. The almost parallel infinite chains are further inter­connected via other sets of C—H⋯O inter­actions, forming a three-dimensional framework.

Related literature

For background to and activities of indoline-2,3-dione and its derivatives, see Chiyanzu et al. (2005[Chiyanzu, I., Clarkson, C., Smith, P. J., Lehman, J., Gut, J., Rosenthal, P. J. & Chibale, K. (2005). Bioorg. Med. Chem. 13, 3249-3261.]); Karali (2002[Karali, N. (2002). Eur. J. Med. Chem. 37, 909-918.]); Sirisoma et al. (2009[Sirisoma, N., Pervin, A., Drewe, J., Tseng, B. & Cai, S. X. (2009). Bioorg. Med. Chem. Lett. 19, 2710-2713.]); Solomon et al. (2009[Solomon, V. R., Hu, C. & Lee, H. (2009). Bioorg. Med. Chem. 17, 7585-7592.]); Sriram et al. (2004[Sriram, D., Bal, T. R. & Yogeeswari, P. (2004). Bioorg. Med. Chem. 12, 5865-5873.]). For structural analogues of indoline-2,3-dione (isatin), see: Wang et al. (2012[Wang, Y., Lin, H.-H. & Cao, S.-L. (2012). Acta Cryst. E68, o94-o95.]).

[Scheme 1]

Experimental

Crystal data
  • C23H34N4O4

  • Mr = 430.54

  • Monoclinic, P 21 /c

  • a = 10.1772 (10) Å

  • b = 14.2576 (14) Å

  • c = 15.8950 (16) Å

  • β = 97.332 (2)°

  • V = 2287.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.660, Tmax = 0.746

  • 12380 measured reflections

  • 5355 independent reflections

  • 2599 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.141

  • S = 1.01

  • 5355 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20B⋯O3i 0.97 2.62 3.109 (3) 112
C15—H15A⋯O3ii 0.97 2.52 3.480 (2) 173
C17—H17A⋯O2iii 0.97 2.66 3.395 (3) 132
C13—H13B⋯O4iv 0.97 2.64 3.318 (3) 128
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) x-1, y, z; (iv) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Mannich base derivatives of indoline-2,3-dione (isatin) were reported having a wide range of biological activities such as antibacterial (Chiyanzu et al., 2005), anti-HIV (Sriram et al., 2004) and anticancer activity (Karali, 2002; Sirisoma et al., 2009; Solomon et al., 2009). To obtain isatin Mannich base analogues with a flexible ethylene linker between the N atom of the isatin and the amine group of the morpholine, we designed the reaction of 1-(2-bromoethyl)-5-methylindoline-2,3-dione with an excess of morpholine. Interestingly, an additional nucleophilic addition of morpholine to one carbonyl group on the isatin simultaneously occurred to give the title compound (Scheme 1), which might also exhibit potential antitumor properties. Herein, we report the crystal structure of this new compound.

In the title compound, C23H34N4O4, the morpholine rings adopt chair conformations. The N1 atom of the indol-2-one moiety is linked to the N2 atom of a morpholine ring through a flexible ethylene group with an almost cis conformation [the torsion angle N1—C10—C11—N2 is 59.7 (3)°, as shown in Fig. 1]. Such a fashion is different from the trans conformation [corresponding torsion angle of 175.74 (11)°] found in 2-(5-fluoro-2,3-dioxoindolin-1-yl)ethyl 4-methylpiperazine-1-carbodithioate reported by us recently (Wang et al., 2012). The two morpholine groups at C9 (sp3) exhibit a N4—C9—N3 bond angle of 107.45 (15)°. Along the c axis, the molecules are interconnected and arranged into arrays through intermolecular C20—H20B(methylene)···O3i(ether) interactions (see Table 1 and Fig. 2). The almost parallel arrays formed are further interconnected via other sets of C—H(methylene)···O(ether) interactions (Table 1), forming a three-dimensional framework (Fig. 3).

Related literature top

For background to and activities of indoline-2,3-dione and its derivatives, see Chiyanzu et al. (2005); Karali (2002); Sirisoma et al. (2009); Solomon et al. (2009); Sriram et al. (2004). For structural analogues of indoline-2,3-dione (isatin), see: Wang et al. (2012).

Experimental top

To a solution of 1-(2-bromoethyl)-5-methylindoline-2,3-dione (0.27 g, 1 mmol) in N,N-dimethylformamide (5 ml) was added morpholine dropwise (0.52 g, 6 mmol). The mixture was stirred at 80–90°C for 3 h. The colourless crystals of the title compound were deposited by evaporation of the resulting solution at room temperature for one day (m.p. 450.2–451.9 K; yield 53%).

Refinement top

All H atoms were discernible in the difference electron density maps. Nevertheless, the H atoms were placed into idealized positions and allowed to ride on their respective carrier atoms, with C—H = 0.93 and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, with C—H = 0.97 and Uiso(H) = 1.2Ueq(C) for methylene H atoms, and with C—H = 0.96 and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule with the atomic numbering scheme. The displacement ellipsoids of the non-H atoms are shown at the 30% probability level. All H atoms are omitted for clarity.
[Figure 2] Fig. 2. The array of the title compound along the c direction. The red-dashed lines indicate C—H···O interactions. H atoms are omitted for clarity, except those involved in bonding interactions.
[Figure 3] Fig. 3. View down the c direction of the stacking structure of the title compound.
5-Methyl-3,3-bis(morpholin-4-yl)-1-[2-(morpholin-4-yl)ethyl]- 2,3-dihydro-1H-indol-2-one top
Crystal data top
C23H34N4O4Z = 4
Mr = 430.54F(000) = 928
Monoclinic, P21/cDx = 1.250 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.1772 (10) ŵ = 0.09 mm1
b = 14.2576 (14) ÅT = 296 K
c = 15.8950 (16) ÅBlock, colourless
β = 97.332 (2)°0.40 × 0.30 × 0.20 mm
V = 2287.5 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5355 independent reflections
Radiation source: fine-focus sealed tube2599 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 28.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1310
Tmin = 0.660, Tmax = 0.746k = 1814
12380 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.0135P] P = (Fo2 + 2Fc2)/3
5355 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C23H34N4O4V = 2287.5 (4) Å3
Mr = 430.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.1772 (10) ŵ = 0.09 mm1
b = 14.2576 (14) ÅT = 296 K
c = 15.8950 (16) Å0.40 × 0.30 × 0.20 mm
β = 97.332 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
5355 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2599 reflections with I > 2σ(I)
Tmin = 0.660, Tmax = 0.746Rint = 0.040
12380 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
5355 reflectionsΔρmin = 0.16 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.58843 (17)0.24574 (12)0.17404 (11)0.0495 (5)
N20.80352 (17)0.17783 (11)0.08141 (13)0.0561 (5)
N30.36653 (15)0.22400 (10)0.00090 (9)0.0398 (4)
N40.29148 (16)0.34238 (10)0.08565 (9)0.0404 (4)
O10.58871 (14)0.35530 (10)0.06837 (9)0.0577 (4)
O20.90210 (18)0.16969 (14)0.07774 (12)0.0859 (6)
O30.31081 (16)0.09322 (10)0.13528 (9)0.0579 (4)
O40.17921 (17)0.52235 (10)0.10253 (10)0.0706 (5)
C10.3731 (2)0.19469 (12)0.15619 (12)0.0404 (5)
C20.2663 (2)0.14541 (13)0.17824 (12)0.0460 (5)
H2A0.18320.15330.14710.055*
C30.2818 (2)0.08355 (13)0.24716 (14)0.0533 (6)
C40.4063 (3)0.07408 (15)0.29203 (14)0.0619 (7)
H4A0.41760.03280.33770.074*
C50.5156 (3)0.12359 (16)0.27181 (14)0.0608 (6)
H5A0.59870.11600.30290.073*
C60.4963 (2)0.18449 (13)0.20389 (13)0.0460 (5)
C70.1639 (3)0.03148 (16)0.27269 (16)0.0784 (8)
H7A0.19210.00780.32070.118*
H7B0.12530.00660.22620.118*
H7C0.09950.07570.28740.118*
C80.5323 (2)0.29554 (14)0.10519 (13)0.0440 (5)
C90.38464 (19)0.26432 (12)0.08495 (12)0.0389 (5)
C100.7280 (2)0.25298 (17)0.20717 (15)0.0660 (7)
H10A0.73760.24890.26860.079*
H10B0.76110.31370.19220.079*
C110.8101 (2)0.17647 (17)0.17284 (16)0.0702 (7)
H11A0.90180.18360.19750.084*
H11B0.77950.11600.19030.084*
C120.8768 (2)0.25529 (14)0.05026 (17)0.0640 (7)
H12A0.97020.24930.07120.077*
H12B0.84520.31420.07070.077*
C130.8582 (3)0.25463 (18)0.04466 (18)0.0795 (8)
H13A0.76510.26360.06510.095*
H13B0.90700.30650.06510.095*
C140.8346 (3)0.09313 (19)0.0469 (2)0.0904 (9)
H14A0.86840.03520.06780.108*
H14B0.74110.09740.06810.108*
C150.8511 (3)0.09099 (15)0.0481 (2)0.0774 (8)
H15A0.80190.03850.06720.093*
H15B0.94390.08240.06950.093*
C160.2317 (2)0.19163 (14)0.02867 (12)0.0491 (5)
H16A0.16880.24090.02040.059*
H16B0.21170.13760.00450.059*
C170.2202 (2)0.16579 (16)0.12093 (13)0.0588 (6)
H17A0.13060.14510.14000.071*
H17B0.23790.22060.15380.071*
C180.4419 (2)0.12244 (16)0.10682 (13)0.0577 (6)
H18A0.46370.17600.14010.069*
H18B0.50280.07210.11570.069*
C190.4594 (2)0.14893 (13)0.01383 (13)0.0511 (6)
H19A0.44260.09490.02030.061*
H19B0.54950.16990.00330.061*
C200.2886 (2)0.38543 (13)0.16874 (12)0.0491 (6)
H20A0.37010.41970.18520.059*
H20B0.28050.33730.21090.059*
C210.1725 (2)0.45096 (14)0.16374 (15)0.0614 (6)
H21A0.09140.41550.14940.074*
H21B0.16950.47950.21880.074*
C220.1873 (3)0.48121 (16)0.02166 (15)0.0686 (7)
H22A0.19420.53050.01960.082*
H22B0.10670.44630.00400.082*
C230.3039 (2)0.41675 (13)0.02300 (13)0.0537 (6)
H23A0.30600.38940.03270.064*
H23B0.38550.45140.03830.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0419 (10)0.0561 (11)0.0486 (11)0.0033 (9)0.0009 (9)0.0031 (9)
N20.0502 (12)0.0428 (10)0.0761 (14)0.0041 (9)0.0118 (10)0.0083 (9)
N30.0421 (10)0.0395 (9)0.0387 (10)0.0038 (8)0.0082 (8)0.0013 (7)
N40.0493 (11)0.0361 (9)0.0369 (9)0.0081 (8)0.0094 (8)0.0025 (7)
O10.0517 (10)0.0513 (9)0.0712 (11)0.0052 (7)0.0115 (8)0.0084 (8)
O20.0714 (13)0.0905 (13)0.1004 (15)0.0057 (11)0.0289 (11)0.0122 (11)
O30.0659 (11)0.0584 (9)0.0510 (9)0.0035 (8)0.0136 (8)0.0120 (7)
O40.0982 (14)0.0441 (9)0.0708 (11)0.0230 (9)0.0155 (10)0.0018 (8)
C10.0480 (13)0.0383 (11)0.0353 (11)0.0058 (9)0.0071 (10)0.0006 (9)
C20.0505 (14)0.0431 (12)0.0454 (13)0.0036 (10)0.0093 (10)0.0023 (10)
C30.0735 (17)0.0400 (12)0.0493 (13)0.0079 (11)0.0189 (13)0.0099 (10)
C40.0773 (19)0.0588 (14)0.0523 (15)0.0212 (14)0.0189 (14)0.0196 (12)
C50.0644 (17)0.0677 (15)0.0492 (14)0.0214 (13)0.0028 (12)0.0088 (12)
C60.0518 (14)0.0449 (12)0.0413 (12)0.0088 (10)0.0061 (11)0.0027 (10)
C70.092 (2)0.0689 (16)0.0790 (18)0.0034 (15)0.0303 (16)0.0272 (14)
C80.0450 (13)0.0410 (12)0.0468 (13)0.0047 (10)0.0085 (11)0.0034 (10)
C90.0424 (12)0.0387 (11)0.0357 (11)0.0042 (9)0.0054 (9)0.0025 (9)
C100.0501 (15)0.0861 (17)0.0581 (15)0.0003 (13)0.0069 (12)0.0005 (13)
C110.0475 (15)0.0740 (16)0.087 (2)0.0135 (13)0.0007 (14)0.0196 (14)
C120.0577 (16)0.0464 (13)0.089 (2)0.0013 (11)0.0130 (14)0.0057 (12)
C130.080 (2)0.0721 (18)0.089 (2)0.0104 (15)0.0226 (17)0.0107 (15)
C140.081 (2)0.073 (2)0.121 (3)0.0015 (16)0.029 (2)0.0298 (18)
C150.0638 (17)0.0423 (14)0.130 (3)0.0052 (12)0.0270 (17)0.0000 (15)
C160.0449 (13)0.0583 (13)0.0444 (13)0.0028 (11)0.0062 (10)0.0068 (10)
C170.0561 (15)0.0720 (15)0.0475 (14)0.0010 (13)0.0037 (12)0.0057 (11)
C180.0589 (16)0.0608 (14)0.0560 (15)0.0041 (12)0.0174 (12)0.0102 (11)
C190.0514 (14)0.0501 (13)0.0522 (14)0.0074 (11)0.0076 (11)0.0048 (10)
C200.0627 (15)0.0422 (11)0.0428 (12)0.0040 (11)0.0088 (11)0.0023 (9)
C210.0774 (18)0.0490 (13)0.0602 (15)0.0120 (12)0.0177 (13)0.0042 (11)
C220.089 (2)0.0560 (14)0.0606 (16)0.0260 (13)0.0103 (14)0.0119 (12)
C230.0662 (16)0.0461 (12)0.0502 (13)0.0121 (11)0.0127 (12)0.0117 (10)
Geometric parameters (Å, º) top
N1—C81.367 (2)C10—H10A0.9700
N1—C61.407 (2)C10—H10B0.9700
N1—C101.454 (3)C11—H11A0.9700
N2—C111.446 (3)C11—H11B0.9700
N2—C151.453 (3)C12—C131.496 (3)
N2—C121.454 (2)C12—H12A0.9700
N3—C191.460 (2)C12—H12B0.9700
N3—C161.462 (2)C13—H13A0.9700
N3—C91.471 (2)C13—H13B0.9700
N4—C201.460 (2)C14—C151.498 (4)
N4—C91.463 (2)C14—H14A0.9700
N4—C231.471 (2)C14—H14B0.9700
O1—C81.218 (2)C15—H15A0.9700
O2—C141.411 (3)C15—H15B0.9700
O2—C131.415 (3)C16—C171.502 (3)
O3—C181.415 (2)C16—H16A0.9700
O3—C171.423 (2)C16—H16B0.9700
O4—C211.416 (2)C17—H17A0.9700
O4—C221.425 (3)C17—H17B0.9700
C1—C21.377 (3)C18—C191.514 (3)
C1—C61.387 (3)C18—H18A0.9700
C1—C91.522 (2)C18—H18B0.9700
C2—C31.400 (3)C19—H19A0.9700
C2—H2A0.9300C19—H19B0.9700
C3—C41.379 (3)C20—C211.500 (3)
C3—C71.510 (3)C20—H20A0.9700
C4—C51.389 (3)C20—H20B0.9700
C4—H4A0.9300C21—H21A0.9700
C5—C61.380 (3)C21—H21B0.9700
C5—H5A0.9300C22—C231.499 (3)
C7—H7A0.9600C22—H22A0.9700
C7—H7B0.9600C22—H22B0.9700
C7—H7C0.9600C23—H23A0.9700
C8—C91.561 (3)C23—H23B0.9700
C10—C111.518 (3)
C8—N1—C6111.35 (17)O2—C13—C12112.0 (2)
C8—N1—C10122.82 (18)O2—C13—H13A109.2
C6—N1—C10125.73 (18)C12—C13—H13A109.2
C11—N2—C15112.30 (19)O2—C13—H13B109.2
C11—N2—C12113.09 (19)C12—C13—H13B109.2
C15—N2—C12108.31 (18)H13A—C13—H13B107.9
C19—N3—C16109.01 (15)O2—C14—C15111.7 (2)
C19—N3—C9114.25 (15)O2—C14—H14A109.3
C16—N3—C9113.90 (14)C15—C14—H14A109.3
C20—N4—C9114.50 (15)O2—C14—H14B109.3
C20—N4—C23108.83 (14)C15—C14—H14B109.3
C9—N4—C23115.55 (14)H14A—C14—H14B107.9
C14—O2—C13110.01 (18)N2—C15—C14110.5 (2)
C18—O3—C17109.76 (15)N2—C15—H15A109.6
C21—O4—C22109.72 (15)C14—C15—H15A109.6
C2—C1—C6119.68 (18)N2—C15—H15B109.6
C2—C1—C9131.34 (19)C14—C15—H15B109.6
C6—C1—C9108.97 (17)H15A—C15—H15B108.1
C1—C2—C3120.5 (2)N3—C16—C17108.96 (16)
C1—C2—H2A119.8N3—C16—H16A109.9
C3—C2—H2A119.8C17—C16—H16A109.9
C4—C3—C2118.1 (2)N3—C16—H16B109.9
C4—C3—C7121.5 (2)C17—C16—H16B109.9
C2—C3—C7120.4 (2)H16A—C16—H16B108.3
C3—C4—C5122.7 (2)O3—C17—C16111.33 (18)
C3—C4—H4A118.6O3—C17—H17A109.4
C5—C4—H4A118.6C16—C17—H17A109.4
C6—C5—C4117.5 (2)O3—C17—H17B109.4
C6—C5—H5A121.2C16—C17—H17B109.4
C4—C5—H5A121.2H17A—C17—H17B108.0
C5—C6—C1121.5 (2)O3—C18—C19111.97 (17)
C5—C6—N1128.3 (2)O3—C18—H18A109.2
C1—C6—N1110.19 (17)C19—C18—H18A109.2
C3—C7—H7A109.5O3—C18—H18B109.2
C3—C7—H7B109.5C19—C18—H18B109.2
H7A—C7—H7B109.5H18A—C18—H18B107.9
C3—C7—H7C109.5N3—C19—C18108.84 (17)
H7A—C7—H7C109.5N3—C19—H19A109.9
H7B—C7—H7C109.5C18—C19—H19A109.9
O1—C8—N1125.00 (19)N3—C19—H19B109.9
O1—C8—C9126.93 (18)C18—C19—H19B109.9
N1—C8—C9108.04 (17)H19A—C19—H19B108.3
N4—C9—N3107.45 (15)N4—C20—C21108.70 (17)
N4—C9—C1112.29 (14)N4—C20—H20A109.9
N3—C9—C1115.03 (15)C21—C20—H20A109.9
N4—C9—C8112.91 (15)N4—C20—H20B109.9
N3—C9—C8107.82 (14)C21—C20—H20B109.9
C1—C9—C8101.32 (16)H20A—C20—H20B108.3
N1—C10—C11112.09 (19)O4—C21—C20112.16 (18)
N1—C10—H10A109.2O4—C21—H21A109.2
C11—C10—H10A109.2C20—C21—H21A109.2
N1—C10—H10B109.2O4—C21—H21B109.2
C11—C10—H10B109.2C20—C21—H21B109.2
H10A—C10—H10B107.9H21A—C21—H21B107.9
N2—C11—C10113.24 (18)O4—C22—C23112.10 (19)
N2—C11—H11A108.9O4—C22—H22A109.2
C10—C11—H11A108.9C23—C22—H22A109.2
N2—C11—H11B108.9O4—C22—H22B109.2
C10—C11—H11B108.9C23—C22—H22B109.2
H11A—C11—H11B107.7H22A—C22—H22B107.9
N2—C12—C13109.5 (2)N4—C23—C22108.35 (17)
N2—C12—H12A109.8N4—C23—H23A110.0
C13—C12—H12A109.8C22—C23—H23A110.0
N2—C12—H12B109.8N4—C23—H23B110.0
C13—C12—H12B109.8C22—C23—H23B110.0
H12A—C12—H12B108.2H23A—C23—H23B108.4
C6—C1—C2—C31.5 (3)C2—C1—C9—C8175.79 (18)
C9—C1—C2—C3179.17 (18)C6—C1—C9—C83.60 (19)
C1—C2—C3—C40.3 (3)O1—C8—C9—N455.5 (2)
C1—C2—C3—C7178.40 (18)N1—C8—C9—N4122.73 (16)
C2—C3—C4—C50.4 (3)O1—C8—C9—N363.0 (2)
C7—C3—C4—C5177.7 (2)N1—C8—C9—N3118.73 (16)
C3—C4—C5—C60.1 (3)O1—C8—C9—C1175.82 (18)
C4—C5—C6—C11.4 (3)N1—C8—C9—C12.43 (18)
C4—C5—C6—N1176.15 (19)C8—N1—C10—C1195.5 (2)
C2—C1—C6—C52.1 (3)C6—N1—C10—C1180.6 (2)
C9—C1—C6—C5178.48 (18)C15—N2—C11—C10164.15 (18)
C2—C1—C6—N1175.87 (16)C12—N2—C11—C1072.9 (2)
C9—C1—C6—N13.6 (2)N1—C10—C11—N259.7 (3)
C8—N1—C6—C5179.7 (2)C11—N2—C12—C13176.73 (18)
C10—N1—C6—C53.8 (3)C15—N2—C12—C1358.1 (2)
C8—N1—C6—C12.0 (2)C14—O2—C13—C1257.4 (3)
C10—N1—C6—C1178.44 (18)N2—C12—C13—O259.1 (3)
C6—N1—C8—O1177.82 (17)C13—O2—C14—C1556.3 (3)
C10—N1—C8—O15.6 (3)C11—N2—C15—C14176.5 (2)
C6—N1—C8—C90.5 (2)C12—N2—C15—C1457.9 (3)
C10—N1—C8—C9176.11 (17)O2—C14—C15—N257.9 (3)
C20—N4—C9—N3174.99 (14)C19—N3—C16—C1759.6 (2)
C23—N4—C9—N357.4 (2)C9—N3—C16—C17171.50 (16)
C20—N4—C9—C147.5 (2)C18—O3—C17—C1658.4 (2)
C23—N4—C9—C1175.20 (17)N3—C16—C17—O359.8 (2)
C20—N4—C9—C866.3 (2)C17—O3—C18—C1957.7 (2)
C23—N4—C9—C861.4 (2)C16—N3—C19—C1858.5 (2)
C19—N3—C9—N4175.91 (14)C9—N3—C19—C18172.81 (15)
C16—N3—C9—N457.90 (19)O3—C18—C19—N358.3 (2)
C19—N3—C9—C158.3 (2)C9—N4—C20—C21169.33 (16)
C16—N3—C9—C167.9 (2)C23—N4—C20—C2159.7 (2)
C19—N3—C9—C853.93 (19)C22—O4—C21—C2057.3 (3)
C16—N3—C9—C8179.89 (15)N4—C20—C21—O459.2 (2)
C2—C1—C9—N455.1 (3)C21—O4—C22—C2357.4 (3)
C6—C1—C9—N4124.33 (17)C20—N4—C23—C2259.6 (2)
C2—C1—C9—N368.2 (2)C9—N4—C23—C22169.92 (18)
C6—C1—C9—N3112.37 (18)O4—C22—C23—N459.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20B···O3i0.972.623.109 (3)112
C15—H15A···O3ii0.972.523.480 (2)173
C17—H17A···O2iii0.972.663.395 (3)132
C13—H13B···O4iv0.972.643.318 (3)128
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x1, y, z; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC23H34N4O4
Mr430.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.1772 (10), 14.2576 (14), 15.8950 (16)
β (°) 97.332 (2)
V3)2287.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.660, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
12380, 5355, 2599
Rint0.040
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.141, 1.01
No. of reflections5355
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.16

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20B···O3i0.972.623.109 (3)112
C15—H15A···O3ii0.972.523.480 (2)173
C17—H17A···O2iii0.972.663.395 (3)132
C13—H13B···O4iv0.972.643.318 (3)128
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x1, y, z; (iv) x+1, y+1, z.
 

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (project No. 20972099) and the Beijing Municipal Commission of Education for financial support.

References

First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiyanzu, I., Clarkson, C., Smith, P. J., Lehman, J., Gut, J., Rosenthal, P. J. & Chibale, K. (2005). Bioorg. Med. Chem. 13, 3249–3261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKarali, N. (2002). Eur. J. Med. Chem. 37, 909–918.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSirisoma, N., Pervin, A., Drewe, J., Tseng, B. & Cai, S. X. (2009). Bioorg. Med. Chem. Lett. 19, 2710–2713.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSolomon, V. R., Hu, C. & Lee, H. (2009). Bioorg. Med. Chem. 17, 7585–7592.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Bal, T. R. & Yogeeswari, P. (2004). Bioorg. Med. Chem. 12, 5865–5873.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, Y., Lin, H.-H. & Cao, S.-L. (2012). Acta Cryst. E68, o94–o95.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds