organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl (E)-3-hy­dr­oxy-2-[(4-meth­­oxy­styr­yl)­carbamo­yl]but-2-enoate

aCollege of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
*Correspondence e-mail: syzhao8@dhu.edu.cn

(Received 7 December 2011; accepted 14 February 2012; online 24 February 2012)

The title compound, C16H19NO5, which was synthesized from p-meth­oxy­cinnamic acid, has intra­molecular O—H⋯O and N—H⋯O hydrogen-bonding inter­actions. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds and aromatic ππ stacking inter­actions [minimum ring centroid–centroid separation = 3.790 (1) Å].

Related literature

For applications of 4-hy­droxy-2-pyridones, see: Jessen & Gademann (2010[Jessen, H. J. & Gademann, K. (2010). Nat. Prod. Rep. 27, 1168-1185.]). For general background to the synthesis and characterization, see: Rigby & Burkhardt (1986[Rigby, J. H. & Burkhardt, F. J. (1986). J. Org. Chem. 51, 1374-1376.]); Rigby & Qabar (1989[Rigby, J. H. & Qabar, M. (1989). J. Org. Chem. 54, 5852-5853.]); Tang et al. (2011[Tang, Y. M., Li, J. & Zhao, S. Y. (2011). Chin. J. Org. Chem. 31, 9-21.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19NO5

  • Mr = 305.32

  • Monoclinic, P 21 /n

  • a = 11.1878 (15) Å

  • b = 10.5349 (14) Å

  • c = 13.5586 (18) Å

  • β = 101.424 (2)°

  • V = 1566.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.31 × 0.27 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.733, Tmax = 1.000

  • 8234 measured reflections

  • 3064 independent reflections

  • 2489 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.122

  • S = 1.04

  • 3064 reflections

  • 211 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.893 (17) 1.887 (16) 2.6088 (16) 136.7 (14)
O2—H2A⋯O1 0.95 (2) 1.49 (2) 2.3992 (15) 158 (2)
C1—H1⋯O3i 0.93 2.49 3.3533 (17) 154
C16—H16B⋯O5ii 0.96 2.59 3.411 (2) 144
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y-1, -z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, C16H19NO5 is an important intermediate for the synthesis of 4-hydroxy-2-pyridone derivatives (Jessen & Gademann, 2010). The X-ray structural analysis of this compound reported here confirms the assignment of its structure determined from spectroscopic data (Tang et al., 2011). The conformation of this molecule is stabilized by intramolecular N—H···O and O—H···O hydrogen bonds (Table 1, Fig. 1). In the crystal (Fig. 2), molecules are linked by weak intermolecular C—H···O hydrogen bonds. The layers are further connected into a three-dimensional network by weak ππ stacking interactions down the a axiial direction of the unit cell [minimum centroid separation, 3.790 (1) Å].

Related literature top

For applications of 4-hydroxy-2-pyridones, see: Jessen & Gademann (2010). For general background to the synthesis and characterization, see: Rigby & Burkhardt (1986); Rigby & Qabar (1989); Tang et al. (2011).

Experimental top

The preparation of the title compound follows the procedure of Rigby & Burkhardt (1986) and Rigby & Qabar (1989). To an ice-cooled solution of p-methoxycinnamic acid (2.0 g, 11.2 mmol) in 20 ml of toluene was added triethylamine (1.6 ml, 11.6 mmol) and diphenyl phosphorazidate (DPPA, 2.9 g, 10.5 mmol). The solution was stirred at room temperature for 3 h. The acyl azide product was isolated by dilution with cold water. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was removed in vacuo to provide a crude product. The acyl azide was dissolved in 20 ml of benzene and heated at reflux until azide decomposition was complete as monitored by TLC. The reaction mixture was then cooled to 273 K and ethyl sodioacetocaetate [prepared from ethyl acetoacetate (1.46 g, 11.2 mmol) and sodium hydride (0.37 g, 80% dispersion in oil, 12.3 mmol) in toluene (10 ml) at 273 K] was added. The reaction mixture was allowed to warm to room temperature over 2 h and was then quenched with a saturated aqueous ammonium chloride solution extracted with ether (3 times, 30 ml), rinsed with brine (3 times,30 ml), and dried over anhydrous sodium sulfate. The solvent was removed in vacuo to give white crystals (m.p. 367–369 K). 1H NMR (DMSO-d6, 400 MHz): 1.39 (t, 3H, CH3), 2.49 (s, 3H, CH3), 3.82 (s, 3H, CH3), 4.32 (q, 2H, CH2), 6.21 (d, 1H, =CH), 6.85 (d, 2H, Ar—H), 7.28 (d, 2H, Ar—H), 7.43 (dd, 1H, =CH), 11.04 (d, NH). Crystals suitable for X-ray diffraction were obtained by slow evaporation of a 1:1 ethyl acetate–petroleum ether solution.

Refinement top

The hydroxyl and amine H atoms were located from a difference-Fourier synthesis and their positional and isotropic displacement parameters were refined. Other H-atoms wereplaced at chemically acceptable positions and were contrained to an ideal geometry using a riding model approximation [C—H in the range 0.93–0.97 Å) and Uiso(H) = 1.2 or 1.5 Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Molecular packing of the title compound viewed down the a axial direction, with intermolecular C—H···O hydrogen-bonding shown as dashed lines.
Ethyl (E)-3-hydroxy-2-[(4-methoxystyryl)carbamoyl]but-2-enoate top
Crystal data top
C16H19NO5F(000) = 648
Mr = 305.32Dx = 1.295 Mg m3
Monoclinic, P21/nMelting point = 367–369 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.1878 (15) ÅCell parameters from 3146 reflections
b = 10.5349 (14) Åθ = 4.9–54.1°
c = 13.5586 (18) ŵ = 0.10 mm1
β = 101.424 (2)°T = 293 K
V = 1566.4 (4) Å3Prismatic, yellow
Z = 40.31 × 0.27 × 0.25 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3064 independent reflections
Radiation source: fine-focus sealed tube2489 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1213
Tmin = 0.733, Tmax = 1.000k = 1212
8234 measured reflectionsl = 1610
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.143P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.025
3064 reflectionsΔρmax = 0.13 e Å3
211 parametersΔρmin = 0.18 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.100 (6)
Crystal data top
C16H19NO5V = 1566.4 (4) Å3
Mr = 305.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.1878 (15) ŵ = 0.10 mm1
b = 10.5349 (14) ÅT = 293 K
c = 13.5586 (18) Å0.31 × 0.27 × 0.25 mm
β = 101.424 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3064 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2489 reflections with I > 2σ(I)
Tmin = 0.733, Tmax = 1.000Rint = 0.023
8234 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.13 e Å3
3064 reflectionsΔρmin = 0.18 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.77258 (10)0.36381 (11)0.00047 (9)0.0537 (3)
O10.76724 (11)0.39921 (10)0.16424 (7)0.0731 (3)
O20.83950 (12)0.59326 (11)0.22428 (7)0.0749 (4)
O30.86298 (11)0.54370 (10)0.12448 (7)0.0706 (3)
O40.93449 (9)0.71806 (9)0.06663 (7)0.0622 (3)
O50.57847 (10)0.35005 (9)0.03629 (8)0.0684 (3)
C10.65197 (14)0.02958 (14)0.13759 (10)0.0588 (4)
H10.65820.01550.19740.071*
C20.61898 (13)0.15608 (14)0.13560 (10)0.0593 (4)
H20.60360.19500.19340.071*
C30.60897 (11)0.22447 (13)0.04747 (10)0.0521 (3)
C40.63126 (13)0.16397 (14)0.03769 (10)0.0577 (4)
H40.62410.20910.09750.069*
C50.66365 (13)0.03854 (14)0.03493 (10)0.0569 (4)
H50.67770.00020.09320.068*
C60.67605 (11)0.03238 (13)0.05345 (9)0.0500 (3)
C70.71325 (12)0.16556 (13)0.06022 (11)0.0569 (4)
H70.72590.20230.12380.068*
C80.73077 (12)0.23922 (13)0.01454 (10)0.0540 (3)
H80.71450.20640.07950.065*
C90.79420 (12)0.43913 (13)0.07438 (9)0.0506 (3)
C100.84919 (11)0.56419 (12)0.05171 (8)0.0456 (3)
C110.86942 (12)0.63708 (13)0.13301 (9)0.0517 (3)
C120.92260 (15)0.76693 (15)0.12982 (11)0.0666 (4)
H12A1.00670.76410.09640.100*
H12B0.87850.82260.09380.100*
H12C0.91690.79780.19720.100*
C130.88127 (11)0.60534 (12)0.05309 (9)0.0490 (3)
C140.96451 (16)0.76631 (16)0.16830 (12)0.0752 (5)
H14A1.02430.71190.20970.090*
H14B0.89220.76940.19760.090*
C151.01509 (19)0.89607 (18)0.16260 (16)0.0984 (7)
H15A1.08390.89230.13020.148*
H15B1.04040.92960.22930.148*
H15C0.95360.95010.12460.148*
C160.55675 (17)0.41682 (16)0.12183 (12)0.0745 (5)
H16A0.62820.41320.17430.112*
H16B0.53790.50380.10410.112*
H16C0.48940.37870.14500.112*
H1A0.7911 (14)0.3947 (15)0.0620 (13)0.067 (4)*
H2A0.8114 (17)0.5093 (15)0.2163 (15)0.099 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0602 (7)0.0506 (7)0.0500 (7)0.0036 (5)0.0101 (5)0.0008 (5)
O10.1040 (8)0.0646 (7)0.0460 (6)0.0161 (6)0.0032 (5)0.0052 (4)
O20.1071 (9)0.0762 (8)0.0392 (5)0.0094 (6)0.0096 (5)0.0060 (5)
O30.1014 (8)0.0711 (7)0.0405 (5)0.0170 (6)0.0171 (5)0.0000 (4)
O40.0785 (6)0.0580 (6)0.0486 (5)0.0123 (5)0.0089 (5)0.0069 (4)
O50.0883 (7)0.0532 (6)0.0650 (7)0.0090 (5)0.0185 (5)0.0023 (5)
C10.0702 (8)0.0624 (9)0.0449 (7)0.0065 (7)0.0137 (6)0.0031 (6)
C20.0698 (9)0.0625 (9)0.0477 (7)0.0058 (7)0.0169 (6)0.0076 (6)
C30.0503 (7)0.0510 (8)0.0547 (8)0.0002 (5)0.0099 (6)0.0040 (6)
C40.0700 (8)0.0582 (9)0.0457 (7)0.0000 (7)0.0131 (6)0.0020 (6)
C50.0687 (8)0.0577 (9)0.0464 (7)0.0018 (6)0.0168 (6)0.0073 (6)
C60.0472 (7)0.0536 (8)0.0491 (7)0.0006 (5)0.0092 (5)0.0031 (5)
C70.0604 (8)0.0574 (8)0.0531 (8)0.0051 (6)0.0115 (6)0.0020 (6)
C80.0543 (7)0.0502 (8)0.0563 (8)0.0001 (6)0.0081 (6)0.0002 (6)
C90.0531 (7)0.0535 (8)0.0434 (7)0.0022 (6)0.0054 (5)0.0013 (5)
C100.0468 (6)0.0491 (7)0.0402 (6)0.0024 (5)0.0066 (5)0.0016 (5)
C110.0536 (7)0.0579 (8)0.0428 (7)0.0051 (6)0.0076 (5)0.0059 (5)
C120.0739 (9)0.0681 (10)0.0573 (8)0.0104 (7)0.0120 (7)0.0154 (7)
C130.0504 (7)0.0530 (8)0.0432 (7)0.0020 (6)0.0086 (5)0.0009 (5)
C140.0862 (11)0.0800 (11)0.0569 (9)0.0040 (9)0.0079 (8)0.0217 (8)
C150.0945 (13)0.0916 (14)0.1113 (15)0.0234 (11)0.0256 (12)0.0477 (12)
C160.0902 (11)0.0601 (10)0.0751 (10)0.0113 (8)0.0209 (9)0.0118 (7)
Geometric parameters (Å, º) top
N1—C91.3373 (16)C6—C71.4611 (19)
N1—C81.3938 (18)C7—C81.3217 (19)
N1—H1A0.893 (17)C7—H70.9300
O1—C91.2676 (16)C8—H80.9300
O2—C111.3010 (16)C9—C101.4607 (18)
O2—H2A0.952 (15)C10—C111.3981 (17)
O3—C131.2162 (15)C10—C131.4608 (17)
O4—C131.3247 (16)C11—C121.489 (2)
O4—C141.4451 (17)C12—H12A0.9600
O5—C31.3672 (16)C12—H12B0.9600
O5—C161.4180 (17)C12—H12C0.9600
C1—C21.382 (2)C14—C151.487 (2)
C1—C61.3864 (18)C14—H14A0.9700
C1—H10.9300C14—H14B0.9700
C2—C31.3808 (19)C15—H15A0.9600
C2—H20.9300C15—H15B0.9600
C3—C41.3841 (18)C15—H15C0.9600
C4—C51.369 (2)C16—H16A0.9600
C4—H40.9300C16—H16B0.9600
C5—C61.3955 (19)C16—H16C0.9600
C5—H50.9300
C9—N1—C8124.18 (12)C11—C10—C13123.84 (12)
C9—N1—H1A116.9 (10)C11—C10—C9117.17 (11)
C8—N1—H1A118.8 (10)C13—C10—C9118.98 (11)
C11—O2—H2A104.5 (12)O2—C11—C10120.25 (13)
C13—O4—C14117.43 (11)O2—C11—C12112.31 (12)
C3—O5—C16117.96 (11)C10—C11—C12127.44 (12)
C2—C1—C6122.19 (13)C11—C12—H12A109.5
C2—C1—H1118.9C11—C12—H12B109.5
C6—C1—H1118.9H12A—C12—H12B109.5
C3—C2—C1119.72 (12)C11—C12—H12C109.5
C3—C2—H2120.1H12A—C12—H12C109.5
C1—C2—H2120.1H12B—C12—H12C109.5
O5—C3—C2125.21 (12)O3—C13—O4120.68 (12)
O5—C3—C4115.81 (12)O3—C13—C10124.62 (12)
C2—C3—C4118.98 (13)O4—C13—C10114.70 (11)
C5—C4—C3120.81 (13)O4—C14—C15107.02 (14)
C5—C4—H4119.6O4—C14—H14A110.3
C3—C4—H4119.6C15—C14—H14A110.3
C4—C5—C6121.41 (12)O4—C14—H14B110.3
C4—C5—H5119.3C15—C14—H14B110.3
C6—C5—H5119.3H14A—C14—H14B108.6
C1—C6—C5116.88 (12)C14—C15—H15A109.5
C1—C6—C7119.98 (12)C14—C15—H15B109.5
C5—C6—C7123.14 (12)H15A—C15—H15B109.5
C8—C7—C6126.82 (13)C14—C15—H15C109.5
C8—C7—H7116.6H15A—C15—H15C109.5
C6—C7—H7116.6H15B—C15—H15C109.5
C7—C8—N1123.00 (13)O5—C16—H16A109.5
C7—C8—H8118.5O5—C16—H16B109.5
N1—C8—H8118.5H16A—C16—H16B109.5
O1—C9—N1118.65 (12)O5—C16—H16C109.5
O1—C9—C10120.77 (11)H16A—C16—H16C109.5
N1—C9—C10120.57 (11)H16B—C16—H16C109.5
C6—C1—C2—C30.1 (2)C8—N1—C9—C10173.98 (11)
C16—O5—C3—C20.9 (2)O1—C9—C10—C110.50 (19)
C16—O5—C3—C4178.96 (13)N1—C9—C10—C11179.73 (12)
C1—C2—C3—O5179.24 (13)O1—C9—C10—C13178.68 (12)
C1—C2—C3—C40.6 (2)N1—C9—C10—C130.55 (18)
O5—C3—C4—C5179.38 (12)C13—C10—C11—O2179.25 (12)
C2—C3—C4—C50.5 (2)C9—C10—C11—O20.11 (19)
C3—C4—C5—C60.4 (2)C13—C10—C11—C121.5 (2)
C2—C1—C6—C51.0 (2)C9—C10—C11—C12179.32 (12)
C2—C1—C6—C7178.64 (13)C14—O4—C13—O32.7 (2)
C4—C5—C6—C11.1 (2)C14—O4—C13—C10177.80 (12)
C4—C5—C6—C7178.50 (13)C11—C10—C13—O3179.10 (13)
C1—C6—C7—C8174.85 (14)C9—C10—C13—O31.8 (2)
C5—C6—C7—C85.6 (2)C11—C10—C13—O41.38 (18)
C6—C7—C8—N1176.51 (12)C9—C10—C13—O4177.74 (11)
C9—N1—C8—C7178.10 (13)C13—O4—C14—C15176.35 (13)
C8—N1—C9—O15.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.893 (17)1.887 (16)2.6088 (16)136.7 (14)
O2—H2A···O10.95 (2)1.49 (2)2.3992 (15)158 (2)
C1—H1···O3i0.932.493.3533 (17)154
C16—H16B···O5ii0.962.593.411 (2)144
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC16H19NO5
Mr305.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.1878 (15), 10.5349 (14), 13.5586 (18)
β (°) 101.424 (2)
V3)1566.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.31 × 0.27 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.733, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8234, 3064, 2489
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.122, 1.04
No. of reflections3064
No. of parameters211
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.18

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.893 (17)1.887 (16)2.6088 (16)136.7 (14)
O2—H2A···O10.952 (15)1.492 (16)2.3992 (15)157.5 (19)
C1—H1···O3i0.932.493.3533 (17)154
C16—H16B···O5ii0.962.593.411 (2)144
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y1, z.
 

Acknowledgements

This project was supported by the Fundamental Research Funds for the Central Universities from the Ministry of Education of China (grant No. 11D-10544).

References

First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJessen, H. J. & Gademann, K. (2010). Nat. Prod. Rep. 27, 1168–1185.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigby, J. H. & Burkhardt, F. J. (1986). J. Org. Chem. 51, 1374–1376.  CrossRef CAS Web of Science Google Scholar
First citationRigby, J. H. & Qabar, M. (1989). J. Org. Chem. 54, 5852–5853.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Y. M., Li, J. & Zhao, S. Y. (2011). Chin. J. Org. Chem. 31, 9–21.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds