organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Carbamoyl-2,2-di­methyl­cyclo­pentane-1,1-dicarb­­oxy­lic acid

aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska Street 64, 01033 Kyiv, Ukraine
*Correspondence e-mail: 417lab@gmail.com

(Received 17 January 2012; accepted 8 February 2012; online 17 February 2012)

In the title compound, C10H15NO5, the five-membered cyclo­pentane ring has an envelope conformation, with four atoms lying in a plane (mean deviation = 0.0213 Å), while the fifth atom deviates from this plane by 0.626 (2) Å. A three-dimensional structure is formed through N—H⋯O and O—H⋯O hydrogen bonds between the amide and carb­oxy­lic acid groups and both carb­oxy­lic acid and amide O-atom acceptors.

Related literature

For background literature, see: Carter (1958[Carter, K. N. (1958). J. Org. Chem. 23, 1409-1411.]); Nieto et al. (1998[Nieto, M. I., Blanco, J. M., Caamano, O., Fernandez, F. & Gomez, G. (1998). Tetrahedron, 54, 7819-7830.]); Noyes (1894[Noyes, W. A. (1894). J. Am. Chem. Soc. 16, 500-511.]). For the synthetic procedure, see: Polonski (1982[Polonski, T. (1982). J. Chem. Soc. Chem. Commun. pp. 208-209.], 1983[Polonski, T. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 305-309.]).

[Scheme 1]

Experimental

Crystal data
  • C10H15NO5

  • Mr = 229.23

  • Tetragonal, P 43 21 2

  • a = 9.4424 (1) Å

  • c = 24.7343 (5) Å

  • V = 2205.28 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.36 × 0.20 × 0.19 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.961, Tmax = 0.979

  • 17322 measured reflections

  • 2917 independent reflections

  • 2602 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.099

  • S = 1.06

  • 2917 reflections

  • 163 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H15⋯O2i 0.869 (19) 2.23 (2) 3.0474 (15) 157.6 (18)
N1—H16⋯O4ii 0.89 (2) 2.09 (2) 2.9610 (17) 166.2 (19)
O3—H17⋯O1iii 0.76 (2) 1.91 (2) 2.6691 (15) 174 (2)
O5—H18⋯O1iv 0.87 (2) 1.80 (2) 2.6569 (14) 168 (2)
Symmetry codes: (i) [y+{\script{1\over 2}}, -x+{\script{3\over 2}}, z+{\script{1\over 4}}]; (ii) [y+{\script{1\over 2}}, -x+{\script{1\over 2}}, z+{\script{1\over 4}}]; (iii) [-y+{\script{3\over 2}}, x-{\script{1\over 2}}, z-{\script{1\over 4}}]; (iv) y, x-1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Camphoric acids and their derivatives, especially those with specific absolute configurations, are very useful intermediates in organic synthesis (Nieto et al., 1998). Molecules bearing camphoric acid moieties could be used as building blocks in self-assembly studies via coordinative and hydrogen bonds leading to network materials with interesting topologies and functions. Herein, we report the synthesis and crystal structure of the title compound (II), the novel 3-(aminocarbonyl)-2,2-dimethylcyclopentane-1,1-dicarboxylic acid, C10H15NO5 (Fig. 1) obtained as a minor product in the ring-opening reaction of 8,8-dimethyl-2,4-dioxo-3-oxabicyclo[3.2.1]octane-1-carboxylic acid (I) (Polonski, 1983) (see Fig. 2).

In the structure of (II) (Fig. 1), the five-membered C1—C5 ring has an envelope conformation, which is typical for this class of compounds. The C1—C3—C4—C5 atoms lie in a plane (mean deviation, 0.0213 Å) while C2 deviates from this plane by 0.626 (2) Å. The bond lengths C1—C2 and C2—C3 [1.5707 (16) and 1.5752 (17) Å respectively] are somewhat longer than the normal single Csp3—Csp3 bond length. Other C—C bond lengths observed in this compound are unremarkable and fall in the range of 1.5285 (19)–1.5489 (16) Å. A three-dimensional network structure is formed through intermolecular N—H···O hydrogen bonds between the amide and carboxyl groups and O—H···O hydrogen bonds between the carboxylic acid groups and amide O-atom acceptors (Table 1).

Related literature top

For background literature, see: Carter (1958); Nieto et al. (1998); Noyes (1894). For the synthetic procedure, see: Polonski (1982, 1983).

Experimental top

The synthesis of the cyclic anhydride (I) (Fig. 2) was carried out according to the method described by Polonski (1983). Compound (I) (1.00 g, 4.36 mmol) was added in three portions to the cooled (-40 °C) saturated solution of ammonia in methanol (10 ml). The resulting solution was stirred for 1 h and white needles formed during this period were filtrated off. These needles can be easily dissolved in water. The mother liquor was acidified with dilute hydrochloric acid to pH 3 and allowed to stand for 24 h. The resulting white needles of the title compound were collected by filtration. Yield: 200 mg, 18.5%; m.p. 237–238 °C. 1H NMR (400 MHz, [D6]DMSO, TMS, δ): 0.81 (s, 3 H), 1.31 (s, 3 H), 1.62–1.71 (m, 1 H), 1.88–1.95 (m, 1H), 1.97–2.07 (m, 1 H), 2.25–2.33 (m, 1 H), 2.98 (t, 3 J = 9.6 Hz, 1 H), 6.84 (s, 1 H), 7.18 (s, 1 H), 12.63 (br. s, 2 H); 13C{1H} NMR (100.70 MHz, [D6]DMSO, TMS, δ): 20.8, 23.1, 23.1, 30.4, 46.2, 52.9, 67.1, 171.5, 173.2, 173.6; (KBr plates, cm -1): 3421, 3328, 3254, 3008, 2976, 2941, 2777, 2595, 1737, 1721, 1651, 1551, 1263, 1242, 1207, 637.

Refinement top

Carboxylic acid and amide H atoms were located in a difference Fourier synthesis and both positional and displacement parameters were allowed to refine. Other H atoms were positioned geometrically, with C—H = 0.96–0.98 Å and were allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(methine or methylene C) or 1.5Ueq(methyl C). In the absence of a suitable heavy atom, the absolute configuration of the title compound could not be determined (1146 Friedel pairs).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom numbering scheme for the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The synthetic route to the title compound (II).
3-Carbamoyl-2,2-dimethylcyclopentane-1,1-dicarboxylic acid top
Crystal data top
C10H15NO5Dx = 1.381 Mg m3
Mr = 229.23Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212Cell parameters from 6074 reflections
a = 9.4424 (1) Åθ = 2.3–28.8°
c = 24.7343 (5) ŵ = 0.11 mm1
V = 2205.28 (6) Å3T = 296 K
Z = 8Block, colourless
F(000) = 9760.36 × 0.20 × 0.19 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2917 independent reflections
Radiation source: fine-focus sealed tube2602 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 29.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.961, Tmax = 0.979k = 812
17322 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0615P)2 + 0.0801P]
where P = (Fo2 + 2Fc2)/3
2917 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C10H15NO5Z = 8
Mr = 229.23Mo Kα radiation
Tetragonal, P43212µ = 0.11 mm1
a = 9.4424 (1) ÅT = 296 K
c = 24.7343 (5) Å0.36 × 0.20 × 0.19 mm
V = 2205.28 (6) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
2917 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2602 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.979Rint = 0.036
17322 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.25 e Å3
2917 reflectionsΔρmin = 0.19 e Å3
163 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.74432 (13)0.23875 (13)0.07554 (4)0.0200 (2)
H10.83140.27660.05950.024*
C20.63594 (14)0.21880 (14)0.02794 (5)0.0224 (3)
C30.69569 (13)0.07984 (13)0.00103 (5)0.0193 (2)
C40.74117 (16)0.01308 (14)0.04958 (5)0.0253 (3)
H4A0.66430.07510.06040.030*
H4B0.82240.07080.04000.030*
C50.77903 (16)0.08881 (15)0.09546 (5)0.0263 (3)
H5A0.87890.08130.10430.032*
H5B0.72430.06670.12760.032*
C60.48721 (16)0.1928 (2)0.05104 (6)0.0395 (4)
H6A0.45650.27530.07050.059*
H6B0.48970.11310.07510.059*
H6C0.42250.17390.02200.059*
C70.6348 (2)0.34634 (17)0.00998 (6)0.0383 (4)
H7A0.57540.32640.04060.057*
H7B0.72950.36530.02210.057*
H7C0.59880.42750.00890.057*
C80.69559 (14)0.34575 (14)0.11739 (5)0.0215 (3)
C90.59168 (14)0.00109 (15)0.03551 (5)0.0244 (3)
C100.82601 (14)0.11865 (14)0.03276 (5)0.0224 (3)
N10.64079 (14)0.30205 (14)0.16346 (4)0.0266 (3)
O10.70824 (12)0.47490 (10)0.10779 (3)0.0319 (3)
O20.93895 (11)0.14705 (13)0.01307 (4)0.0359 (3)
O30.80177 (13)0.12032 (15)0.08521 (4)0.0412 (3)
O40.48796 (12)0.05118 (13)0.05648 (4)0.0394 (3)
O50.62860 (13)0.13224 (12)0.04156 (5)0.0401 (3)
H150.618 (2)0.369 (2)0.1859 (7)0.040 (5)*
H160.628 (2)0.211 (2)0.1705 (8)0.045 (5)*
H170.869 (2)0.144 (2)0.0996 (9)0.054 (6)*
H180.568 (3)0.176 (3)0.0621 (8)0.062 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0188 (6)0.0222 (6)0.0189 (5)0.0011 (5)0.0020 (4)0.0030 (4)
C20.0204 (6)0.0241 (6)0.0228 (5)0.0050 (5)0.0013 (5)0.0039 (5)
C30.0172 (6)0.0216 (6)0.0191 (5)0.0013 (5)0.0001 (4)0.0025 (4)
C40.0321 (7)0.0211 (6)0.0227 (5)0.0000 (6)0.0030 (5)0.0005 (4)
C50.0322 (8)0.0250 (7)0.0216 (5)0.0059 (6)0.0030 (5)0.0014 (5)
C60.0172 (7)0.0601 (11)0.0413 (7)0.0031 (7)0.0031 (6)0.0200 (7)
C70.0556 (10)0.0277 (7)0.0316 (7)0.0139 (7)0.0111 (7)0.0006 (6)
C80.0202 (6)0.0232 (6)0.0213 (5)0.0012 (5)0.0015 (4)0.0042 (5)
C90.0213 (6)0.0295 (7)0.0225 (5)0.0019 (5)0.0010 (5)0.0042 (5)
C100.0210 (6)0.0241 (6)0.0221 (5)0.0035 (5)0.0031 (5)0.0020 (5)
N10.0347 (7)0.0232 (6)0.0221 (5)0.0004 (5)0.0082 (5)0.0030 (4)
O10.0462 (6)0.0207 (5)0.0289 (5)0.0035 (4)0.0146 (4)0.0027 (4)
O20.0201 (5)0.0592 (7)0.0286 (5)0.0042 (5)0.0023 (4)0.0063 (5)
O30.0310 (6)0.0710 (9)0.0214 (5)0.0108 (6)0.0030 (4)0.0042 (5)
O40.0319 (6)0.0432 (7)0.0429 (6)0.0057 (5)0.0169 (5)0.0058 (5)
O50.0369 (6)0.0322 (6)0.0512 (6)0.0027 (5)0.0174 (5)0.0171 (5)
Geometric parameters (Å, º) top
C1—C81.5180 (16)C6—H6B0.9600
C1—C51.5344 (17)C6—H6C0.9600
C1—C21.5713 (16)C7—H7A0.9600
C1—H10.9800C7—H7B0.9600
C2—C71.5265 (19)C7—H7C0.9600
C2—C61.536 (2)C8—O11.2481 (16)
C2—C31.5757 (17)C8—N11.3177 (16)
C3—C91.5279 (18)C9—O41.2049 (17)
C3—C101.5319 (18)C9—O51.3149 (18)
C3—C41.5480 (16)C10—O21.2026 (17)
C4—C51.5301 (17)C10—O31.3175 (16)
C4—H4A0.9700N1—H150.869 (19)
C4—H4B0.9700N1—H160.89 (2)
C5—H5A0.9700O3—H170.76 (2)
C5—H5B0.9700O5—H180.87 (2)
C6—H6A0.9600
C8—C1—C5117.38 (10)C1—C5—H5B110.3
C8—C1—C2113.16 (10)H5A—C5—H5B108.6
C5—C1—C2105.61 (10)C2—C6—H6A109.5
C8—C1—H1106.7C2—C6—H6B109.5
C5—C1—H1106.7H6A—C6—H6B109.5
C2—C1—H1106.7C2—C6—H6C109.5
C7—C2—C6110.36 (13)H6A—C6—H6C109.5
C7—C2—C1111.75 (11)H6B—C6—H6C109.5
C6—C2—C1109.63 (10)C2—C7—H7A109.5
C7—C2—C3113.57 (10)C2—C7—H7B109.5
C6—C2—C3110.58 (12)H7A—C7—H7B109.5
C1—C2—C3100.55 (9)C2—C7—H7C109.5
C9—C3—C10108.06 (10)H7A—C7—H7C109.5
C9—C3—C4111.18 (11)H7B—C7—H7C109.5
C10—C3—C4109.63 (11)O1—C8—N1120.54 (12)
C9—C3—C2115.15 (10)O1—C8—C1119.44 (11)
C10—C3—C2108.59 (10)N1—C8—C1120.02 (12)
C4—C3—C2104.10 (9)O4—C9—O5122.84 (12)
C5—C4—C3106.48 (10)O4—C9—C3125.88 (13)
C5—C4—H4A110.4O5—C9—C3111.28 (11)
C3—C4—H4A110.4O2—C10—O3123.37 (12)
C5—C4—H4B110.4O2—C10—C3123.01 (11)
C3—C4—H4B110.4O3—C10—C3113.61 (11)
H4A—C4—H4B108.6C8—N1—H15115.0 (12)
C4—C5—C1106.98 (10)C8—N1—H16121.8 (13)
C4—C5—H5A110.3H15—N1—H16123.2 (18)
C1—C5—H5A110.3C10—O3—H17108.7 (17)
C4—C5—H5B110.3C9—O5—H18110.7 (17)
C8—C1—C2—C772.70 (14)C8—C1—C5—C4147.86 (12)
C5—C1—C2—C7157.59 (11)C2—C1—C5—C420.66 (14)
C8—C1—C2—C649.99 (15)C5—C1—C8—O1157.82 (13)
C5—C1—C2—C679.72 (14)C2—C1—C8—O178.73 (15)
C8—C1—C2—C3166.49 (10)C5—C1—C8—N122.01 (18)
C5—C1—C2—C336.77 (12)C2—C1—C8—N1101.44 (14)
C7—C2—C3—C979.30 (14)C10—C3—C9—O4100.66 (15)
C6—C2—C3—C945.41 (15)C4—C3—C9—O4138.99 (14)
C1—C2—C3—C9161.20 (10)C2—C3—C9—O420.92 (19)
C7—C2—C3—C1041.99 (15)C10—C3—C9—O579.70 (14)
C6—C2—C3—C10166.70 (10)C4—C3—C9—O540.65 (15)
C1—C2—C3—C1077.51 (11)C2—C3—C9—O5158.73 (11)
C7—C2—C3—C4158.73 (12)C9—C3—C10—O2159.99 (13)
C6—C2—C3—C476.56 (13)C4—C3—C10—O238.67 (17)
C1—C2—C3—C439.23 (12)C2—C3—C10—O274.46 (16)
C9—C3—C4—C5152.41 (11)C9—C3—C10—O321.14 (16)
C10—C3—C4—C588.17 (12)C4—C3—C10—O3142.46 (12)
C2—C3—C4—C527.84 (14)C2—C3—C10—O3104.41 (13)
C3—C4—C5—C14.56 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H15···O2i0.869 (19)2.23 (2)3.0474 (15)157.6 (18)
N1—H16···O4ii0.89 (2)2.09 (2)2.9610 (17)166.2 (19)
O3—H17···O1iii0.76 (2)1.91 (2)2.6691 (15)174 (2)
O5—H18···O1iv0.87 (2)1.80 (2)2.6569 (14)168 (2)
Symmetry codes: (i) y+1/2, x+3/2, z+1/4; (ii) y+1/2, x+1/2, z+1/4; (iii) y+3/2, x1/2, z1/4; (iv) y, x1, z.

Experimental details

Crystal data
Chemical formulaC10H15NO5
Mr229.23
Crystal system, space groupTetragonal, P43212
Temperature (K)296
a, c (Å)9.4424 (1), 24.7343 (5)
V3)2205.28 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.36 × 0.20 × 0.19
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.961, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
17322, 2917, 2602
Rint0.036
(sin θ/λ)max1)0.681
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.06
No. of reflections2917
No. of parameters163
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.19

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H15···O2i0.869 (19)2.23 (2)3.0474 (15)157.6 (18)
N1—H16···O4ii0.89 (2)2.09 (2)2.9610 (17)166.2 (19)
O3—H17···O1iii0.76 (2)1.91 (2)2.6691 (15)174 (2)
O5—H18···O1iv0.87 (2)1.80 (2)2.6569 (14)168 (2)
Symmetry codes: (i) y+1/2, x+3/2, z+1/4; (ii) y+1/2, x+1/2, z+1/4; (iii) y+3/2, x1/2, z1/4; (iv) y, x1, z.
 

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarter, K. N. (1958). J. Org. Chem. 23, 1409–1411.  CrossRef CAS Google Scholar
First citationNieto, M. I., Blanco, J. M., Caamano, O., Fernandez, F. & Gomez, G. (1998). Tetrahedron, 54, 7819–7830.  Web of Science CrossRef CAS Google Scholar
First citationNoyes, W. A. (1894). J. Am. Chem. Soc. 16, 500–511.  CAS Google Scholar
First citationPolonski, T. (1982). J. Chem. Soc. Chem. Commun. pp. 208–209.  Google Scholar
First citationPolonski, T. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 305–309.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds