organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o750-o751

3-(4-Bromo­phenyl­sulfin­yl)-5-fluoro-2-methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 24 January 2012; accepted 9 February 2012; online 17 February 2012)

There are two symmetry-independent mol­ecules, A and B, in the asymmetric unit of the title compound, C15H10BrFO2S. The dihedral angle formed by the 4-bromo­phenyl ring and the mean plane of the benzofuran fragment is 88.26 (6)° in mol­ecule A and 88.25 (6)° in mol­ecule B. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯F, C—H⋯O and C—H⋯π inter­actions. The crystal structure also exhibits inter­molecular C—Br⋯π [3.737 (3) Å] inter­actions, and weak ππ inter­actions between the benzene and furan rings of neighbouring mol­ecules [centroid–centroid distance = 3.557 (3) Å, inter­planar distance = 3.421 (3) Å and slippage = 0.974 (3) Å].

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For the crystal structures of related compounds, see: Choi et al. (2010a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o258.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o1637.],c[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010c). Acta Cryst. E66, o1909.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10BrFO2S

  • Mr = 353.20

  • Triclinic, [P \overline 1]

  • a = 9.6576 (1) Å

  • b = 11.9134 (2) Å

  • c = 13.5395 (2) Å

  • α = 94.038 (1)°

  • β = 101.096 (1)°

  • γ = 112.610 (1)°

  • V = 1393.13 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.11 mm−1

  • T = 173 K

  • 0.34 × 0.27 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.554, Tmax = 0.746

  • 24788 measured reflections

  • 6444 independent reflections

  • 4958 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.087

  • S = 1.02

  • 6444 reflections

  • 363 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C17–C22 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯F1i 0.95 2.44 3.316 (3) 154
C15—H15⋯O4ii 0.95 2.42 3.323 (3) 158
C24—H24C⋯O2iii 0.98 2.59 3.502 (3) 154
C5—H5⋯Cg1iv 0.95 2.74 3.612 (3) 154
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1, -y+2, -z+1; (iii) -x, -y+1, -z+1; (iv) x, y, z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzofuran derivatives have drawn considerable attention owing to their valuable biological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our continuing study of 5-fluoro-2-methyl-1-benzofuran analoques containing 3-phenylsulfonyl (Choi et al., 2010a), 3-(4-fluorophenylsulfinyl) (Choi et al., 2010b) and 3-(4-fluorophenylsufonyl) (Choi et al., 2010c) substituents, we report herein the crystal structure of the title compound which crystallizes with two unique molecule, A & B, in the asymmetric unit.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.002 (2) Å, for A, and 0.009 (2) Å, for B, respectively, from the least-squares plane defined by the nine constituent atoms. The dihedral angles between the 4-bromophenyl ring and the mean plane of the benzofurn fragment are 88.26 (6)° in molecule A and 88.25 (6)° in molecule B, respectively. The crystal packing (Fig. 2) is stabilized by weak intermolecular C–H···F (Table 1; first entry) and C–H···O (Table 1; second and third entry) hydrogen bonds. The crystal packing (Fig. 3) is further stabilized by intermolecular C–H···π interactions (Table 1; fourth entry, Cg1 is the centroid of the C17-C22 benzene ring), and by intermolecular C28–Br2···π interactions between the bromine atom and the 4-bromophenyl ring of a neighbouring molecule with Br2···Cg3iv being 3.737 (3) Å (Cg3 is the centroid of the C9–C14 4-bromophenyl ring). Additionally, the crystal packing (Fig. 3) exhibits weak slipped ππ interactions between the benzene and furan rings of neighbouring molecules, with a Cg1···Cg2ii distance of 3.557 (3) Å and an interplanar distance of 3.421 (3) Å resulting in a slippage of 0.974 (3) Å (Cg2 is the centroid of the C1/C2/C7/O1/C8 furan ring).

Related literature top

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the crystal structures of related compounds, see: Choi et al. (2010a,b,c).

Experimental top

3-Chloroperoxybenzoic acid (77%) (224 mg, 1.0 mmol) was added in small portions to a stirred solution of 3-(4-bromophenylsulfanyl)-5-fluoro-2-methyl-1-benzofuran (303 mg, 0.9 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 5h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 71%, m.p. 382-383 K; Rf = 0.45 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C–H···O and C–H···F interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. For symmetry codes: (v) - x + 1, - y + 2, - z + 1; (vi) - x, - y + 1, - z + 1]. For other codes, see Table 1.
[Figure 3] Fig. 3. A view of the C–H···π, C–Br···π and ππ interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. For symmetry codes, see Table 1.
3-(4-Bromophenylsulfinyl)-5-fluoro-2-methyl-1-benzofuran top
Crystal data top
C15H10BrFO2SZ = 4
Mr = 353.20F(000) = 704
Triclinic, P1Dx = 1.684 Mg m3
Hall symbol: -P 1Melting point = 382–383 K
a = 9.6576 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.9134 (2) ÅCell parameters from 8290 reflections
c = 13.5395 (2) Åθ = 2.2–27.2°
α = 94.038 (1)°µ = 3.11 mm1
β = 101.096 (1)°T = 173 K
γ = 112.610 (1)°Block, colourless
V = 1393.13 (3) Å30.34 × 0.27 × 0.17 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
6444 independent reflections
Radiation source: rotating anode4958 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.039
Detector resolution: 10.0 pixels mm-1θmax = 27.6°, θmin = 1.6°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1515
Tmin = 0.554, Tmax = 0.746l = 1717
24788 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.087H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0348P)2 + 0.8229P]
where P = (Fo2 + 2Fc2)/3
6444 reflections(Δ/σ)max = 0.001
363 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
C15H10BrFO2Sγ = 112.610 (1)°
Mr = 353.20V = 1393.13 (3) Å3
Triclinic, P1Z = 4
a = 9.6576 (1) ÅMo Kα radiation
b = 11.9134 (2) ŵ = 3.11 mm1
c = 13.5395 (2) ÅT = 173 K
α = 94.038 (1)°0.34 × 0.27 × 0.17 mm
β = 101.096 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
6444 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4958 reflections with I > 2σ(I)
Tmin = 0.554, Tmax = 0.746Rint = 0.039
24788 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.02Δρmax = 0.49 e Å3
6444 reflectionsΔρmin = 0.73 e Å3
363 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.19888 (4)0.64684 (3)0.55467 (2)0.05801 (11)
S10.27869 (7)0.41871 (5)0.74250 (5)0.03725 (14)
O10.62608 (18)0.66639 (14)0.94699 (13)0.0358 (4)
O20.1845 (2)0.30693 (15)0.78067 (15)0.0497 (5)
F10.12944 (19)0.63331 (15)1.09105 (13)0.0607 (5)
C10.4009 (3)0.5329 (2)0.84628 (17)0.0305 (5)
C20.3666 (3)0.58567 (19)0.93269 (16)0.0282 (4)
C30.2340 (3)0.5723 (2)0.96518 (18)0.0359 (5)
H30.13410.51710.92710.043*
C40.2560 (3)0.6437 (2)1.05536 (19)0.0392 (5)
C50.3978 (3)0.7245 (2)1.11426 (18)0.0406 (6)
H50.40440.77111.17620.049*
C60.5302 (3)0.7375 (2)1.08299 (18)0.0376 (5)
H60.62970.79201.12220.045*
C70.5101 (3)0.66719 (19)0.99181 (17)0.0309 (5)
C80.5566 (3)0.5840 (2)0.85873 (18)0.0335 (5)
C90.6600 (3)0.5691 (3)0.7962 (2)0.0472 (6)
H15A0.70090.64290.76470.071*
H15B0.60190.49700.74280.071*
H15C0.74570.55770.83960.071*
C100.1497 (3)0.4894 (2)0.69659 (16)0.0312 (5)
C110.0031 (3)0.4298 (2)0.69762 (18)0.0351 (5)
H110.03710.35670.72690.042*
C120.1076 (3)0.4776 (2)0.65540 (18)0.0372 (5)
H120.21350.43820.65620.045*
C130.0552 (3)0.5827 (2)0.61246 (17)0.0366 (5)
C140.0986 (3)0.6429 (2)0.61141 (18)0.0417 (6)
H140.13250.71600.58210.050*
C150.2025 (3)0.5955 (2)0.65345 (18)0.0389 (5)
H150.30840.63500.65280.047*
Br20.08498 (5)0.79746 (3)0.15733 (2)0.07262 (12)
S20.28070 (7)1.09998 (5)0.29462 (5)0.03822 (15)
O30.28658 (18)0.82877 (14)0.44327 (12)0.0327 (3)
O40.4310 (2)1.20632 (15)0.30530 (15)0.0517 (5)
F20.80169 (17)0.96487 (15)0.29759 (12)0.0505 (4)
C160.3202 (3)0.98537 (19)0.35506 (17)0.0297 (5)
C170.4479 (2)0.95086 (18)0.35492 (16)0.0275 (4)
C180.5797 (3)0.9915 (2)0.31620 (17)0.0316 (5)
H180.60391.05890.27960.038*
C190.6722 (3)0.9282 (2)0.33421 (18)0.0342 (5)
C200.6434 (3)0.8299 (2)0.38744 (18)0.0357 (5)
H200.71180.78960.39650.043*
C210.5147 (3)0.7908 (2)0.42724 (17)0.0345 (5)
H210.49210.72400.46470.041*
C220.4202 (2)0.85308 (19)0.41017 (16)0.0287 (5)
C230.2295 (2)0.91161 (19)0.40823 (17)0.0307 (5)
C240.0814 (3)0.9007 (2)0.4318 (2)0.0407 (6)
H24A0.06260.97360.41690.061*
H24B0.08690.89450.50410.061*
H24C0.00310.82690.39000.061*
C250.2258 (3)1.0190 (2)0.16674 (19)0.0357 (5)
C260.0802 (3)0.9237 (2)0.1333 (2)0.0427 (6)
H260.01070.90380.17670.051*
C270.0376 (3)0.8582 (2)0.0363 (2)0.0495 (7)
H270.06150.79250.01220.059*
C280.1403 (3)0.8894 (2)0.0250 (2)0.0459 (6)
C290.2847 (3)0.9855 (2)0.0071 (2)0.0462 (6)
H290.35371.00570.03670.055*
C300.3269 (3)1.0515 (2)0.1042 (2)0.0414 (6)
H300.42481.11880.12740.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0696 (2)0.0880 (2)0.04255 (16)0.05785 (19)0.01397 (14)0.01981 (14)
S10.0372 (3)0.0393 (3)0.0347 (3)0.0205 (3)0.0007 (3)0.0048 (2)
O10.0243 (8)0.0350 (8)0.0434 (9)0.0086 (7)0.0046 (7)0.0069 (7)
O20.0450 (11)0.0296 (8)0.0623 (12)0.0122 (8)0.0068 (9)0.0031 (8)
F10.0488 (10)0.0662 (10)0.0585 (10)0.0102 (8)0.0284 (8)0.0102 (8)
C10.0279 (11)0.0346 (11)0.0290 (11)0.0135 (9)0.0048 (9)0.0058 (9)
C20.0289 (11)0.0261 (10)0.0261 (10)0.0089 (9)0.0032 (9)0.0052 (8)
C30.0259 (12)0.0381 (12)0.0338 (12)0.0045 (10)0.0050 (10)0.0000 (10)
C40.0362 (13)0.0401 (13)0.0379 (13)0.0092 (11)0.0154 (11)0.0035 (10)
C50.0509 (16)0.0361 (12)0.0276 (12)0.0124 (12)0.0065 (11)0.0001 (10)
C60.0374 (13)0.0305 (11)0.0336 (12)0.0075 (10)0.0022 (10)0.0020 (9)
C70.0272 (11)0.0284 (10)0.0342 (12)0.0100 (9)0.0025 (9)0.0089 (9)
C80.0331 (12)0.0332 (11)0.0389 (12)0.0171 (10)0.0088 (10)0.0131 (10)
C90.0398 (15)0.0505 (15)0.0619 (18)0.0232 (13)0.0228 (13)0.0177 (13)
C100.0335 (12)0.0347 (11)0.0228 (10)0.0147 (10)0.0013 (9)0.0024 (9)
C110.0367 (13)0.0334 (11)0.0342 (12)0.0146 (10)0.0072 (10)0.0012 (9)
C120.0296 (12)0.0421 (13)0.0375 (13)0.0143 (11)0.0060 (10)0.0016 (10)
C130.0452 (14)0.0496 (14)0.0235 (11)0.0304 (12)0.0043 (10)0.0036 (10)
C140.0516 (16)0.0463 (14)0.0338 (13)0.0231 (13)0.0155 (12)0.0137 (11)
C150.0362 (13)0.0467 (14)0.0347 (12)0.0167 (11)0.0105 (10)0.0073 (11)
Br20.0903 (3)0.0663 (2)0.03856 (16)0.01303 (19)0.00546 (16)0.00434 (14)
S20.0365 (3)0.0280 (3)0.0498 (4)0.0175 (2)0.0019 (3)0.0015 (2)
O30.0291 (8)0.0357 (8)0.0324 (8)0.0132 (7)0.0063 (7)0.0034 (6)
O40.0482 (11)0.0252 (8)0.0664 (12)0.0073 (8)0.0022 (9)0.0010 (8)
F20.0352 (8)0.0640 (10)0.0606 (10)0.0256 (7)0.0184 (7)0.0110 (8)
C160.0281 (11)0.0249 (10)0.0314 (11)0.0116 (9)0.0018 (9)0.0043 (8)
C170.0261 (11)0.0257 (10)0.0255 (10)0.0100 (9)0.0010 (8)0.0054 (8)
C180.0276 (12)0.0311 (11)0.0331 (12)0.0113 (9)0.0034 (9)0.0008 (9)
C190.0246 (11)0.0410 (12)0.0340 (12)0.0131 (10)0.0039 (9)0.0033 (10)
C200.0329 (13)0.0405 (12)0.0356 (12)0.0237 (11)0.0022 (10)0.0045 (10)
C210.0370 (13)0.0344 (11)0.0316 (12)0.0179 (10)0.0004 (10)0.0030 (9)
C220.0265 (11)0.0301 (10)0.0255 (10)0.0109 (9)0.0009 (9)0.0030 (8)
C230.0260 (11)0.0301 (10)0.0299 (11)0.0103 (9)0.0010 (9)0.0066 (9)
C240.0279 (12)0.0470 (14)0.0439 (14)0.0140 (11)0.0078 (11)0.0040 (11)
C250.0324 (12)0.0298 (11)0.0430 (13)0.0142 (10)0.0002 (10)0.0101 (10)
C260.0319 (13)0.0458 (14)0.0424 (14)0.0091 (11)0.0044 (11)0.0097 (11)
C270.0375 (15)0.0456 (14)0.0453 (15)0.0013 (12)0.0023 (12)0.0077 (12)
C280.0537 (17)0.0392 (13)0.0371 (13)0.0148 (12)0.0006 (12)0.0097 (11)
C290.0460 (16)0.0464 (14)0.0451 (15)0.0154 (13)0.0120 (12)0.0181 (12)
C300.0328 (13)0.0327 (12)0.0518 (15)0.0073 (10)0.0052 (12)0.0129 (11)
Geometric parameters (Å, º) top
Br1—C131.898 (2)Br2—C281.897 (3)
S1—O21.4881 (19)S2—O41.4876 (19)
S1—C11.754 (2)S2—C161.766 (2)
S1—C101.797 (2)S2—C251.797 (3)
O1—C81.364 (3)O3—C231.374 (3)
O1—C71.375 (3)O3—C221.380 (3)
F1—C41.365 (3)F2—C191.360 (3)
C1—C81.358 (3)C16—C231.341 (3)
C1—C21.442 (3)C16—C171.442 (3)
C2—C31.388 (3)C17—C181.395 (3)
C2—C71.391 (3)C17—C221.396 (3)
C3—C41.369 (3)C18—C191.373 (3)
C3—H30.9500C18—H180.9500
C4—C51.377 (4)C19—C201.383 (3)
C5—C61.379 (4)C20—C211.379 (3)
C5—H50.9500C20—H200.9500
C6—C71.379 (3)C21—C221.379 (3)
C6—H60.9500C21—H210.9500
C8—C91.479 (3)C23—C241.484 (3)
C9—H15A0.9800C24—H24A0.9800
C9—H15B0.9800C24—H24B0.9800
C9—H15C0.9800C24—H24C0.9800
C10—C111.373 (3)C25—C301.377 (4)
C10—C151.386 (3)C25—C261.388 (3)
C11—C121.391 (3)C26—C271.380 (4)
C11—H110.9500C26—H260.9500
C12—C131.375 (3)C27—C281.374 (4)
C12—H120.9500C27—H270.9500
C13—C141.382 (4)C28—C291.384 (4)
C14—C151.382 (4)C29—C301.383 (4)
C14—H140.9500C29—H290.9500
C15—H150.9500C30—H300.9500
O2—S1—C1109.43 (11)O4—S2—C16107.26 (11)
O2—S1—C10105.77 (11)O4—S2—C25107.02 (12)
C1—S1—C1098.65 (10)C16—S2—C2596.12 (10)
C8—O1—C7106.70 (17)C23—O3—C22106.26 (17)
C8—C1—C2107.5 (2)C23—C16—C17107.87 (19)
C8—C1—S1121.82 (18)C23—C16—S2124.12 (17)
C2—C1—S1130.60 (17)C17—C16—S2127.99 (18)
C3—C2—C7119.7 (2)C18—C17—C22119.4 (2)
C3—C2—C1135.9 (2)C18—C17—C16136.2 (2)
C7—C2—C1104.4 (2)C22—C17—C16104.42 (19)
C4—C3—C2115.9 (2)C19—C18—C17116.0 (2)
C4—C3—H3122.0C19—C18—H18122.0
C2—C3—H3122.0C17—C18—H18122.0
C3—C4—F1118.2 (2)F2—C19—C18117.8 (2)
C3—C4—C5124.7 (2)F2—C19—C20117.6 (2)
F1—C4—C5117.1 (2)C18—C19—C20124.6 (2)
C4—C5—C6119.8 (2)C21—C20—C19119.5 (2)
C4—C5—H5120.1C21—C20—H20120.2
C6—C5—H5120.1C19—C20—H20120.2
C5—C6—C7116.4 (2)C20—C21—C22116.9 (2)
C5—C6—H6121.8C20—C21—H21121.6
C7—C6—H6121.8C22—C21—H21121.6
O1—C7—C6125.7 (2)C21—C22—O3126.0 (2)
O1—C7—C2110.70 (19)C21—C22—C17123.6 (2)
C6—C7—C2123.6 (2)O3—C22—C17110.39 (18)
C1—C8—O1110.7 (2)C16—C23—O3111.06 (19)
C1—C8—C9133.1 (2)C16—C23—C24132.7 (2)
O1—C8—C9116.3 (2)O3—C23—C24116.2 (2)
C8—C9—H15A109.5C23—C24—H24A109.5
C8—C9—H15B109.5C23—C24—H24B109.5
H15A—C9—H15B109.5H24A—C24—H24B109.5
C8—C9—H15C109.5C23—C24—H24C109.5
H15A—C9—H15C109.5H24A—C24—H24C109.5
H15B—C9—H15C109.5H24B—C24—H24C109.5
C11—C10—C15121.6 (2)C30—C25—C26121.3 (2)
C11—C10—S1118.17 (18)C30—C25—S2120.24 (18)
C15—C10—S1119.95 (18)C26—C25—S2118.5 (2)
C10—C11—C12119.4 (2)C27—C26—C25119.3 (3)
C10—C11—H11120.3C27—C26—H26120.3
C12—C11—H11120.3C25—C26—H26120.3
C13—C12—C11118.9 (2)C28—C27—C26119.1 (2)
C13—C12—H12120.5C28—C27—H27120.5
C11—C12—H12120.5C26—C27—H27120.5
C14—C13—C12121.8 (2)C27—C28—C29122.0 (3)
C14—C13—Br1119.60 (18)C27—C28—Br2119.5 (2)
C12—C13—Br1118.60 (19)C29—C28—Br2118.5 (2)
C13—C14—C15119.3 (2)C30—C29—C28118.8 (3)
C13—C14—H14120.4C30—C29—H29120.6
C15—C14—H14120.4C28—C29—H29120.6
C14—C15—C10119.0 (2)C25—C30—C29119.4 (2)
C14—C15—H15120.5C25—C30—H30120.3
C10—C15—H15120.5C29—C30—H30120.3
O2—S1—C1—C8122.96 (19)O4—S2—C16—C23143.29 (19)
C10—S1—C1—C8126.85 (19)C25—S2—C16—C23106.7 (2)
O2—S1—C1—C253.8 (2)O4—S2—C16—C1738.7 (2)
C10—S1—C1—C256.4 (2)C25—S2—C16—C1771.3 (2)
C8—C1—C2—C3179.5 (3)C23—C16—C17—C18178.5 (2)
S1—C1—C2—C32.5 (4)S2—C16—C17—C183.2 (4)
C8—C1—C2—C70.1 (2)C23—C16—C17—C220.7 (2)
S1—C1—C2—C7177.15 (17)S2—C16—C17—C22177.64 (16)
C7—C2—C3—C40.5 (3)C22—C17—C18—C191.5 (3)
C1—C2—C3—C4179.9 (2)C16—C17—C18—C19179.4 (2)
C2—C3—C4—F1179.5 (2)C17—C18—C19—F2179.93 (19)
C2—C3—C4—C50.6 (4)C17—C18—C19—C200.4 (3)
C3—C4—C5—C60.1 (4)F2—C19—C20—C21179.0 (2)
F1—C4—C5—C6179.0 (2)C18—C19—C20—C210.7 (4)
C4—C5—C6—C70.5 (3)C19—C20—C21—C220.6 (3)
C8—O1—C7—C6179.6 (2)C20—C21—C22—O3179.97 (19)
C8—O1—C7—C20.0 (2)C20—C21—C22—C170.6 (3)
C5—C6—C7—O1179.9 (2)C23—O3—C22—C21179.3 (2)
C5—C6—C7—C20.6 (3)C23—O3—C22—C170.2 (2)
C3—C2—C7—O1179.63 (19)C18—C17—C22—C211.6 (3)
C1—C2—C7—O10.1 (2)C16—C17—C22—C21179.0 (2)
C3—C2—C7—C60.0 (3)C18—C17—C22—O3178.83 (18)
C1—C2—C7—C6179.7 (2)C16—C17—C22—O30.5 (2)
C2—C1—C8—O10.1 (2)C17—C16—C23—O30.6 (2)
S1—C1—C8—O1177.45 (15)S2—C16—C23—O3177.83 (14)
C2—C1—C8—C9178.9 (2)C17—C16—C23—C24178.0 (2)
S1—C1—C8—C93.7 (4)S2—C16—C23—C240.4 (4)
C7—O1—C8—C10.0 (2)C22—O3—C23—C160.2 (2)
C7—O1—C8—C9179.08 (19)C22—O3—C23—C24178.11 (18)
O2—S1—C10—C114.0 (2)O4—S2—C25—C307.5 (2)
C1—S1—C10—C11117.14 (19)C16—S2—C25—C30102.7 (2)
O2—S1—C10—C15178.55 (18)O4—S2—C25—C26172.55 (18)
C1—S1—C10—C1568.3 (2)C16—S2—C25—C2677.3 (2)
C15—C10—C11—C120.7 (3)C30—C25—C26—C271.7 (4)
S1—C10—C11—C12175.12 (17)S2—C25—C26—C27178.2 (2)
C10—C11—C12—C130.8 (3)C25—C26—C27—C280.3 (4)
C11—C12—C13—C140.9 (4)C26—C27—C28—C290.8 (4)
C11—C12—C13—Br1179.82 (17)C26—C27—C28—Br2178.5 (2)
C12—C13—C14—C150.8 (4)C27—C28—C29—C300.3 (4)
Br1—C13—C14—C15179.88 (18)Br2—C28—C29—C30178.88 (19)
C13—C14—C15—C100.7 (4)C26—C25—C30—C292.1 (4)
C11—C10—C15—C140.6 (3)S2—C25—C30—C29177.82 (19)
S1—C10—C15—C14174.96 (18)C28—C29—C30—C251.1 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C17–C22 benzene ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···F1i0.952.443.316 (3)154
C15—H15···O4ii0.952.423.323 (3)158
C24—H24C···O2iii0.982.593.502 (3)154
C5—H5···Cg1iv0.952.743.612 (3)154
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H10BrFO2S
Mr353.20
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.6576 (1), 11.9134 (2), 13.5395 (2)
α, β, γ (°)94.038 (1), 101.096 (1), 112.610 (1)
V3)1393.13 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.11
Crystal size (mm)0.34 × 0.27 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.554, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
24788, 6444, 4958
Rint0.039
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.087, 1.02
No. of reflections6444
No. of parameters363
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.73

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C17–C22 benzene ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···F1i0.952.443.316 (3)153.9
C15—H15···O4ii0.952.423.323 (3)158.1
C24—H24C···O2iii0.982.593.502 (3)154.1
C5—H5···Cg1iv0.952.743.612 (3)153.7
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1; (iv) x, y, z+1.
 

Acknowledgements

This work was supported by Blue-Bio Industry Regional Innovation Center (grant No. RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan city.

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o258.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o1637.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010c). Acta Cryst. E66, o1909.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o750-o751
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds