organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o825-o826

2,3,4-Trihy­dr­oxy­benzoic acid 0.25-hydrate

aGuangdong Province Key Laboratory of Pharmacodynamic Constituents of, Traditional Chinese Medicine and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: trwjiang@jnu.edu.cn

(Received 4 February 2012; accepted 16 February 2012; online 24 February 2012)

The asymmetric unit of the title compound, C7H6O5·0.25H2O, contains two mol­ecules of 2,3,4-trihy­droxy­benzoic acid, with similar conformations, and one water mol­ecule which lies on a twofold rotation axis. Both acid mol­ecules are essentially planar [maximum r.m.s deviations = 0.0324 (2) and 0.0542 (3) Å for the two acid molecules]. The mol­ecular conformations are stabilized by intra­molecular O(phenol)—H⋯O(carbox­yl/phenol) inter­actions. A cyclic inter­molecular association is formed between the two acid and one water mol­ecule [graph set R33(12)] involving O—H⋯O hydrogen bonds. The two acid mol­ecules are further linked through a cyclic R22(8) carb­oxy­lic acid hydrogen-bonding association, which together with inter­molecular O—H⋯O hydrogen-bonding inter­actions involving the phenol groups and the water mol­ecule, and weak ππ inter­actions [minimum ring centroid separation = 3.731 (3) Å], give a three-dimensional network.

Related literature

For the natural distribution of 2,3,4-trihy­droxy­benzoic acid, see: Zhai et al. (2010[Zhai, H., Li, C., Tang, S. & Duan, H. (2010). Chin. J. Chin. Mat. Med. 35, 1820-1823.]); Xu & Chang (2010[Xu, B. & Chang, S. K. C. (2010). J. Agric. Food Chem. 58, 1509-1517.]). For its anti­oxidant and anti­bacterial activities, see: Kodama et al. (2007[Kodama, A., Shibano, H. & Kawabata, J. (2007). Biosci. Biotech. Biochem. 71, 1731-1734.]); Friedman et al. (2003[Friedman, M., Henika, P. R. & Mandrell, R. E. (2003). J. Food Prot. 66, 1811-1821.]). For the inhibition of xanthine oxidase, see: Chang et al. (1995[Chang, W. S., Yan, G. F. & Chiang, H. C. (1995). Anticancer Res. 15, 2097-2100.]). For the crystal structure of the dihydrate pseudopolymorph, see: Prior & Sharp (2010[Prior, T. J. & Sharp, A. J. (2010). J. Chem. Crystallogr. 40, 630-633.]). For ππ inter­actions in gallic acid pyridine monosolvate and in natural flavonoids, see: Dong et al. (2011[Dong, F.-Y., Wu, J., Tian, H.-Y., Ye, Q.-M. & Jiang, R.-W. (2011). Acta Cryst. E67, o3096.]); Jiang et al. (2009[Jiang, R. W., Wang, Y., Gao, H., Zhang, D. M. & Ye, W. C. (2009). J. Mol. Struct. 920, 383-386.], 2002[Jiang, R. W., Ye, W. C., Woo, K. Y., Du, J., Che, C. T., But, P. P. H. & Mak, T. C. W. (2002). J. Mol. Struct. 642, 77-84.]). For graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6O5·0.25H2O

  • Mr = 174.62

  • Orthorhombic, P 21 21 2

  • a = 11.8364 (12) Å

  • b = 32.598 (3) Å

  • c = 3.7306 (4) Å

  • V = 1439.4 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 291 K

  • 0.42 × 0.28 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.874, Tmax = 1.000

  • 7863 measured reflections

  • 2552 independent reflections

  • 2010 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.090

  • S = 0.97

  • 2552 reflections

  • 222 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O2 0.82 2.19 2.963 (2) 156
O1—H1A⋯O4 0.82 1.88 2.587 (3) 143
O2—H2A⋯O2′i 0.82 2.05 2.839 (4) 161
O3—H3A⋯O3′ii 0.82 2.06 2.828 (3) 155
O5—H5B⋯O4′iii 0.82 1.88 2.679 (4) 165
O1′—H1′A⋯O4′ 0.82 1.87 2.588 (3) 145
O2′—H2′A⋯O1 0.82 1.95 2.729 (4) 159
O3′—H3′A⋯O1W 0.82 2.06 2.841 (3) 158
O5′—H5′B⋯O4iv 0.82 1.85 2.659 (4) 171
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y, z+1; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z-1]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z-1].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1998[Siemens (1998). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

2,3,4-Trihydroxybenzoic acid is a polyphenolic acid which has been isolated from Pachysandra terminalis (Zhai et al., 2010) and the lentil (Xu & Chang, 2010). It has been found to show antioxidant (Kodama et al., 2007) and antibacterial activities (Friedman et al., 2003) and also to inhibit the xanthine oxidase enzyme (Chang et al., 1995). This compound contains two of the most common functional groups in natural products: the carboxylic acid and the phenolic groups. The dihydrate pseudopolymorph of the acid with a space group P-1 has previusly been reported (Prior & Sharp, 2010). In this study, we report the structure of the second pseudopolymorph, the partial hydrate C7H6O5 . 0.25H2O.

The asymmetric unit of the title compound contains two molecules of 2,3,4-trihydroxybenzoic acid [(1) and (2)] with similar conformations, and one water molecule of solvation which lies on a crystallographic twofold rotation axis (Fig. 1). Both acid molecules are essentially planar [maximum r.m.s deviation 0.0324 (2) and 0.0542 (3) Å for the two acid molecules], with a dihedral angle of 49.4 (3)° between the planes. The molecular conformation of the acid molecules is stabilized by a number of intramolecular phenolic O—H···O interactions (Table 1).

The water molecule and the acid molecules are linked through O—H···O hydrogen bonds (Table 1) with both acting as donors and acceptors, giving a cyclic association [graph set R33(12) (Etter et al., 1990; Bernstein et al., 1995)]. The 2,3,4-trihydroxybenzoic acid molecules form head-to-head pairs through intermolecular hydrogen bonds [graph set R22(8). The molecular pairs are further extended into chains through hydrogen bond O2–H···O2'i , while adjacent chains are connected via hydrogen bond O3–H···O3'ii into a three-dimensional network (Fig. 2) [for symmetry codes (i) and (ii), see Table 1]. It is noteworthy that aromatic ππ associations also play an important role in the molecular packing. Adjacent 2,3,4-trihydroxybenzoic acid molecules form stacks which extend down the c-axis giving weak ππ interactions [minimum ring centroid separation, 3.731 (3) Å], which is larger than that in the dihydrate form of the acid (Prior & Sharp, 2010) and in gallic acid pyridine monosolvate (Dong et al., 2011), but comparable with those in natural flavonoids (Jiang et al., 2002, 2009).

Related literature top

For the natural distribution of 2,3,4-trihydroxybenzoic acid, see: Zhai et al. (2010); Xu & Chang (2010). For the antioxidant and antibacterial activities, see: Kodama et al. (2007); Friedman et al. (2003). For the inhibition of xanthine oxidase, see: Chang et al. (1995). For the crystal structure of the dihydrate pseudopolymorph, see: Prior & Sharp (2010). For the ππ interactions in gallic acid pyridine monosolvate and in natural flavonoids, see: Dong et al. (2011); Jiang et al. (2009, 2002). For graph-set analysis, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

2,3,4-Trihydroxybenzoic acid (purity >98%) was purchased from the Sigma-Aldrich Company. Sample of 34 mg (0.2 mmol) was dissolved in methanol (1.5 ml) in a tube (4 ml) and sealed by parafilm. Light brown crystals were formed after three days at room temperature.

Refinement top

The C-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with C—H = 0.96 Å (methyl C) and Uiso(H) = 1.5Ueq(C); 0.97 Å (methylene C) and Uiso(H) = 1.2Ueq(C); 0.93 Å (aryl H) and Uiso(H)= 1.2Ueq(C); O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP plot of the asymmetric unit of the title compound with atoms shown as 30% probability ellipsoids. The water molecule lies on a crystallographic twofold rotation axis and hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Packing diagram viewed down the c-axis showing hydrogen bonds as dashed lines.
2,3,4-Trihydroxybenzoic acid 0.25-hydrate top
Crystal data top
C7H6O5·0.25H2OF(000) = 724
Mr = 174.62Dx = 1.612 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2552 reflections
a = 11.8364 (12) Åθ = 2.1–50.0°
b = 32.598 (3) ŵ = 0.14 mm1
c = 3.7306 (4) ÅT = 291 K
V = 1439.4 (3) Å3Prism, light brown
Z = 80.42 × 0.28 × 0.20 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
2552 independent reflections
Radiation source: fine-focus sealed tube2010 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω scanθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1314
Tmin = 0.874, Tmax = 1.000k = 3834
7863 measured reflectionsl = 44
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0443P)2]
where P = (Fo2 + 2Fc2)/3
2552 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C7H6O5·0.25H2OV = 1439.4 (3) Å3
Mr = 174.62Z = 8
Orthorhombic, P21212Mo Kα radiation
a = 11.8364 (12) ŵ = 0.14 mm1
b = 32.598 (3) ÅT = 291 K
c = 3.7306 (4) Å0.42 × 0.28 × 0.20 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
2552 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2010 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 1.000Rint = 0.060
7863 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 0.97Δρmax = 0.17 e Å3
2552 reflectionsΔρmin = 0.15 e Å3
222 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.50000.00000.1102 (7)0.0395 (6)
H1WA0.52630.01730.02580.059*
O10.65345 (12)0.12870 (4)0.2193 (5)0.0334 (4)
H1A0.66370.15340.19000.040*
O20.65656 (13)0.04688 (4)0.3549 (4)0.0323 (4)
H2A0.61450.06400.44440.039*
O30.84576 (14)0.00203 (5)0.2010 (5)0.0445 (5)
H3A0.78590.00480.29400.053*
O40.75826 (14)0.19200 (4)0.0346 (6)0.0429 (5)
O50.93058 (15)0.18491 (4)0.2704 (6)0.0481 (5)
H5B0.92430.20980.29190.058*
C10.84467 (19)0.12653 (6)0.0250 (7)0.0273 (5)
C20.74982 (19)0.10787 (6)0.1337 (6)0.0245 (5)
C30.74932 (18)0.06626 (6)0.2074 (6)0.0254 (5)
C40.84311 (19)0.04271 (6)0.1272 (7)0.0295 (5)
C50.9374 (2)0.06046 (7)0.0324 (7)0.0330 (6)
H5A0.99980.04440.08910.040*
C60.9383 (2)0.10180 (7)0.1064 (7)0.0313 (6)
H6A1.00180.11350.21170.038*
C70.8406 (2)0.17017 (7)0.1079 (7)0.0310 (6)
O1'0.49399 (13)0.17376 (4)0.2824 (5)0.0359 (4)
H1'A0.48560.19820.32700.043*
O2'0.49999 (12)0.09083 (4)0.2151 (5)0.0308 (4)
H2'A0.53800.10750.10330.037*
O3'0.32290 (14)0.04439 (4)0.4474 (5)0.0397 (5)
H3'A0.38170.03780.34640.048*
O4'0.39072 (15)0.23703 (5)0.5434 (6)0.0446 (5)
O5'0.22055 (15)0.23003 (5)0.7935 (6)0.0506 (5)
H5'B0.22940.25470.82590.061*
C1'0.3088 (2)0.17066 (7)0.5659 (7)0.0293 (6)
C2'0.40325 (19)0.15242 (6)0.4052 (6)0.0271 (6)
C3'0.40863 (19)0.11019 (6)0.3646 (6)0.0267 (5)
C4'0.31874 (19)0.08593 (6)0.4795 (7)0.0281 (6)
C5'0.22322 (19)0.10389 (7)0.6322 (7)0.0328 (6)
H5'A0.16300.08760.70560.039*
C6'0.2185 (2)0.14569 (7)0.6737 (7)0.0336 (6)
H6'A0.15460.15760.77460.040*
C7'0.3098 (2)0.21492 (7)0.6310 (7)0.0349 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.0469 (15)0.0229 (11)0.0486 (16)0.0056 (10)0.0000.000
O10.0299 (9)0.0177 (7)0.0527 (11)0.0023 (6)0.0057 (9)0.0020 (8)
O20.0280 (9)0.0212 (8)0.0475 (11)0.0003 (6)0.0064 (8)0.0020 (8)
O30.0386 (10)0.0215 (8)0.0734 (13)0.0038 (7)0.0121 (10)0.0077 (10)
O40.0398 (11)0.0244 (8)0.0644 (13)0.0006 (8)0.0084 (10)0.0075 (9)
O50.0463 (11)0.0268 (9)0.0713 (14)0.0031 (8)0.0157 (11)0.0094 (10)
C10.0298 (13)0.0244 (11)0.0278 (13)0.0029 (10)0.0040 (11)0.0009 (11)
C20.0265 (12)0.0208 (11)0.0261 (13)0.0014 (9)0.0058 (11)0.0024 (10)
C30.0285 (13)0.0211 (11)0.0268 (12)0.0056 (9)0.0017 (11)0.0004 (10)
C40.0334 (14)0.0193 (11)0.0359 (14)0.0014 (10)0.0033 (12)0.0009 (11)
C50.0278 (14)0.0303 (13)0.0409 (15)0.0041 (10)0.0006 (12)0.0034 (12)
C60.0257 (13)0.0324 (13)0.0360 (15)0.0042 (10)0.0001 (12)0.0006 (11)
C70.0315 (14)0.0255 (12)0.0361 (14)0.0068 (11)0.0040 (12)0.0019 (11)
O1'0.0346 (9)0.0185 (7)0.0546 (11)0.0032 (6)0.0058 (10)0.0011 (8)
O2'0.0294 (9)0.0191 (7)0.0440 (10)0.0016 (6)0.0038 (9)0.0011 (7)
O3'0.0408 (11)0.0207 (8)0.0575 (12)0.0029 (7)0.0115 (9)0.0004 (9)
O4'0.0476 (12)0.0208 (8)0.0655 (14)0.0004 (8)0.0142 (10)0.0057 (9)
O5'0.0482 (11)0.0279 (9)0.0758 (14)0.0047 (8)0.0172 (12)0.0138 (10)
C1'0.0340 (14)0.0227 (12)0.0312 (13)0.0031 (10)0.0040 (11)0.0003 (11)
C2'0.0295 (13)0.0221 (12)0.0297 (14)0.0024 (10)0.0035 (12)0.0021 (10)
C3'0.0280 (13)0.0231 (11)0.0290 (13)0.0037 (10)0.0045 (11)0.0009 (10)
C4'0.0334 (14)0.0199 (11)0.0311 (14)0.0005 (10)0.0052 (11)0.0007 (11)
C5'0.0297 (14)0.0299 (12)0.0388 (15)0.0033 (10)0.0005 (12)0.0019 (12)
C6'0.0342 (14)0.0326 (12)0.0339 (15)0.0051 (10)0.0039 (12)0.0022 (12)
C7'0.0399 (16)0.0271 (13)0.0376 (15)0.0071 (11)0.0020 (12)0.0021 (12)
Geometric parameters (Å, º) top
O1W—H1WA0.8200O1'—C2'1.359 (3)
O1—C21.365 (3)O1'—H1'A0.8200
O1—H1A0.8200O2'—C3'1.371 (3)
O2—C31.381 (3)O2'—H2'A0.8200
O2—H2A0.8200O3'—C4'1.360 (2)
O3—C41.355 (2)O3'—H3'A0.8200
O3—H3A0.8200O4'—C7'1.243 (3)
O4—C71.237 (3)O5'—C7'1.314 (3)
O5—C71.317 (3)O5'—H5'B0.8200
O5—H5B0.8200C1'—C2'1.401 (3)
C1—C61.404 (3)C1'—C6'1.403 (3)
C1—C21.407 (3)C1'—C7'1.463 (3)
C1—C71.457 (3)C2'—C3'1.386 (3)
C2—C31.384 (3)C3'—C4'1.393 (3)
C3—C41.382 (3)C4'—C5'1.395 (3)
C4—C51.391 (3)C5'—C6'1.373 (3)
C5—C61.376 (3)C5'—H5'A0.9300
C5—H5A0.9300C6'—H6'A0.9300
C6—H6A0.9300
C2—O1—H1A109.5C2'—O1'—H1'A109.5
C3—O2—H2A109.5C3'—O2'—H2'A109.5
C4—O3—H3A109.5C4'—O3'—H3'A109.5
C7—O5—H5B109.5C7'—O5'—H5'B109.5
C6—C1—C2118.2 (2)C2'—C1'—C6'119.0 (2)
C6—C1—C7122.8 (2)C2'—C1'—C7'118.9 (2)
C2—C1—C7119.0 (2)C6'—C1'—C7'122.1 (2)
O1—C2—C3115.9 (2)O1'—C2'—C3'115.8 (2)
O1—C2—C1123.35 (18)O1'—C2'—C1'123.89 (18)
C3—C2—C1120.7 (2)C3'—C2'—C1'120.3 (2)
O2—C3—C4118.08 (17)O2'—C3'—C2'122.5 (2)
O2—C3—C2122.06 (19)O2'—C3'—C4'117.79 (18)
C4—C3—C2119.9 (2)C2'—C3'—C4'119.7 (2)
O3—C4—C3121.2 (2)O3'—C4'—C3'120.7 (2)
O3—C4—C5118.4 (2)O3'—C4'—C5'118.9 (2)
C3—C4—C5120.4 (2)C3'—C4'—C5'120.4 (2)
C6—C5—C4119.9 (2)C6'—C5'—C4'119.7 (2)
C6—C5—H5A120.0C6'—C5'—H5'A120.1
C4—C5—H5A120.0C4'—C5'—H5'A120.1
C5—C6—C1120.9 (2)C5'—C6'—C1'120.8 (2)
C5—C6—H6A119.6C5'—C6'—H6'A119.6
C1—C6—H6A119.6C1'—C6'—H6'A119.6
O4—C7—O5122.0 (2)O4'—C7'—O5'121.6 (2)
O4—C7—C1122.7 (2)O4'—C7'—C1'122.3 (2)
O5—C7—C1115.3 (2)O5'—C7'—C1'116.1 (2)
C6—C1—C2—O1178.9 (2)C6'—C1'—C2'—O1'178.2 (2)
C7—C1—C2—O10.8 (3)C7'—C1'—C2'—O1'4.6 (4)
C6—C1—C2—C30.1 (3)C6'—C1'—C2'—C3'2.1 (4)
C7—C1—C2—C3178.2 (2)C7'—C1'—C2'—C3'175.1 (2)
O1—C2—C3—O20.7 (3)O1'—C2'—C3'—O2'0.9 (3)
C1—C2—C3—O2178.4 (2)C1'—C2'—C3'—O2'178.8 (2)
O1—C2—C3—C4179.6 (2)O1'—C2'—C3'—C4'179.3 (2)
C1—C2—C3—C40.5 (3)C1'—C2'—C3'—C4'1.0 (4)
O2—C3—C4—O32.0 (3)O2'—C3'—C4'—O3'0.8 (3)
C2—C3—C4—O3179.0 (2)C2'—C3'—C4'—O3'179.0 (2)
O2—C3—C4—C5177.9 (2)O2'—C3'—C4'—C5'179.7 (2)
C2—C3—C4—C51.0 (4)C2'—C3'—C4'—C5'0.5 (4)
O3—C4—C5—C6179.1 (2)O3'—C4'—C5'—C6'178.6 (2)
C3—C4—C5—C61.0 (4)C3'—C4'—C5'—C6'0.9 (4)
C4—C5—C6—C10.4 (4)C4'—C5'—C6'—C1'0.3 (4)
C2—C1—C6—C50.1 (4)C2'—C1'—C6'—C5'1.8 (4)
C7—C1—C6—C5178.2 (2)C7'—C1'—C6'—C5'175.3 (2)
C6—C1—C7—O4179.6 (2)C2'—C1'—C7'—O4'1.2 (4)
C2—C1—C7—O42.3 (4)C6'—C1'—C7'—O4'178.3 (2)
C6—C1—C7—O51.0 (3)C2'—C1'—C7'—O5'177.7 (2)
C2—C1—C7—O5177.1 (2)C6'—C1'—C7'—O5'0.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O20.822.192.963 (2)156
O1W—H1WA···O20.822.582.987 (3)112
O1—H1A···O40.821.882.587 (3)143
O2—H2A···O2i0.822.052.839 (4)161
O2—H2A···O10.822.322.715 (2)111
O3—H3A···O3ii0.822.062.828 (3)155
O3—H3A···O20.822.292.735 (3)115
O5—H5B···O4iii0.821.882.679 (4)165
O1—H1A···O40.821.872.588 (3)145
O2—H2A···O10.821.952.729 (4)159
O2—H2A···O10.822.322.716 (2)110
O3—H3A···O1W0.822.062.841 (3)158
O3—H3A···O20.822.282.727 (4)115
O5—H5B···O4iv0.821.852.659 (4)171
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z1; (iv) x1/2, y+1/2, z1.

Experimental details

Crystal data
Chemical formulaC7H6O5·0.25H2O
Mr174.62
Crystal system, space groupOrthorhombic, P21212
Temperature (K)291
a, b, c (Å)11.8364 (12), 32.598 (3), 3.7306 (4)
V3)1439.4 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.42 × 0.28 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.874, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7863, 2552, 2010
Rint0.060
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.090, 0.97
No. of reflections2552
No. of parameters222
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O20.822.192.963 (2)156
O1—H1A···O40.821.882.587 (3)143
O2—H2A···O2'i0.822.052.839 (4)161
O3—H3A···O3'ii0.822.062.828 (3)155
O5—H5B···O4'iii0.821.882.679 (4)165
O1'—H1'A···O4'0.821.872.588 (3)145
O2'—H2'A···O10.821.952.729 (4)159
O3'—H3'A···O1W0.822.062.841 (3)158
O5'—H5'B···O4iv0.821.852.659 (4)171
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z1; (iv) x1/2, y+1/2, z1.
 

Acknowledgements

This work was supported by a grant from the New Century Excellent Talents Scheme of the Ministry of Education (grant No. NCET-08–0612), the Guangdong High Level Talent Scheme (RWJ) and the Fundamental Research Funds for the Central Universities (grant No. 21609202).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, W. S., Yan, G. F. & Chiang, H. C. (1995). Anticancer Res. 15, 2097–2100.  CAS PubMed Web of Science Google Scholar
First citationDong, F.-Y., Wu, J., Tian, H.-Y., Ye, Q.-M. & Jiang, R.-W. (2011). Acta Cryst. E67, o3096.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFriedman, M., Henika, P. R. & Mandrell, R. E. (2003). J. Food Prot. 66, 1811–1821.  Web of Science PubMed CAS Google Scholar
First citationJiang, R. W., Wang, Y., Gao, H., Zhang, D. M. & Ye, W. C. (2009). J. Mol. Struct. 920, 383–386.  Web of Science CSD CrossRef CAS Google Scholar
First citationJiang, R. W., Ye, W. C., Woo, K. Y., Du, J., Che, C. T., But, P. P. H. & Mak, T. C. W. (2002). J. Mol. Struct. 642, 77–84.  Web of Science CSD CrossRef CAS Google Scholar
First citationKodama, A., Shibano, H. & Kawabata, J. (2007). Biosci. Biotech. Biochem. 71, 1731–1734.  CrossRef CAS Google Scholar
First citationPrior, T. J. & Sharp, A. J. (2010). J. Chem. Crystallogr. 40, 630–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1998). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationXu, B. & Chang, S. K. C. (2010). J. Agric. Food Chem. 58, 1509–1517.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhai, H., Li, C., Tang, S. & Duan, H. (2010). Chin. J. Chin. Mat. Med. 35, 1820–1823.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o825-o826
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds