organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o902-o903

(Z)-4-(2-Hy­dr­oxy­benzyl­­idene)-1-methyl-2-phenyl-1H-imidazol-5(4H)-one

aDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
*Correspondence e-mail: kyuchen@fcu.edu.tw

(Received 10 February 2012; accepted 22 February 2012; online 29 February 2012)

In the title compound, C17H14N2O2, the asymmetric unit comprises two mol­ecules that are comformationally similar [the dihedral angles between the phenyl rings in each are 46.35 (2) and 48.04 (3)°], with the conformation stabilized by intra­molecular O—H⋯N hydrogen bonds, which generate S(7) rings. In the crystal, inversion-related mol­ecules are linked by pairs of weak C—H⋯O hydrogen bonds, forming dimers with an R22(16) graph-set motif. Weak inter-ring ππ stacking is observed in the structure, the shortest centroid-to-centroid distance being 3.7480 (13) Å.

Related literature

For the spectroscopy and preparation of the title compound, see: Chuang et al. (2011[Chuang, W.-T., Hsieh, C.-C., Lai, C.-H., Lai, C.-H., Shih, C.-W., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Org. Chem. 76, 8189-8202.]). For the applications of proton-transfer dyes, see: Chen & Pang (2010[Chen, W.-H. & Pang, Y. (2010). Tetrahedron Lett. 51, 1914-1918.]); Gryko et al. (2010[Gryko, D. T., Piechowska, J. & Galezowski, M. (2010). J. Org. Chem. 75, 1297-1300.]); Han et al. (2010[Han, D. Y., Kim, J. M., Kim, J., Jung, H. S., Lee, Y. H., Zhang, J. F. & Kim, J. S. (2010). Tetrahedron Lett. 51, 1947-1951.]); Helal et al. (2010[Helal, A., Lee, S. H., Kim, S. H. & Kim, H.-S. (2010). Tetrahedron Lett. 51, 3531-3535.]); Ikeda et al. (2010[Ikeda, S., Toganoh, M., Easwaramoorthi, S., Lim, J. M., Kim, D. & Furuta, H. (2010). J. Org. Chem. 75, 8637-8649.]); Ito et al. (2011[Ito, Y., Amimoto, K. & Kawato, T. (2011). Dyes Pigm. 89, 319-323.]); Lim et al. (2011[Lim, C.-K., Seo, J., Kim, S., Kwon, I. C., Ahn, C.-H. & Park, S. Y. (2011). Dyes Pigm. 90, 284-289.]); Lins et al. (2010[Lins, G. O. W., Campo, L. F., Rodembusch, F. S. & Stefani, V. (2010). Dyes Pigm. 84, 114-120.]); Maupin et al. (2011[Maupin, C. M., Castillo, N., Taraphder, S., Tu, C., McKenna, R., Silverman, D. N. & Voth, G. A. (2011). J. Am. Chem. Soc. 133, 6223-6234.]); Santos et al. (2011[Santos, R. C., Silva Faleiro, N. V., Campo, L. F., Scroferneker, M. L., Corbellini, V. A., Rodembusch, F. S. & Stefani, V. (2011). Tetrahedron Lett. 52, 3048-3053.]); Tang et al. (2011[Tang, K.-C., Chang, M.-J., Lin, T.-Y., Pan, H.-A., Fang, T.-C., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Am. Chem. Soc. 133, 17738-17745.]). For a related structure, see: Chen et al. (2007[Chen, K.-Y., Cheng, Y.-M., Lai, C.-H., Hsu, C.-C., Ho, M.-L., Lee, G.-H. & Chou, P.-T. (2007). J. Am. Chem. Soc. 129, 4534-4535.]). For graph-set theory of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14N2O2

  • Mr = 278.30

  • Triclinic, [P \overline 1]

  • a = 9.7843 (4) Å

  • b = 9.8972 (3) Å

  • c = 15.4313 (6) Å

  • α = 72.086 (2)°

  • β = 79.301 (2)°

  • γ = 70.500 (2)°

  • V = 1334.57 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.32 × 0.28 × 0.14 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.889, Tmax = 0.984

  • 20392 measured reflections

  • 4699 independent reflections

  • 2273 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.101

  • S = 0.80

  • 4699 reflections

  • 382 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2 0.82 1.80 2.615 (2) 176
O4—H4⋯N4 0.82 1.79 2.612 (3) 175
C10—H10⋯O1i 0.93 2.58 3.403 (3) 148
C30—H30⋯O3ii 0.93 2.68 3.421 (3) 137
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The excited-state intramolecular proton transfer (ESIPT) reaction of the title compound has been investigated recently (Chuang et al., 2011), which involves transfer of a hydroxy proton to the imine nitrogen through an intramolecular seven-membered ring hydrogen-bonding system. The proton-transfer dyes have found many important applications. Prototypical examples are probes for solvation dynamics (Chen & Pang, 2010; Lins et al.) and biological environments (Lim et al., 2011; Maupin et al., 2011), near-infrared fluorescent dyes (Ikeda et al., 2010), chemosensors (Han et al., 2010; Helal et al., 2010), photochromic materials (Ito et al., 2011), fluorescence microscopy imaging (Santos et al., 2011), and recent applications in the field of organic light-emitting devices (Gryko et al., 2010; Tang et al., 2011).

The molecular structure of the title compound, C17H14N2O2 is shown in Fig. 1. The asymmetric unit comprises two symmetry-independent molecules (A and B) which are comformationally similar [dihedral angles between the phenyl rings in each are 46.35 (2) and 48.04 (3)°]. The conformation stabilized in each by intramolecular O—H···N hydrogen bonds which generate S(7) rings (Chen et al., 2007). Present also are intramolecular C—H···O interactions between the methyl group and the ketone O-atom, generating S(5) rings (Table 1). In the crystal (Fig. 2), inversion-related molecules are linked by pairs of weak hydrogen bonds (Table 1), forming cyclic dimers with an R22(16) graph-set motif (Bernstein et al., 1995). Weak ππ stacking is also observed in the crystal structure, the shortest centroid–centroid distance being 3.7480 (13) Å [symmetry code: x, y - 1, z].

Related literature top

For the spectroscopy and preparation of the title compound, see: Chuang et al. (2011). For the applications of proton-transfer dyes, see: Chen & Pang (2010); Gryko et al. (2010); Han et al. (2010); Helal et al. (2010); Ikeda et al. (2010); Ito et al. (2011); Lim et al. (2011); Lins et al. (2010); Maupin et al. (2011); Santos et al. (2011); Tang et al. (2011). For a related structure, see: Chen et al. (2007). For graph-set theory of hydrogen bonds, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized according to the literature procedure (Chuang et al., 2011). Yellow needle-shaped crystals suitable for the crystallographic studies reported here were isolated over a period of six weeks by slow evaporation from a chloroform solution.

Refinement top

The C-bound H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C)]. The O-bound H atoms were positioned geometrically (O—H = 0.82 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(O)].

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A section of the crystal packing of the title compound, viewed along the b axis. Green and blue dashed lines denote the intermolecular C10—H10···O1i and C30—H30···O3ii hydrogen bonds, respectively. For symmetry codes (i) and (ii), see Table 1.
(Z)-4-(2-Hydroxybenzylidene)-1-methyl-2-phenyl-1H- imidazol-5(4H)-one top
Crystal data top
C17H14N2O2Z = 4
Mr = 278.30F(000) = 584
Triclinic, P1Dx = 1.385 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7843 (4) ÅCell parameters from 3314 reflections
b = 9.8972 (3) Åθ = 2.5–25.0°
c = 15.4313 (6) ŵ = 0.09 mm1
α = 72.086 (2)°T = 150 K
β = 79.301 (2)°Prism, yellow
γ = 70.500 (2)°0.32 × 0.28 × 0.14 mm
V = 1334.57 (9) Å3
Data collection top
Bruker SMART CCD
diffractometer
4699 independent reflections
Radiation source: fine-focus sealed tube2273 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.889, Tmax = 0.984k = 1110
20392 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.049P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.80(Δ/σ)max < 0.001
4699 reflectionsΔρmax = 0.35 e Å3
382 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.037 (2)
Crystal data top
C17H14N2O2γ = 70.500 (2)°
Mr = 278.30V = 1334.57 (9) Å3
Triclinic, P1Z = 4
a = 9.7843 (4) ÅMo Kα radiation
b = 9.8972 (3) ŵ = 0.09 mm1
c = 15.4313 (6) ÅT = 150 K
α = 72.086 (2)°0.32 × 0.28 × 0.14 mm
β = 79.301 (2)°
Data collection top
Bruker SMART CCD
diffractometer
4699 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2273 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.984Rint = 0.054
20392 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 0.80Δρmax = 0.35 e Å3
4699 reflectionsΔρmin = 0.36 e Å3
382 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13687 (16)0.12970 (16)0.02374 (11)0.0292 (4)
O20.24941 (16)0.01412 (16)0.32193 (9)0.0331 (5)
H20.19620.01250.29960.050*
O30.15388 (16)0.37862 (16)0.01672 (11)0.0299 (4)
O40.23819 (17)0.52664 (17)0.32188 (10)0.0410 (5)
H40.19610.48770.29990.061*
N10.00550 (19)0.16641 (18)0.16225 (12)0.0229 (5)
N20.09021 (19)0.07230 (18)0.24367 (12)0.0219 (5)
N30.00423 (19)0.34215 (18)0.15218 (12)0.0228 (5)
N40.10847 (19)0.41218 (18)0.24187 (12)0.0227 (5)
C10.0086 (2)0.1355 (2)0.24468 (15)0.0223 (6)
C20.1046 (2)0.1190 (2)0.10228 (16)0.0227 (6)
C30.1655 (2)0.0577 (2)0.15660 (15)0.0206 (6)
C40.1125 (2)0.2116 (2)0.13239 (15)0.0306 (6)
H4A0.11320.17500.06710.046*
H4B0.20730.17130.16090.046*
H4C0.08750.31810.14950.046*
C50.2778 (2)0.0006 (2)0.12414 (15)0.0215 (6)
H50.30740.00330.06280.026*
C60.3625 (2)0.0560 (2)0.16442 (15)0.0193 (6)
C70.3494 (2)0.0583 (2)0.25650 (16)0.0232 (6)
C80.4470 (3)0.1070 (2)0.28520 (16)0.0307 (7)
H80.43850.10810.34600.037*
C90.5556 (3)0.1535 (2)0.22577 (16)0.0312 (7)
H90.62000.18460.24690.037*
C100.5697 (2)0.1544 (2)0.13480 (16)0.0288 (6)
H100.64240.18680.09410.035*
C110.4740 (2)0.1065 (2)0.10597 (15)0.0251 (6)
H110.48340.10740.04470.030*
C130.1095 (2)0.1721 (2)0.32475 (15)0.0213 (6)
C140.1679 (2)0.0741 (2)0.37879 (15)0.0259 (6)
H140.14590.01540.36270.031*
C150.2590 (2)0.1091 (2)0.45685 (16)0.0316 (7)
H150.29950.04240.49250.038*
C160.2899 (3)0.2423 (3)0.48168 (16)0.0335 (7)
H160.35110.26540.53420.040*
C170.2304 (3)0.3420 (3)0.42909 (17)0.0403 (7)
H170.25040.43270.44650.048*
C180.1414 (3)0.3063 (2)0.35063 (16)0.0342 (7)
H180.10230.37290.31470.041*
C210.0052 (2)0.3587 (2)0.23784 (15)0.0213 (6)
C220.1193 (2)0.3853 (2)0.09563 (16)0.0224 (6)
C230.1837 (2)0.4354 (2)0.15464 (15)0.0218 (6)
C240.0927 (2)0.2851 (2)0.12174 (15)0.0300 (6)
H24A0.04670.25120.06850.045*
H24B0.18190.36260.10710.045*
H24C0.11330.20370.16960.045*
C250.2933 (2)0.4973 (2)0.12575 (15)0.0241 (6)
H250.32840.50090.06500.029*
C260.3682 (2)0.5595 (2)0.16923 (16)0.0219 (6)
C270.3378 (2)0.5747 (2)0.25873 (16)0.0238 (6)
C280.4158 (3)0.6439 (2)0.28910 (16)0.0288 (6)
H280.39380.65530.34820.035*
C290.5248 (3)0.6955 (2)0.23309 (17)0.0314 (7)
H290.57590.74100.25440.038*
C300.5579 (2)0.6795 (2)0.14511 (17)0.0319 (7)
H300.63190.71360.10710.038*
C310.4811 (2)0.6132 (2)0.11422 (16)0.0289 (6)
H310.50420.60320.05480.035*
C330.0964 (2)0.3198 (2)0.31732 (15)0.0221 (6)
C340.0444 (3)0.2553 (2)0.40301 (16)0.0295 (6)
H340.05370.23570.40880.035*
C350.1373 (3)0.2200 (2)0.47980 (16)0.0334 (7)
H350.10120.17570.53680.040*
C360.2833 (3)0.2502 (2)0.47222 (16)0.0290 (6)
H360.34580.22610.52390.035*
C370.3360 (3)0.3161 (2)0.38798 (16)0.0282 (6)
H370.43480.33760.38300.034*
C380.2438 (2)0.3510 (2)0.31025 (15)0.0254 (6)
H380.28070.39520.25350.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0265 (10)0.0404 (10)0.0249 (11)0.0125 (8)0.0015 (8)0.0138 (9)
O20.0353 (11)0.0523 (11)0.0223 (10)0.0289 (9)0.0055 (9)0.0123 (8)
O30.0312 (11)0.0353 (10)0.0240 (11)0.0109 (9)0.0004 (9)0.0096 (9)
O40.0483 (12)0.0557 (12)0.0318 (11)0.0307 (10)0.0043 (10)0.0175 (9)
N10.0195 (12)0.0289 (12)0.0253 (13)0.0123 (10)0.0000 (10)0.0099 (10)
N20.0184 (12)0.0245 (11)0.0230 (13)0.0092 (10)0.0017 (10)0.0055 (9)
N30.0228 (13)0.0275 (12)0.0217 (12)0.0112 (10)0.0014 (10)0.0079 (10)
N40.0206 (12)0.0259 (11)0.0228 (13)0.0098 (10)0.0011 (10)0.0068 (9)
C10.0199 (15)0.0205 (14)0.0256 (16)0.0033 (12)0.0017 (12)0.0078 (12)
C20.0187 (15)0.0232 (14)0.0241 (16)0.0041 (12)0.0015 (13)0.0061 (12)
C30.0170 (14)0.0212 (13)0.0217 (15)0.0042 (11)0.0019 (12)0.0044 (11)
C40.0265 (16)0.0392 (16)0.0340 (17)0.0156 (13)0.0043 (13)0.0136 (13)
C50.0208 (15)0.0233 (14)0.0171 (14)0.0032 (12)0.0008 (11)0.0049 (11)
C60.0164 (14)0.0186 (13)0.0208 (15)0.0044 (11)0.0010 (12)0.0036 (11)
C70.0217 (15)0.0229 (14)0.0244 (16)0.0086 (12)0.0017 (12)0.0054 (12)
C80.0332 (16)0.0412 (16)0.0242 (16)0.0164 (14)0.0004 (13)0.0133 (13)
C90.0283 (16)0.0406 (16)0.0325 (17)0.0189 (13)0.0029 (13)0.0113 (13)
C100.0197 (15)0.0357 (15)0.0334 (17)0.0145 (13)0.0025 (13)0.0084 (13)
C110.0227 (15)0.0282 (14)0.0239 (15)0.0070 (12)0.0010 (12)0.0084 (12)
C130.0176 (14)0.0243 (14)0.0231 (15)0.0084 (12)0.0009 (12)0.0058 (12)
C140.0264 (15)0.0258 (14)0.0269 (15)0.0106 (12)0.0003 (12)0.0068 (12)
C150.0316 (16)0.0329 (16)0.0312 (17)0.0101 (13)0.0045 (13)0.0135 (13)
C160.0296 (17)0.0405 (16)0.0319 (17)0.0190 (14)0.0078 (13)0.0086 (14)
C170.0440 (18)0.0402 (17)0.0427 (18)0.0269 (15)0.0126 (15)0.0134 (14)
C180.0376 (17)0.0318 (16)0.0386 (17)0.0162 (13)0.0071 (14)0.0166 (13)
C210.0220 (15)0.0184 (14)0.0222 (16)0.0052 (12)0.0017 (12)0.0048 (12)
C220.0222 (15)0.0193 (14)0.0215 (16)0.0027 (11)0.0011 (13)0.0038 (12)
C230.0192 (14)0.0233 (14)0.0210 (15)0.0058 (12)0.0015 (12)0.0057 (12)
C240.0318 (16)0.0322 (15)0.0303 (16)0.0111 (13)0.0054 (13)0.0109 (12)
C250.0229 (15)0.0230 (14)0.0227 (15)0.0039 (12)0.0026 (12)0.0068 (12)
C260.0202 (15)0.0194 (14)0.0256 (16)0.0047 (12)0.0013 (12)0.0073 (12)
C270.0217 (15)0.0236 (14)0.0243 (16)0.0090 (12)0.0012 (12)0.0032 (12)
C280.0324 (16)0.0286 (14)0.0257 (16)0.0059 (13)0.0073 (13)0.0081 (12)
C290.0250 (16)0.0274 (15)0.0443 (19)0.0077 (13)0.0107 (14)0.0087 (14)
C300.0205 (15)0.0297 (15)0.0430 (19)0.0080 (12)0.0009 (13)0.0080 (14)
C310.0249 (16)0.0252 (14)0.0363 (17)0.0089 (12)0.0019 (13)0.0066 (13)
C330.0229 (15)0.0215 (14)0.0234 (16)0.0087 (12)0.0009 (12)0.0068 (12)
C340.0245 (15)0.0384 (16)0.0283 (16)0.0130 (13)0.0031 (13)0.0080 (13)
C350.0361 (17)0.0436 (17)0.0226 (16)0.0178 (14)0.0025 (13)0.0050 (13)
C360.0299 (17)0.0327 (15)0.0253 (16)0.0139 (13)0.0061 (13)0.0091 (13)
C370.0207 (15)0.0283 (15)0.0354 (17)0.0094 (12)0.0015 (13)0.0079 (13)
C380.0248 (15)0.0257 (14)0.0248 (15)0.0080 (12)0.0035 (12)0.0043 (12)
Geometric parameters (Å, º) top
O1—C21.222 (2)C14—H140.9300
O2—C71.347 (2)C15—C161.373 (3)
O2—H20.8200C15—H150.9300
O3—C221.218 (2)C16—C171.380 (3)
O4—C271.341 (2)C16—H160.9300
O4—H40.8200C17—C181.378 (3)
N1—C21.392 (3)C17—H170.9300
N1—C11.390 (3)C18—H180.9300
N1—C41.458 (2)C21—C331.467 (3)
N2—C11.311 (2)C22—C231.474 (3)
N2—C31.397 (3)C23—C251.348 (3)
N3—C211.383 (3)C24—H24A0.9600
N3—C221.392 (3)C24—H24B0.9600
N3—C241.458 (2)C24—H24C0.9600
N4—C211.306 (2)C25—C261.450 (3)
N4—C231.400 (3)C25—H250.9300
C1—C131.464 (3)C26—C271.402 (3)
C2—C31.471 (3)C26—C311.410 (3)
C3—C51.347 (3)C27—C281.396 (3)
C4—H4A0.9600C28—C291.376 (3)
C4—H4B0.9600C28—H280.9300
C4—H4C0.9600C29—C301.381 (3)
C5—C61.449 (3)C29—H290.9300
C5—H50.9300C30—C311.371 (3)
C6—C111.406 (3)C30—H300.9300
C6—C71.409 (3)C31—H310.9300
C7—C81.392 (3)C33—C341.388 (3)
C8—C91.374 (3)C33—C381.389 (3)
C8—H80.9300C34—C351.382 (3)
C9—C101.382 (3)C34—H340.9300
C9—H90.9300C35—C361.378 (3)
C10—C111.372 (3)C35—H350.9300
C10—H100.9300C36—C371.373 (3)
C11—H110.9300C36—H360.9300
C13—C141.383 (3)C37—C381.387 (3)
C13—C181.388 (3)C37—H370.9300
C14—C151.385 (3)C38—H380.9300
C7—O2—H2109.5C18—C17—H17120.2
C27—O4—H4109.5C16—C17—H17120.2
C2—N1—C1108.23 (18)C17—C18—C13120.6 (2)
C2—N1—C4122.40 (19)C17—C18—H18119.7
C1—N1—C4128.31 (19)C13—C18—H18119.7
C1—N2—C3106.55 (18)N4—C21—N3112.87 (19)
C21—N3—C22108.32 (18)N4—C21—C33122.4 (2)
C21—N3—C24128.78 (18)N3—C21—C33124.7 (2)
C22—N3—C24122.86 (19)O3—C22—N3125.6 (2)
C21—N4—C23106.86 (19)O3—C22—C23130.9 (2)
N2—C1—N1112.80 (19)N3—C22—C23103.46 (19)
N2—C1—C13123.5 (2)C25—C23—N4127.5 (2)
N1—C1—C13123.68 (19)C25—C23—C22124.1 (2)
O1—C2—N1125.2 (2)N4—C23—C22108.41 (18)
O1—C2—C3131.3 (2)N3—C24—H24A109.5
N1—C2—C3103.43 (19)N3—C24—H24B109.5
C5—C3—N2128.0 (2)H24A—C24—H24B109.5
C5—C3—C2123.0 (2)N3—C24—H24C109.5
N2—C3—C2108.99 (18)H24A—C24—H24C109.5
N1—C4—H4A109.5H24B—C24—H24C109.5
N1—C4—H4B109.5C23—C25—C26133.6 (2)
H4A—C4—H4B109.5C23—C25—H25113.2
N1—C4—H4C109.5C26—C25—H25113.2
H4A—C4—H4C109.5C27—C26—C31117.1 (2)
H4B—C4—H4C109.5C27—C26—C25126.9 (2)
C3—C5—C6133.7 (2)C31—C26—C25115.9 (2)
C3—C5—H5113.2O4—C27—C28114.2 (2)
C6—C5—H5113.2O4—C27—C26125.9 (2)
C11—C6—C7117.1 (2)C28—C27—C26120.0 (2)
C11—C6—C5116.0 (2)C29—C28—C27121.1 (2)
C7—C6—C5126.9 (2)C29—C28—H28119.4
O2—C7—C8115.5 (2)C27—C28—H28119.4
O2—C7—C6125.2 (2)C28—C29—C30119.8 (2)
C8—C7—C6119.3 (2)C28—C29—H29120.1
C9—C8—C7121.5 (2)C30—C29—H29120.1
C9—C8—H8119.2C31—C30—C29119.5 (2)
C7—C8—H8119.2C31—C30—H30120.2
C8—C9—C10120.4 (2)C29—C30—H30120.2
C8—C9—H9119.8C30—C31—C26122.4 (2)
C10—C9—H9119.8C30—C31—H31118.8
C11—C10—C9118.4 (2)C26—C31—H31118.8
C11—C10—H10120.8C34—C33—C38118.9 (2)
C9—C10—H10120.8C34—C33—C21118.9 (2)
C10—C11—C6123.3 (2)C38—C33—C21122.2 (2)
C10—C11—H11118.4C35—C34—C33120.6 (2)
C6—C11—H11118.4C35—C34—H34119.7
C14—C13—C18119.2 (2)C33—C34—H34119.7
C14—C13—C1119.10 (19)C36—C35—C34120.2 (2)
C18—C13—C1121.6 (2)C36—C35—H35119.9
C13—C14—C15120.1 (2)C34—C35—H35119.9
C13—C14—H14119.9C37—C36—C35119.6 (2)
C15—C14—H14119.9C37—C36—H36120.2
C16—C15—C14120.1 (2)C35—C36—H36120.2
C16—C15—H15119.9C36—C37—C38120.8 (2)
C14—C15—H15119.9C36—C37—H37119.6
C15—C16—C17120.3 (2)C38—C37—H37119.6
C15—C16—H16119.8C33—C38—C37119.9 (2)
C17—C16—H16119.8C33—C38—H38120.1
C18—C17—C16119.6 (2)C37—C38—H38120.1
C2—N1—C1—N20.1 (2)C3—C5—C6—C73.3 (4)
C2—N1—C1—C13179.03 (19)C3—C5—C6—C11179.8 (2)
C4—N1—C1—N2168.39 (19)C5—C6—C7—O23.5 (3)
C1—N1—C2—O1179.9 (2)C5—C6—C7—C8175.3 (2)
C1—N1—C2—C30.0 (2)C11—C6—C7—O2179.95 (18)
C4—N1—C2—O111.0 (3)C11—C6—C7—C81.1 (3)
C4—N1—C2—C3169.06 (17)C5—C6—C11—C10175.71 (19)
C3—N2—C1—N10.3 (2)C7—C6—C11—C101.1 (3)
C3—N2—C1—C13179.15 (19)O2—C7—C8—C9179.22 (19)
C1—N2—C3—C20.3 (2)C6—C7—C8—C90.3 (3)
C1—N2—C3—C5179.1 (2)C7—C8—C9—C100.7 (3)
N1—C1—C13—C14142.3 (2)C8—C9—C10—C110.7 (3)
N1—C1—C13—C1841.4 (3)C9—C10—C11—C60.2 (3)
N2—C1—C13—C1438.9 (3)C1—C13—C14—C15177.4 (2)
N2—C1—C13—C18137.4 (2)C18—C13—C14—C151.1 (3)
O1—C2—C3—N2179.8 (2)C1—C13—C18—C17176.4 (2)
O1—C2—C3—C50.8 (4)C14—C13—C18—C170.1 (4)
N1—C2—C3—N20.2 (2)C13—C14—C15—C161.0 (3)
N1—C2—C3—C5179.09 (19)C14—C15—C16—C170.0 (4)
N2—C3—C5—C63.6 (4)C15—C16—C17—C181.0 (4)
C2—C3—C5—C6175.1 (2)C16—C17—C18—C130.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.821.802.615 (2)176
O4—H4···N40.821.792.612 (3)175
C4—H4A···O10.962.562.896 (3)100
C10—H10···O1i0.932.583.403 (3)148
C30—H30···O3ii0.932.683.421 (3)137
C24—H24A···O30.962.562.902 (3)101
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H14N2O2
Mr278.30
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)9.7843 (4), 9.8972 (3), 15.4313 (6)
α, β, γ (°)72.086 (2), 79.301 (2), 70.500 (2)
V3)1334.57 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.28 × 0.14
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.889, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
20392, 4699, 2273
Rint0.054
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 0.80
No. of reflections4699
No. of parameters382
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.36

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.821.802.615 (2)176
O4—H4···N40.821.792.612 (3)175
C10—H10···O1i0.932.583.403 (3)148
C30—H30···O3ii0.932.683.421 (3)137
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.
 

Acknowledgements

This work was supported by the National Science Council (grant No. NSC 99-2113-M-035-001-MY2) and Feng Chia University, Taiwan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, K.-Y., Cheng, Y.-M., Lai, C.-H., Hsu, C.-C., Ho, M.-L., Lee, G.-H. & Chou, P.-T. (2007). J. Am. Chem. Soc. 129, 4534–4535.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChen, W.-H. & Pang, Y. (2010). Tetrahedron Lett. 51, 1914–1918.  Web of Science CrossRef CAS Google Scholar
First citationChuang, W.-T., Hsieh, C.-C., Lai, C.-H., Lai, C.-H., Shih, C.-W., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Org. Chem. 76, 8189–8202.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGryko, D. T., Piechowska, J. & Galezowski, M. (2010). J. Org. Chem. 75, 1297–1300.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHan, D. Y., Kim, J. M., Kim, J., Jung, H. S., Lee, Y. H., Zhang, J. F. & Kim, J. S. (2010). Tetrahedron Lett. 51, 1947–1951.  Web of Science CSD CrossRef CAS Google Scholar
First citationHelal, A., Lee, S. H., Kim, S. H. & Kim, H.-S. (2010). Tetrahedron Lett. 51, 3531–3535.  Web of Science CrossRef CAS Google Scholar
First citationIkeda, S., Toganoh, M., Easwaramoorthi, S., Lim, J. M., Kim, D. & Furuta, H. (2010). J. Org. Chem. 75, 8637–8649.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationIto, Y., Amimoto, K. & Kawato, T. (2011). Dyes Pigm. 89, 319–323.  Web of Science CSD CrossRef CAS Google Scholar
First citationLim, C.-K., Seo, J., Kim, S., Kwon, I. C., Ahn, C.-H. & Park, S. Y. (2011). Dyes Pigm. 90, 284–289.  Web of Science CrossRef CAS Google Scholar
First citationLins, G. O. W., Campo, L. F., Rodembusch, F. S. & Stefani, V. (2010). Dyes Pigm. 84, 114-120.  Web of Science CrossRef CAS Google Scholar
First citationMaupin, C. M., Castillo, N., Taraphder, S., Tu, C., McKenna, R., Silverman, D. N. & Voth, G. A. (2011). J. Am. Chem. Soc. 133, 6223-6234.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSantos, R. C., Silva Faleiro, N. V., Campo, L. F., Scroferneker, M. L., Corbellini, V. A., Rodembusch, F. S. & Stefani, V. (2011). Tetrahedron Lett. 52, 3048–3053.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, K.-C., Chang, M.-J., Lin, T.-Y., Pan, H.-A., Fang, T.-C., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Am. Chem. Soc. 133, 17738–17745.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o902-o903
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds