organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Bromo-1H-indole-3-carb­­oxy­lic acid

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 3 December 2011; accepted 13 February 2012; online 10 March 2012)

In the title mol­ecule, C9H6BrNO2, the dihedral angle between the –COOH group and the ring system is 6 (4)°. In the crystal, pairs of O—H⋯O hydrogen bonds link the mol­ecules into inversion dimers and these dimers are connected via N—H⋯O hydrogen bonds to form layers parallel to the (-101) plane.

Related literature

For related literature, see: Lang et al. (2011[Lang, L., Wu, J.-L., Shi, L.-J., Xia, C.-G. & Li, F.-W. (2011). Chem. Commun. 47, 12553-12555.]); Luo et al. (2011[Luo, Y.-H., Qian, X.-M., Gao, G., Li, J.-F. & Mao, S.-L. (2011). Acta Cryst. E67, m172.]).

[Scheme 1]

Experimental

Crystal data
  • C9H6BrNO2

  • Mr = 240.06

  • Monoclinic, P 21 /n

  • a = 7.2229 (14) Å

  • b = 11.874 (2) Å

  • c = 11.079 (2) Å

  • β = 108.37 (3)°

  • V = 901.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.52 mm−1

  • T = 293 K

  • 0.30 × 0.23 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.977, Tmax = 0.984

  • 8876 measured reflections

  • 2051 independent reflections

  • 1284 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.158

  • S = 1.06

  • 2051 reflections

  • 122 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H7⋯O1i 0.97 (9) 1.67 (10) 2.627 (5) 169 (8)
N1—H1A⋯O1ii 0.86 2.16 2.928 (6) 148
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Indole derivatives such as indole-3-carboxylates are important building blocks in the synthesis of many pharmaceuticals and biologically active compounds. (Lang et al., 2011; Luo, et al., 2011). In the crystal structure of the title compound (Fig. 1), intermolecular O—H···O hydrogen bonds link the molecules into dimers and the dimers are connected via intermolecular N—H···O hydrogen bonds forming layers parallel to (101) plane (Table 1, Fig. 2).

Related literature top

For related literature, see: Lang et al. (2011); Luo et al. (2011).

Experimental top

A solution of the title compound (0.2 g) in methanol (20 ml) was placed in a dark place. Yellow single crystals suitable for X-ray diffraction study were obtained by slow evaporation of the solution over a period of 7 d.

Refinement top

H atoms attached to C and N were placed into calculated positions and treated as riding with C—H = 0.93 Å, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C, N). Carboxylic H atom was found from difference maps and refined independently.

Structure description top

Indole derivatives such as indole-3-carboxylates are important building blocks in the synthesis of many pharmaceuticals and biologically active compounds. (Lang et al., 2011; Luo, et al., 2011). In the crystal structure of the title compound (Fig. 1), intermolecular O—H···O hydrogen bonds link the molecules into dimers and the dimers are connected via intermolecular N—H···O hydrogen bonds forming layers parallel to (101) plane (Table 1, Fig. 2).

For related literature, see: Lang et al. (2011); Luo et al. (2011).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom labelling scheme. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.
6-Bromo-1H-indole-3-carboxylic acid top
Crystal data top
C9H6BrNO2F(000) = 472
Mr = 240.06Dx = 1.768 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2051 reflections
a = 7.2229 (14) Åθ = 3.0–27.5°
b = 11.874 (2) ŵ = 4.52 mm1
c = 11.079 (2) ÅT = 293 K
β = 108.37 (3)°Prism, brown
V = 901.7 (3) Å30.30 × 0.23 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2051 independent reflections
Radiation source: fine-focus sealed tube1284 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD_Profile_fitting scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1514
Tmin = 0.977, Tmax = 0.984l = 1414
8876 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0513P)2 + 1.7606P]
where P = (Fo2 + 2Fc2)/3
2051 reflections(Δ/σ)max < 0.001
122 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
C9H6BrNO2V = 901.7 (3) Å3
Mr = 240.06Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2229 (14) ŵ = 4.52 mm1
b = 11.874 (2) ÅT = 293 K
c = 11.079 (2) Å0.30 × 0.23 × 0.20 mm
β = 108.37 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2051 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1284 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.984Rint = 0.082
8876 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.52 e Å3
2051 reflectionsΔρmin = 0.76 e Å3
122 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.08018 (10)0.38905 (7)0.15536 (6)0.0777 (4)
C50.2174 (7)0.5896 (4)0.4756 (5)0.0394 (12)
O20.4390 (7)0.4389 (3)0.8444 (4)0.0571 (12)
O10.4564 (6)0.6167 (3)0.9140 (3)0.0453 (9)
C30.4157 (7)0.5477 (4)0.8231 (5)0.0369 (12)
N10.2185 (7)0.6961 (4)0.5252 (4)0.0457 (11)
H1A0.18000.75630.48130.055*
C40.2939 (7)0.5144 (4)0.5765 (5)0.0366 (11)
C90.3036 (8)0.4004 (5)0.5495 (5)0.0452 (13)
H9A0.35250.34840.61460.054*
C80.2397 (9)0.3663 (5)0.4251 (6)0.0504 (14)
H8A0.24470.29020.40630.060*
C20.3405 (7)0.5824 (4)0.6922 (5)0.0361 (11)
C10.2896 (7)0.6912 (4)0.6539 (5)0.0421 (13)
H1B0.30210.75250.70820.051*
C70.1676 (7)0.4426 (5)0.3265 (5)0.0440 (13)
C60.1550 (7)0.5551 (5)0.3481 (5)0.0459 (14)
H6A0.10750.60610.28180.055*
H70.484 (13)0.427 (7)0.936 (9)0.13 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0665 (5)0.1168 (7)0.0510 (4)0.0166 (4)0.0201 (3)0.0338 (4)
C50.037 (3)0.040 (3)0.041 (3)0.000 (2)0.012 (2)0.002 (2)
O20.095 (3)0.029 (2)0.041 (2)0.002 (2)0.012 (2)0.0027 (17)
O10.065 (2)0.0304 (19)0.038 (2)0.0045 (18)0.0119 (18)0.0017 (15)
C30.039 (3)0.032 (3)0.039 (3)0.000 (2)0.011 (2)0.001 (2)
N10.057 (3)0.035 (2)0.043 (3)0.009 (2)0.014 (2)0.011 (2)
C40.038 (3)0.035 (3)0.037 (3)0.001 (2)0.013 (2)0.001 (2)
C90.055 (3)0.041 (3)0.042 (3)0.003 (3)0.018 (3)0.003 (2)
C80.058 (4)0.044 (3)0.055 (4)0.008 (3)0.026 (3)0.015 (3)
C20.039 (3)0.032 (3)0.037 (3)0.004 (2)0.012 (2)0.001 (2)
C10.047 (3)0.032 (3)0.044 (3)0.001 (2)0.011 (3)0.002 (2)
C70.039 (3)0.060 (4)0.036 (3)0.009 (3)0.016 (2)0.010 (3)
C60.040 (3)0.064 (4)0.031 (3)0.003 (3)0.008 (2)0.006 (3)
Geometric parameters (Å, º) top
Br1—C71.908 (5)C4—C91.394 (7)
C5—N11.377 (7)C4—C21.461 (7)
C5—C61.402 (7)C9—C81.369 (8)
C5—C41.401 (7)C9—H9A0.9300
O2—C31.315 (6)C8—C71.388 (8)
O2—H70.97 (9)C8—H8A0.9300
O1—C31.259 (6)C2—C11.374 (7)
C3—C21.439 (7)C1—H1B0.9300
N1—C11.356 (6)C7—C61.365 (8)
N1—H1A0.8600C6—H6A0.9300
N1—C5—C6129.0 (5)C9—C8—C7121.5 (5)
N1—C5—C4108.4 (4)C9—C8—H8A119.2
C6—C5—C4122.6 (5)C7—C8—H8A119.2
C3—O2—H7108 (5)C1—C2—C3124.0 (5)
O1—C3—O2120.8 (5)C1—C2—C4106.5 (4)
O1—C3—C2122.6 (4)C3—C2—C4129.4 (5)
O2—C3—C2116.6 (5)N1—C1—C2109.9 (5)
C1—N1—C5109.5 (4)N1—C1—H1B125.0
C1—N1—H1A125.3C2—C1—H1B125.0
C5—N1—H1A125.3C6—C7—C8122.0 (5)
C9—C4—C5118.8 (5)C6—C7—Br1118.7 (4)
C9—C4—C2135.4 (5)C8—C7—Br1119.3 (4)
C5—C4—C2105.8 (4)C7—C6—C5116.4 (5)
C8—C9—C4118.7 (5)C7—C6—H6A121.8
C8—C9—H9A120.7C5—C6—H6A121.8
C4—C9—H9A120.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H7···O1i0.97 (9)1.67 (10)2.627 (5)169 (8)
N1—H1A···O1ii0.862.162.928 (6)148
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC9H6BrNO2
Mr240.06
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.2229 (14), 11.874 (2), 11.079 (2)
β (°) 108.37 (3)
V3)901.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)4.52
Crystal size (mm)0.30 × 0.23 × 0.20
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.977, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
8876, 2051, 1284
Rint0.082
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.158, 1.06
No. of reflections2051
No. of parameters122
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.76

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H7···O1i0.97 (9)1.67 (10)2.627 (5)169 (8)
N1—H1A···O1ii0.862.162.928 (6)148.0
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1/2, y+3/2, z1/2.
 

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationLang, L., Wu, J.-L., Shi, L.-J., Xia, C.-G. & Li, F.-W. (2011). Chem. Commun. 47, 12553–12555.  Web of Science CSD CrossRef CAS Google Scholar
First citationLuo, Y.-H., Qian, X.-M., Gao, G., Li, J.-F. & Mao, S.-L. (2011). Acta Cryst. E67, m172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds