organic compounds
5-Bromo-4-iodo-2-methylaniline
aPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, and bHenan Hospital of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China
*Correspondence e-mail: liuyanju886@163.com
The 7H7BrIN, contains two independent molecules, which are linked by weak N—H⋯N hydroden-bonding interactions between the amino groups.
of the title compound, CRelated literature
For the synthetic procedure, see: Lee et al. (2005). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053681200921X/aa2048sup1.cif
contains datablocks I, LYJ. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681200921X/aa2048Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681200921X/aa2048Isup3.cml
The title compound, (I) was prepared by a method reported in literature (Lee et al., 2005). The crystals were obtained by dissolving (I) (0.5 g) in methanol (50 ml) and evaporating the solvent slowly at room temperature for about 10 d.
H atoms were positioned geometrically and refined as riding, with N—H = 0.86 Å and C—H = 0.93 Å, with Uiso(H) = 1.2Ueq(C, N).
The tittle compound, 5-bromo-4-iodo-2-methylaniline is an important intermediate, which can be utilized to synthesize highly fluorescent solid-state asymmetric spirosilabifluorene derivatives (Lee et al., 2005). And we report here the
of the title compound (I), see Fig. 1.The
contains two title molecules of 5-bromo-4-iodo-2-methylaniline. Weak hydroden bonding interactions link them together with N···N distance 3.300 (14) Å. The bromo, iodo and amino substituents lie in the mean plane of the phenyl rings, with mean deviation of 0.0040 (1) Å from the plane (C2—C7), and 0.0120 (1) Å from the plane (C9—C14). The bond lengths and angles are within normal ranges (Allen et al., 1987).For the synthetic procedure, see: Lee et al. (2005). F for bond-length data, see: Allen et al. (1987).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. A packing diagram of (I). |
C7H7BrIN | F(000) = 1152 |
Mr = 311.94 | Dx = 2.368 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 26.831 (5) Å | θ = 9–13° |
b = 5.3920 (11) Å | µ = 8.15 mm−1 |
c = 12.217 (2) Å | T = 293 K |
β = 98.05 (3)° | Block, colourless |
V = 1750.1 (6) Å3 | 0.20 × 0.10 × 0.10 mm |
Z = 8 |
Enraf–Nonius CAD-4 diffractometer | 2057 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.000 |
Graphite monochromator | θmax = 25.3°, θmin = 1.5° |
ω/2θ scans | h = −32→31 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→6 |
Tmin = 0.292, Tmax = 0.496 | l = 0→14 |
3177 measured reflections | 3 standard reflections every 200 reflections |
3177 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.163 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0946P)2] where P = (Fo2 + 2Fc2)/3 |
3177 reflections | (Δ/σ)max < 0.001 |
183 parameters | Δρmax = 0.97 e Å−3 |
0 restraints | Δρmin = −1.03 e Å−3 |
C7H7BrIN | V = 1750.1 (6) Å3 |
Mr = 311.94 | Z = 8 |
Monoclinic, P21/c | Mo Kα radiation |
a = 26.831 (5) Å | µ = 8.15 mm−1 |
b = 5.3920 (11) Å | T = 293 K |
c = 12.217 (2) Å | 0.20 × 0.10 × 0.10 mm |
β = 98.05 (3)° |
Enraf–Nonius CAD-4 diffractometer | 2057 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.000 |
Tmin = 0.292, Tmax = 0.496 | 3 standard reflections every 200 reflections |
3177 measured reflections | intensity decay: 1% |
3177 independent reflections |
R[F2 > 2σ(F2)] = 0.060 | 0 restraints |
wR(F2) = 0.163 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.97 e Å−3 |
3177 reflections | Δρmin = −1.03 e Å−3 |
183 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.05030 (3) | −0.37033 (14) | 0.72451 (7) | 0.0542 (3) | |
Br1 | 0.18159 (5) | −0.3594 (2) | 0.82076 (10) | 0.0583 (4) | |
N1 | 0.2022 (4) | 0.3506 (17) | 0.5418 (9) | 0.058 (3) | |
H1A | 0.2337 | 0.3468 | 0.5679 | 0.069* | |
H1B | 0.1914 | 0.4538 | 0.4902 | 0.069* | |
C1 | 0.0968 (5) | 0.373 (2) | 0.4509 (9) | 0.053 (3) | |
H1C | 0.1125 | 0.3476 | 0.3859 | 0.080* | |
H1D | 0.1026 | 0.5404 | 0.4765 | 0.080* | |
H1E | 0.0612 | 0.3447 | 0.4336 | 0.080* | |
C2 | 0.1187 (4) | 0.1958 (19) | 0.5397 (9) | 0.041 (3) | |
C3 | 0.1691 (4) | 0.191 (2) | 0.5825 (9) | 0.043 (3) | |
C4 | 0.1864 (4) | 0.025 (2) | 0.6653 (10) | 0.049 (3) | |
H4A | 0.2204 | 0.0251 | 0.6940 | 0.059* | |
C5 | 0.1542 (4) | −0.1415 (19) | 0.7070 (9) | 0.042 (3) | |
C6 | 0.1033 (4) | −0.1352 (17) | 0.6651 (8) | 0.036 (2) | |
C7 | 0.0864 (4) | 0.030 (2) | 0.5818 (9) | 0.044 (3) | |
H7A | 0.0524 | 0.0309 | 0.5530 | 0.052* | |
I2 | 0.45125 (3) | −0.34995 (15) | 0.68253 (7) | 0.0534 (3) | |
Br2 | 0.31999 (5) | −0.3860 (2) | 0.68824 (9) | 0.0502 (3) | |
N2 | 0.2915 (4) | 0.2963 (19) | 0.3831 (9) | 0.060 (3) | |
H2A | 0.2599 | 0.2726 | 0.3840 | 0.072* | |
H2B | 0.3014 | 0.4056 | 0.3395 | 0.072* | |
C8 | 0.3973 (6) | 0.385 (2) | 0.3750 (11) | 0.067 (4) | |
H8A | 0.3858 | 0.5453 | 0.3943 | 0.100* | |
H8B | 0.3841 | 0.3482 | 0.2996 | 0.100* | |
H8C | 0.4334 | 0.3837 | 0.3836 | 0.100* | |
C9 | 0.3795 (4) | 0.1937 (19) | 0.4488 (9) | 0.044 (3) | |
C10 | 0.4119 (5) | 0.039 (2) | 0.5159 (9) | 0.048 (3) | |
H10A | 0.4463 | 0.0539 | 0.5135 | 0.057* | |
C11 | 0.3960 (4) | −0.137 (2) | 0.5865 (8) | 0.041 (3) | |
C12 | 0.3454 (4) | −0.1580 (18) | 0.5898 (8) | 0.038 (2) | |
C13 | 0.3108 (4) | −0.019 (2) | 0.5224 (8) | 0.040 (3) | |
H13A | 0.2765 | −0.0421 | 0.5237 | 0.048* | |
C14 | 0.3270 (4) | 0.157 (2) | 0.4527 (9) | 0.043 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0587 (5) | 0.0456 (5) | 0.0631 (6) | −0.0017 (4) | 0.0249 (4) | 0.0019 (4) |
Br1 | 0.0684 (8) | 0.0578 (8) | 0.0482 (8) | 0.0159 (6) | 0.0067 (6) | 0.0058 (6) |
N1 | 0.050 (6) | 0.065 (7) | 0.061 (7) | −0.002 (5) | 0.015 (5) | 0.007 (6) |
C1 | 0.073 (8) | 0.045 (7) | 0.043 (7) | −0.002 (6) | 0.013 (6) | −0.003 (6) |
C2 | 0.053 (7) | 0.037 (6) | 0.033 (6) | 0.004 (5) | 0.012 (5) | −0.006 (5) |
C3 | 0.050 (7) | 0.050 (7) | 0.034 (6) | 0.002 (6) | 0.020 (5) | −0.006 (5) |
C4 | 0.046 (7) | 0.050 (7) | 0.053 (7) | 0.008 (6) | 0.013 (6) | −0.017 (6) |
C5 | 0.050 (6) | 0.030 (6) | 0.046 (6) | 0.011 (5) | 0.008 (5) | −0.004 (5) |
C6 | 0.046 (6) | 0.025 (5) | 0.038 (6) | −0.001 (5) | 0.012 (5) | −0.008 (5) |
C7 | 0.050 (7) | 0.041 (6) | 0.039 (6) | 0.008 (5) | 0.003 (5) | −0.010 (5) |
I2 | 0.0509 (5) | 0.0515 (5) | 0.0565 (5) | 0.0043 (4) | 0.0028 (4) | −0.0006 (4) |
Br2 | 0.0534 (7) | 0.0530 (8) | 0.0453 (7) | −0.0088 (6) | 0.0104 (5) | 0.0087 (6) |
N2 | 0.052 (6) | 0.063 (7) | 0.061 (7) | −0.006 (5) | 0.002 (5) | 0.024 (6) |
C8 | 0.082 (10) | 0.056 (9) | 0.064 (9) | −0.014 (7) | 0.019 (7) | 0.008 (7) |
C9 | 0.064 (8) | 0.032 (6) | 0.039 (6) | −0.001 (5) | 0.020 (6) | 0.002 (5) |
C10 | 0.060 (7) | 0.052 (7) | 0.033 (6) | −0.002 (6) | 0.009 (5) | −0.016 (6) |
C11 | 0.046 (6) | 0.051 (7) | 0.028 (5) | −0.002 (5) | 0.016 (5) | 0.003 (5) |
C12 | 0.053 (6) | 0.036 (6) | 0.028 (5) | −0.006 (5) | 0.015 (5) | −0.005 (5) |
C13 | 0.050 (7) | 0.046 (7) | 0.025 (5) | 0.000 (5) | 0.012 (5) | 0.007 (5) |
C14 | 0.050 (6) | 0.040 (6) | 0.042 (6) | 0.007 (5) | 0.012 (5) | −0.005 (5) |
I1—C6 | 2.108 (10) | I2—C11 | 2.098 (11) |
Br1—C5 | 1.889 (11) | Br2—C12 | 1.911 (10) |
N1—C3 | 1.378 (14) | N2—C14 | 1.405 (14) |
N1—H1A | 0.8600 | N2—H2A | 0.8600 |
N1—H1B | 0.8600 | N2—H2B | 0.8600 |
C1—C2 | 1.503 (15) | C8—C9 | 1.490 (14) |
C1—H1C | 0.9600 | C8—H8A | 0.9600 |
C1—H1D | 0.9600 | C8—H8B | 0.9600 |
C1—H1E | 0.9600 | C8—H8C | 0.9600 |
C2—C3 | 1.381 (15) | C9—C10 | 1.388 (15) |
C2—C7 | 1.392 (15) | C9—C14 | 1.430 (15) |
C3—C4 | 1.381 (16) | C10—C11 | 1.391 (15) |
C4—C5 | 1.393 (16) | C10—H10A | 0.9300 |
C4—H4A | 0.9300 | C11—C12 | 1.369 (15) |
C5—C6 | 1.390 (14) | C12—C13 | 1.375 (15) |
C6—C7 | 1.380 (14) | C13—C14 | 1.383 (15) |
C7—H7A | 0.9300 | C13—H13A | 0.9300 |
C3—N1—H1A | 120.0 | C14—N2—H2A | 120.0 |
C3—N1—H1B | 120.0 | C14—N2—H2B | 120.0 |
H1A—N1—H1B | 120.0 | H2A—N2—H2B | 120.0 |
C2—C1—H1C | 109.5 | C9—C8—H8A | 109.5 |
C2—C1—H1D | 109.5 | C9—C8—H8B | 109.5 |
H1C—C1—H1D | 109.5 | H8A—C8—H8B | 109.5 |
C2—C1—H1E | 109.5 | C9—C8—H8C | 109.5 |
H1C—C1—H1E | 109.5 | H8A—C8—H8C | 109.5 |
H1D—C1—H1E | 109.5 | H8B—C8—H8C | 109.5 |
C3—C2—C7 | 118.5 (10) | C10—C9—C14 | 115.8 (10) |
C3—C2—C1 | 123.2 (11) | C10—C9—C8 | 123.1 (12) |
C7—C2—C1 | 118.3 (10) | C14—C9—C8 | 121.1 (11) |
N1—C3—C4 | 120.1 (11) | C9—C10—C11 | 123.7 (11) |
N1—C3—C2 | 120.0 (11) | C9—C10—H10A | 118.1 |
C4—C3—C2 | 119.9 (11) | C11—C10—H10A | 118.1 |
C3—C4—C5 | 121.7 (11) | C12—C11—C10 | 117.8 (10) |
C3—C4—H4A | 119.2 | C12—C11—I2 | 124.5 (8) |
C5—C4—H4A | 119.2 | C10—C11—I2 | 117.7 (8) |
C6—C5—C4 | 118.5 (10) | C11—C12—C13 | 121.9 (10) |
C6—C5—Br1 | 123.2 (8) | C11—C12—Br2 | 120.8 (8) |
C4—C5—Br1 | 118.3 (9) | C13—C12—Br2 | 117.3 (8) |
C7—C6—C5 | 119.5 (10) | C12—C13—C14 | 119.8 (10) |
C7—C6—I1 | 118.3 (8) | C12—C13—H13A | 120.1 |
C5—C6—I1 | 122.2 (8) | C14—C13—H13A | 120.1 |
C6—C7—C2 | 122.0 (10) | C13—C14—N2 | 119.5 (11) |
C6—C7—H7A | 119.0 | C13—C14—C9 | 120.9 (10) |
C2—C7—H7A | 119.0 | N2—C14—C9 | 119.6 (10) |
C7—C2—C3—N1 | 179.2 (10) | C14—C9—C10—C11 | −2.2 (16) |
C1—C2—C3—N1 | −1.6 (16) | C8—C9—C10—C11 | 178.9 (11) |
C7—C2—C3—C4 | −0.2 (16) | C9—C10—C11—C12 | −0.1 (16) |
C1—C2—C3—C4 | 179.0 (10) | C9—C10—C11—I2 | −179.3 (8) |
N1—C3—C4—C5 | −178.8 (10) | C10—C11—C12—C13 | 2.9 (16) |
C2—C3—C4—C5 | 0.6 (16) | I2—C11—C12—C13 | −178.0 (8) |
C3—C4—C5—C6 | −1.4 (16) | C10—C11—C12—Br2 | −177.6 (8) |
C3—C4—C5—Br1 | −179.7 (8) | I2—C11—C12—Br2 | 1.4 (13) |
C4—C5—C6—C7 | 1.7 (15) | C11—C12—C13—C14 | −3.2 (16) |
Br1—C5—C6—C7 | 180.0 (7) | Br2—C12—C13—C14 | 177.4 (8) |
C4—C5—C6—I1 | −178.1 (7) | C12—C13—C14—N2 | 179.2 (10) |
Br1—C5—C6—I1 | 0.1 (12) | C12—C13—C14—C9 | 0.6 (16) |
C5—C6—C7—C2 | −1.4 (15) | C10—C9—C14—C13 | 1.9 (15) |
I1—C6—C7—C2 | 178.5 (8) | C8—C9—C14—C13 | −179.1 (11) |
C3—C2—C7—C6 | 0.6 (16) | C10—C9—C14—N2 | −176.6 (10) |
C1—C2—C7—C6 | −178.6 (9) | C8—C9—C14—N2 | 2.3 (16) |
Experimental details
Crystal data | |
Chemical formula | C7H7BrIN |
Mr | 311.94 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 26.831 (5), 5.3920 (11), 12.217 (2) |
β (°) | 98.05 (3) |
V (Å3) | 1750.1 (6) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 8.15 |
Crystal size (mm) | 0.20 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.292, 0.496 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3177, 3177, 2057 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.060, 0.163, 1.01 |
No. of reflections | 3177 |
No. of parameters | 183 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.97, −1.03 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
This work was supported by the Doctoral Research Fund of Henan Chinese Medicine (BSJJ2009–38) and the Science and Technology Department of Henan Province (102102310321).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Lee, S. H., Jang, B. B. & Kafafi, Z. H. (2005). J. Am. Chem. Soc. 25, 9071–9078. Web of Science CrossRef Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The tittle compound, 5-bromo-4-iodo-2-methylaniline is an important intermediate, which can be utilized to synthesize highly fluorescent solid-state asymmetric spirosilabifluorene derivatives (Lee et al., 2005). And we report here the crystal structure of the title compound (I), see Fig. 1.
The asymmetric unit contains two title molecules of 5-bromo-4-iodo-2-methylaniline. Weak hydroden bonding interactions link them together with N···N distance 3.300 (14) Å. The bromo, iodo and amino substituents lie in the mean plane of the phenyl rings, with mean deviation of 0.0040 (1) Å from the plane (C2—C7), and 0.0120 (1) Å from the plane (C9—C14). The bond lengths and angles are within normal ranges (Allen et al., 1987).