organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Bromo­phen­yl)(4-hy­dr­oxy-1,1-dioxo-2H-1,2-benzo­thia­zin-3-yl)methanone

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bDepartment of Chemistry, University of Sargodha, Sargodha 40100, Pakistan, cDepartment of Chemistry, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Darul Ta'zim, Malaysia, and dDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: waseeq786@gmail.com

(Received 9 March 2012; accepted 27 March 2012; online 31 March 2012)

In the title mol­ecule, C15H10BrNO4S, the heterocyclic thia­zine ring adopts a half-chair conformation, with the S and N atoms displaced by 0.554 (7) and 0.198 (8) Å, respectively, on opposite sides of the mean plane formed by the remaining ring atoms. The mol­ecular structure is consolidated by intra­molecular O—H⋯O inter­actions and the crystal packing features N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For the first synthesis of benzothia­zine, see: Braun (1923[Braun, J. V. (1923). Berichte, 56, 2332.]). For background information on the synthesis of related compounds, see: Siddiqui et al. (2007[Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun. 37, 767-773.]). For the biological activity of 1,2-benzothia­zine derivatives, see: Lombardino & Wiseman (1972[Lombardino, J. G. & Wiseman, E. H. (1972). J. Med. Chem. 15, 848-849.]); Gupta et al. (1993[Gupta, R. R., Dev, P. K., Sharma, M. L., Rajoria, C. M., Gupta, A. & Nyati, M. (1993). Anticancer Drugs, 4, 589-592.], 2002[Gupta, S. K., Bansal, P., Bhardwaj, R. K., Jaiswal, J. & Velpandian, T. (2002). Skin Pharmacol. Appl. Skin Physiol. 15, 105-111.]); Zia-ur-Rehman et al. (2006[Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.]); Ahmad et al. (2010[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698-704.]). For related structures, see: Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4-o6.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10BrNO4S

  • Mr = 380.21

  • Monoclinic, P 21 /c

  • a = 12.0433 (4) Å

  • b = 8.5491 (3) Å

  • c = 14.7841 (5) Å

  • β = 106.3950 (19)°

  • V = 1460.27 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.98 mm−1

  • T = 173 K

  • 0.14 × 0.12 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.681, Tmax = 0.797

  • 6205 measured reflections

  • 3339 independent reflections

  • 2528 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.106

  • S = 1.10

  • 3339 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4i 0.81 (5) 2.08 (5) 2.861 (4) 160 (4)
C13—H13⋯O2ii 0.95 2.59 3.305 (5) 132
O3—H3O⋯O4 0.84 1.80 2.530 (4) 145
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+2.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Since the time first benzothiazine was synthesized (Braun, 1923), thousands of its derivatives have been prepared to determine their pharmacological and other commercial uses. Among nine isomers, the 1,2-benzothiazine 1,1-dioxide nuclei possess dynamic structural features and exhibit a wide range of biological activities, e.g., anti-inflammatory (Lombardino & Wiseman, 1972), analgesic (Gupta et al., 2002), anticancer (Gupta et al., 1993) and antibacterial (Zia-ur-Rehman et al., 2006). In continuation of our research on the synthesis of biologically active benzothiazine derivatives (Siddiqui et al., 2007; Ahmad et al., 2010) herein, we report the synthesis and crystal structure of the title compound.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in closely related compounds (Siddiqui et al., 2008). The heterocyclic thiazine ring adopts a half chair conformation with atoms N1 and S1 displaced by 0.198 (8) and 0.554 (7) Å, respectively, on the opposite sides from the mean plane formed by the remaining ring atoms. The molecular structure is stabilized by intramolecular hydrogen bonds O3–H3O···O4 and the crystal packing is consolidated by N1—H1N···O4 and C13—H13···O2 intermolecular hydrogen bonds (Fig. 2 and Table 1).

Related literature top

For the first synthesis of benzothiazine, see: Braun (1923). For background information on the synthesis of related compounds, see: Siddiqui et al. (2007). For the biological activity of 1,2-benzothiazine derivatives, see: Lombardino & Wiseman (1972); Gupta et al. (1993, 2002); Zia-ur-Rehman et al. (2006); Ahmad et al. (2010). For related structures, see: Siddiqui et al. (2008).

Experimental top

A mixture of 2-[2-(o-bromophenyl)-2oxoethyl]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (1.8 g, 4.7 mmol) and sodium methoxide (1.9 g, 34.8 mmol) in freshly dried methanol (20 ml) was subjected to reflux for 30 minutes. The reaction was quenched with ice-cold water and acidified to pH = 3 with dilute HCl. The precipitate was filtered, washed with water and ethanol (25 ml, each) to get yellow powder of the title compound (1.3 g, 72%). The crystals suitable for X-ray crystallographic analysis were grown from a mixture of solvents chloroform and methanol (1:2) by slow evaporation at room temperature (m.p. 432–434 K).

Refinement top

The H atoms bonded to C and O atoms were positioned geometrically and refined using a riding model, with O—H and C—H = 0.84 and 0.95 Å, respectively. The amino H-atom was allowed to refine freely. The Uiso(H) were set at 1.2Ueq(parent atom).

Structure description top

Since the time first benzothiazine was synthesized (Braun, 1923), thousands of its derivatives have been prepared to determine their pharmacological and other commercial uses. Among nine isomers, the 1,2-benzothiazine 1,1-dioxide nuclei possess dynamic structural features and exhibit a wide range of biological activities, e.g., anti-inflammatory (Lombardino & Wiseman, 1972), analgesic (Gupta et al., 2002), anticancer (Gupta et al., 1993) and antibacterial (Zia-ur-Rehman et al., 2006). In continuation of our research on the synthesis of biologically active benzothiazine derivatives (Siddiqui et al., 2007; Ahmad et al., 2010) herein, we report the synthesis and crystal structure of the title compound.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in closely related compounds (Siddiqui et al., 2008). The heterocyclic thiazine ring adopts a half chair conformation with atoms N1 and S1 displaced by 0.198 (8) and 0.554 (7) Å, respectively, on the opposite sides from the mean plane formed by the remaining ring atoms. The molecular structure is stabilized by intramolecular hydrogen bonds O3–H3O···O4 and the crystal packing is consolidated by N1—H1N···O4 and C13—H13···O2 intermolecular hydrogen bonds (Fig. 2 and Table 1).

For the first synthesis of benzothiazine, see: Braun (1923). For background information on the synthesis of related compounds, see: Siddiqui et al. (2007). For the biological activity of 1,2-benzothiazine derivatives, see: Lombardino & Wiseman (1972); Gupta et al. (1993, 2002); Zia-ur-Rehman et al. (2006); Ahmad et al. (2010). For related structures, see: Siddiqui et al. (2008).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A part of the unit cell showing intermolecular and intramoilecular hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.
(2-Bromophenyl)(4-hydroxy-1,1-dioxo-2H-1,2-benzothiazin-3-yl)methanone top
Crystal data top
C15H10BrNO4SF(000) = 760
Mr = 380.21Dx = 1.729 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3429 reflections
a = 12.0433 (4) Åθ = 1.0–27.5°
b = 8.5491 (3) ŵ = 2.98 mm1
c = 14.7841 (5) ÅT = 173 K
β = 106.3950 (19)°Prism, pale yellow
V = 1460.27 (9) Å30.14 × 0.12 × 0.08 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3339 independent reflections
Radiation source: fine-focus sealed tube2528 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω and φ scansθmax = 27.6°, θmin = 2.8°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1515
Tmin = 0.681, Tmax = 0.797k = 1110
6205 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0181P)2 + 4.4694P]
where P = (Fo2 + 2Fc2)/3
3339 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
C15H10BrNO4SV = 1460.27 (9) Å3
Mr = 380.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0433 (4) ŵ = 2.98 mm1
b = 8.5491 (3) ÅT = 173 K
c = 14.7841 (5) Å0.14 × 0.12 × 0.08 mm
β = 106.3950 (19)°
Data collection top
Nonius KappaCCD
diffractometer
3339 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2528 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.797Rint = 0.043
6205 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.36 e Å3
3339 reflectionsΔρmin = 0.61 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.27922 (4)0.40093 (6)0.66394 (3)0.03958 (14)
S10.81353 (8)0.40492 (13)0.89491 (6)0.0277 (2)
O10.8507 (2)0.2475 (4)0.9213 (2)0.0365 (7)
O20.8381 (2)0.5262 (4)0.9640 (2)0.0398 (7)
O30.6691 (2)0.2135 (4)0.62289 (19)0.0340 (7)
H3O0.60300.17540.61660.041*
O40.4885 (2)0.1511 (3)0.67117 (19)0.0317 (6)
N10.6746 (3)0.4016 (4)0.8466 (2)0.0269 (7)
H1N0.642 (4)0.484 (5)0.848 (3)0.032*
C10.8650 (3)0.4564 (5)0.7985 (3)0.0273 (8)
C20.9651 (3)0.5437 (5)0.8102 (3)0.0367 (10)
H21.00470.58670.86980.044*
C31.0058 (4)0.5666 (6)0.7323 (3)0.0415 (11)
H31.07340.62790.73870.050*
C40.9504 (4)0.5020 (5)0.6459 (3)0.0385 (10)
H40.98100.51780.59400.046*
C50.8507 (3)0.4147 (5)0.6341 (3)0.0330 (9)
H50.81290.37090.57420.040*
C60.8057 (3)0.3911 (5)0.7107 (3)0.0264 (8)
C70.6983 (3)0.3029 (5)0.6993 (3)0.0241 (8)
C80.6335 (3)0.3124 (5)0.7626 (3)0.0249 (8)
C90.5241 (3)0.2322 (5)0.7435 (3)0.0262 (8)
C100.4524 (3)0.2456 (5)0.8110 (3)0.0262 (8)
C110.3407 (3)0.3076 (5)0.7837 (3)0.0267 (8)
C120.2732 (4)0.3111 (5)0.8461 (3)0.0374 (10)
H120.19790.35570.82740.045*
C130.3164 (4)0.2495 (5)0.9352 (3)0.0359 (10)
H130.27040.25110.97790.043*
C140.4255 (4)0.1857 (5)0.9630 (3)0.0368 (10)
H140.45400.14191.02420.044*
C150.4942 (4)0.1852 (5)0.9020 (3)0.0328 (9)
H150.57030.14330.92220.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0341 (2)0.0479 (3)0.0371 (2)0.0063 (2)0.01057 (18)0.0086 (2)
S10.0245 (5)0.0325 (5)0.0260 (4)0.0008 (4)0.0069 (4)0.0029 (4)
O10.0378 (16)0.0376 (17)0.0352 (15)0.0096 (14)0.0120 (13)0.0072 (14)
O20.0340 (16)0.0465 (19)0.0389 (16)0.0021 (14)0.0102 (13)0.0163 (15)
O30.0296 (15)0.0432 (18)0.0324 (14)0.0100 (13)0.0142 (12)0.0119 (14)
O40.0300 (14)0.0371 (17)0.0300 (14)0.0073 (13)0.0116 (12)0.0035 (13)
N10.0249 (16)0.0263 (17)0.0310 (16)0.0043 (15)0.0102 (13)0.0028 (15)
C10.0242 (18)0.027 (2)0.033 (2)0.0018 (16)0.0134 (16)0.0010 (17)
C20.029 (2)0.038 (2)0.043 (2)0.0072 (19)0.0109 (18)0.008 (2)
C30.032 (2)0.042 (3)0.057 (3)0.008 (2)0.022 (2)0.000 (2)
C40.035 (2)0.044 (3)0.042 (2)0.005 (2)0.020 (2)0.005 (2)
C50.032 (2)0.036 (2)0.035 (2)0.0042 (19)0.0151 (17)0.0026 (19)
C60.0224 (17)0.025 (2)0.033 (2)0.0017 (16)0.0107 (15)0.0007 (17)
C70.0236 (18)0.025 (2)0.0237 (17)0.0011 (16)0.0063 (14)0.0008 (16)
C80.0224 (18)0.027 (2)0.0261 (18)0.0001 (16)0.0083 (15)0.0007 (16)
C90.0261 (19)0.026 (2)0.0285 (18)0.0013 (16)0.0102 (15)0.0036 (17)
C100.0230 (18)0.026 (2)0.0315 (19)0.0055 (16)0.0100 (15)0.0056 (17)
C110.0279 (19)0.025 (2)0.0281 (19)0.0016 (16)0.0098 (16)0.0036 (16)
C120.032 (2)0.036 (2)0.050 (3)0.000 (2)0.021 (2)0.005 (2)
C130.040 (2)0.036 (2)0.038 (2)0.004 (2)0.0227 (19)0.005 (2)
C140.046 (2)0.040 (3)0.026 (2)0.002 (2)0.0127 (18)0.0008 (19)
C150.030 (2)0.039 (2)0.030 (2)0.0002 (19)0.0095 (17)0.0010 (19)
Geometric parameters (Å, º) top
Br1—C111.892 (4)C4—H40.9500
S1—O21.427 (3)C5—C61.401 (5)
S1—O11.437 (3)C5—H50.9500
S1—N11.623 (3)C6—C71.466 (5)
S1—C11.763 (4)C7—C81.378 (5)
O3—C71.327 (4)C8—C91.441 (5)
O3—H3O0.8400C9—C101.498 (5)
O4—C91.245 (5)C10—C111.395 (5)
N1—C81.423 (5)C10—C151.395 (5)
N1—H1N0.81 (5)C11—C121.392 (5)
C1—C21.387 (5)C12—C131.378 (6)
C1—C61.409 (5)C12—H120.9500
C2—C31.386 (6)C13—C141.374 (6)
C2—H20.9500C13—H130.9500
C3—C41.379 (6)C14—C151.385 (5)
C3—H30.9500C14—H140.9500
C4—C51.382 (6)C15—H150.9500
O2—S1—O1120.01 (19)O3—C7—C8123.1 (3)
O2—S1—N1107.91 (18)O3—C7—C6114.0 (3)
O1—S1—N1107.86 (19)C8—C7—C6122.8 (3)
O2—S1—C1110.4 (2)C7—C8—N1120.0 (3)
O1—S1—C1107.41 (18)C7—C8—C9120.0 (3)
N1—S1—C1101.73 (18)N1—C8—C9119.9 (3)
C7—O3—H3O109.5O4—C9—C8120.5 (3)
C8—N1—S1117.0 (3)O4—C9—C10119.4 (3)
C8—N1—H1N116 (3)C8—C9—C10120.0 (3)
S1—N1—H1N114 (3)C11—C10—C15118.4 (3)
C2—C1—C6121.6 (4)C11—C10—C9121.8 (3)
C2—C1—S1121.7 (3)C15—C10—C9119.7 (3)
C6—C1—S1116.4 (3)C12—C11—C10120.8 (4)
C3—C2—C1118.1 (4)C12—C11—Br1117.6 (3)
C3—C2—H2120.9C10—C11—Br1121.5 (3)
C1—C2—H2120.9C13—C12—C11119.5 (4)
C4—C3—C2121.4 (4)C13—C12—H12120.3
C4—C3—H3119.3C11—C12—H12120.3
C2—C3—H3119.3C14—C13—C12120.6 (4)
C3—C4—C5120.7 (4)C14—C13—H13119.7
C3—C4—H4119.7C12—C13—H13119.7
C5—C4—H4119.7C13—C14—C15120.2 (4)
C4—C5—C6119.7 (4)C13—C14—H14119.9
C4—C5—H5120.2C15—C14—H14119.9
C6—C5—H5120.2C14—C15—C10120.5 (4)
C5—C6—C1118.5 (4)C14—C15—H15119.8
C5—C6—C7120.8 (4)C10—C15—H15119.8
C1—C6—C7120.7 (3)
O2—S1—N1—C8167.0 (3)C6—C7—C8—N14.8 (6)
O1—S1—N1—C861.9 (3)O3—C7—C8—C94.8 (6)
C1—S1—N1—C850.9 (3)C6—C7—C8—C9175.2 (4)
O2—S1—C1—C234.0 (4)S1—N1—C8—C734.1 (5)
O1—S1—C1—C298.5 (4)S1—N1—C8—C9145.9 (3)
N1—S1—C1—C2148.3 (4)C7—C8—C9—O41.6 (6)
O2—S1—C1—C6152.1 (3)N1—C8—C9—O4178.4 (4)
O1—S1—C1—C675.4 (3)C7—C8—C9—C10178.5 (4)
N1—S1—C1—C637.7 (3)N1—C8—C9—C101.4 (6)
C6—C1—C2—C30.3 (6)O4—C9—C10—C1160.3 (5)
S1—C1—C2—C3173.9 (3)C8—C9—C10—C11119.8 (4)
C1—C2—C3—C41.3 (7)O4—C9—C10—C15115.1 (4)
C2—C3—C4—C51.2 (7)C8—C9—C10—C1564.7 (5)
C3—C4—C5—C60.2 (7)C15—C10—C11—C120.9 (6)
C4—C5—C6—C10.7 (6)C9—C10—C11—C12176.4 (4)
C4—C5—C6—C7178.2 (4)C15—C10—C11—Br1177.0 (3)
C2—C1—C6—C50.7 (6)C9—C10—C11—Br17.5 (5)
S1—C1—C6—C5173.3 (3)C10—C11—C12—C131.4 (6)
C2—C1—C6—C7178.2 (4)Br1—C11—C12—C13177.7 (3)
S1—C1—C6—C77.8 (5)C11—C12—C13—C140.4 (7)
C5—C6—C7—O318.6 (5)C12—C13—C14—C151.1 (7)
C1—C6—C7—O3162.5 (4)C13—C14—C15—C101.6 (7)
C5—C6—C7—C8161.3 (4)C11—C10—C15—C140.6 (6)
C1—C6—C7—C817.5 (6)C9—C10—C15—C14175.0 (4)
O3—C7—C8—N1175.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.81 (5)2.08 (5)2.861 (4)160 (4)
C13—H13···O2ii0.952.593.305 (5)132
O3—H3O···O40.841.802.530 (4)145
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC15H10BrNO4S
Mr380.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)12.0433 (4), 8.5491 (3), 14.7841 (5)
β (°) 106.3950 (19)
V3)1460.27 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.98
Crystal size (mm)0.14 × 0.12 × 0.08
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.681, 0.797
No. of measured, independent and
observed [I > 2σ(I)] reflections
6205, 3339, 2528
Rint0.043
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.106, 1.10
No. of reflections3339
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.61

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.81 (5)2.08 (5)2.861 (4)160 (4)
C13—H13···O2ii0.952.593.305 (5)132.4
O3—H3O···O40.841.802.530 (4)144.9
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+2.
 

Acknowledgements

The authors are grateful to the Higher Education Commission, Pakistan, and the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

References

First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBraun, J. V. (1923). Berichte, 56, 2332.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGupta, S. K., Bansal, P., Bhardwaj, R. K., Jaiswal, J. & Velpandian, T. (2002). Skin Pharmacol. Appl. Skin Physiol. 15, 105–111.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGupta, R. R., Dev, P. K., Sharma, M. L., Rajoria, C. M., Gupta, A. & Nyati, M. (1993). Anticancer Drugs, 4, 589–592.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLombardino, J. G. & Wiseman, E. H. (1972). J. Med. Chem. 15, 848–849.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun. 37, 767–773.  Web of Science CrossRef CAS Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds