metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,9-Di­methyl-1,10-phenanthroline-κ2N,N′)bis­­(2-meth­­oxy­benzoato-κ2O1,O1′)cadmium

aCollege of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, People's Republic of China
*Correspondence e-mail: pz_zhao@hotmail.com

(Received 22 November 2011; accepted 12 March 2012; online 17 March 2012)

In the title compound, [Cd(C8H7O3)2(C14H12N2)], the CdII ion is coordinated by two N atoms from a 2,9-dimethyl-1,10-phenanthroline (dmphen) ligand and four O atoms from two 2-meth­oxy­benzoate anions in a distorted octa­hedral environment. Two O atoms of one bidentate 2-meth­oxy­benzoate ligand are each disordered over two positions, with site-occupancy factors of 0.579 (4) and 0.421 (4). In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming a two-dimensional network lieing parallel to the bc plane. The crystal packing is further stablized by ππ stacking inter­actions between the dmphen rings of neighboring mol­ecules, with distances between their parallel dmphen ring planes of 3.517 (3) and 3.610 (3) Å.

Related literature

For features of transition metal complexes with 1,10-phenanthroline and their derivatives, see: Dhar et al. (2003[Dhar, S., Senapatic, D., Das, P. K., Chattopadhyay, P., Nethaji, M. & Chakravarty, A. K. (2003). J. Am. Chem. Soc. 125, 12118-12124.]); Mizuno et al. (2002[Mizuno, T., Wei, W. H., Eller, L. R. & Sessler, J. L. (2002). J. Am. Chem. Soc. 124, 1134-1135.]); Wall et al. (1999[Wall, M., Linkletter, B., Williams, D., Lebuis, A. M., Hynes, R. C. & Chin, J. (1999). J. Am. Chem. Soc. 121, 4710-4711.]). For related structures, see: Harvey et al. (2000[Harvey, M., Baggio, S., Suescun, L. & Baggio, R. F. (2000). Acta Cryst. C56, 811-813.]); Ding et al. (2005[Ding, C.-F., Zhu, M., Li, X.-M., Ouyang, P.-K. & Zhang, S.-S. (2005). Acta Cryst. E61, m2058-m2059.]); Cui & Zhang (2011[Cui, F. & Zhang, S. (2011). Acta Cryst. E67, m1247.])

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H7O3)2(C14H12N2)]

  • Mr = 622.93

  • Monoclinic, P 21 /c

  • a = 16.9045 (12) Å

  • b = 8.0547 (6) Å

  • c = 19.3625 (14) Å

  • β = 101.877 (1)°

  • V = 2580.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 296 K

  • 0.48 × 0.26 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.673, Tmax = 0.863

  • 18898 measured reflections

  • 4803 independent reflections

  • 4307 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.060

  • S = 1.02

  • 4803 reflections

  • 363 parameters

  • 44 restraints

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯O5i 0.93 2.46 3.312 (3) 152
C17—H17⋯O6ii 0.93 2.60 3.487 (3) 161
C14—H14A⋯O4 0.96 2.45 3.322 (3) 150
C6—H6⋯O5iii 0.93 2.55 3.206 (3) 128
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y, -z.

Data collection: SMART (Bruker, 2004[Bruker (2004). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The transition metal complexes with 1,10-phenanthroline and their derivatives have attracted much attention because of their peculiar features (Dhar et al., 2003; Mizuno et al., 2002; Wall et al., 1999). Some Cd(II)-phenanthroline complexes have been synthesized and their structures were determined (Harvey et al., 2000; Ding et al., 2005; Cui et al., 2011). Recently, we obtained the title Cadmium(II) complex which contains two different kinds of chelating ligands, by reaction of 2,9-dimethyl-1,10-phenanthroline, 2-methoxy-benzoate and cadmium acetate in an ethanol/water mixture. The structure of the title compound, Cd(C14H12N2)(C8H7O3)2,(I), is presented below.

The CdII ion is coordinated by a bidentate 2,9-dimethyl-1,10-phenanthroline and two bidentate 2-methoxy-benzoate ligands (Fig.1). The CdO4N2 unit forms a distorted octahedron geometry. Two O atoms of one bidentate 2-methoxy-benzoate are disordered over two positions, with site occupancy factors of ca 0.579 (4) and 0.421 (4).

In the crystal structure, molecules are linked into a broad one-dimensional framework by C—H···O hydrogen bonds and π-π stacking interactions between the dmphen rings of neighboring molecules, where vicinal aromatic groups present a face-to-face separations of 3.517 (3) and 3.610 (3) Å. (Fig. 2).

Related literature top

For features of transition metal complexes with 1,10-phenanthroline and their derivatives, see: Dhar et al. (2003); Mizuno et al. (2002); Wall et al. (1999). For related structures, see: Harvey et al. (2000); Ding et al. (2005); Cui & Zhang (2011)

Experimental top

2,9-dimethyl-1,10-phenanthroline hemihydrate (C14H12N2.0.5H2O, 0.1086 g, 0.5 mmol) was dissolved in ethanol (10 ml) and Cd(CH3COO)2.2H2O (0.1333 g, 0.5 mmol) in distilled water (5 ml) were added. This solution was added to a solution of 2-methoxy-benzoic acid (C8H8O3, 0.1522 g, 1 mmol) in ethanol (5 ml). The mixture was stirred at 323 K and then refluxed for 11 h, cooled to room temperature and filtered. Colourless single crystals of (I) appeared over a period of two weeks by slow evaporation of the mixture at room temperature.

Refinement top

Methyl H atoms were placed in calculated positions,with C—H=0.96 Å, and refined with free torsion angles to fit the electron density; Uiso(H) = 1.5Ueq(carrier). Other H atoms were placed in calculated positions, with C—H=0.93 Å, and refined in the riding-model approximation with Uiso(H) = 1.2Ueq(C). Two O atoms of one bidentate 2-methoxy-benzoate are disordered over two positions, with site occupancy factors of 0.579 (4) and 0.421 (4). The disordreed moieties were refined with similarity restraints both in distances as in U's.

Structure description top

The transition metal complexes with 1,10-phenanthroline and their derivatives have attracted much attention because of their peculiar features (Dhar et al., 2003; Mizuno et al., 2002; Wall et al., 1999). Some Cd(II)-phenanthroline complexes have been synthesized and their structures were determined (Harvey et al., 2000; Ding et al., 2005; Cui et al., 2011). Recently, we obtained the title Cadmium(II) complex which contains two different kinds of chelating ligands, by reaction of 2,9-dimethyl-1,10-phenanthroline, 2-methoxy-benzoate and cadmium acetate in an ethanol/water mixture. The structure of the title compound, Cd(C14H12N2)(C8H7O3)2,(I), is presented below.

The CdII ion is coordinated by a bidentate 2,9-dimethyl-1,10-phenanthroline and two bidentate 2-methoxy-benzoate ligands (Fig.1). The CdO4N2 unit forms a distorted octahedron geometry. Two O atoms of one bidentate 2-methoxy-benzoate are disordered over two positions, with site occupancy factors of ca 0.579 (4) and 0.421 (4).

In the crystal structure, molecules are linked into a broad one-dimensional framework by C—H···O hydrogen bonds and π-π stacking interactions between the dmphen rings of neighboring molecules, where vicinal aromatic groups present a face-to-face separations of 3.517 (3) and 3.610 (3) Å. (Fig. 2).

For features of transition metal complexes with 1,10-phenanthroline and their derivatives, see: Dhar et al. (2003); Mizuno et al. (2002); Wall et al. (1999). For related structures, see: Harvey et al. (2000); Ding et al. (2005); Cui & Zhang (2011)

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex(I), with atom labels and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The hydrogen-bonding motifs in the crystal structure of (I). Dashed lines indicate hydrogen bonds and π-π interaction between the dmphen rings of neighboring molecules in the crystal structure of (I).[Symmetry codes:(B)x, y + 1, z; (C)x, y + 2, z; (D)-x + 1, -y, -z; (E)-x + 1, -y + 1, -z; (F)-x + 1, -y + 2, -z + 1/2]
(2,9-Dimethyl-1,10-phenanthroline-κ2N,N')bis(2- methoxybenzoato-κ2O1,O1')cadmium top
Crystal data top
[Cd(C8H7O3)2(C14H12N2)]F(000) = 1264
Mr = 622.93Dx = 1.604 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9957 reflections
a = 16.9045 (12) Åθ = 2.5–28.2°
b = 8.0547 (6) ŵ = 0.90 mm1
c = 19.3625 (14) ÅT = 296 K
β = 101.877 (1)°Block, colourless
V = 2580.0 (3) Å30.48 × 0.26 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4803 independent reflections
Radiation source: fine-focus sealed tube4307 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
phi and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2020
Tmin = 0.673, Tmax = 0.863k = 99
18898 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0297P)2 + 1.5264P]
where P = (Fo2 + 2Fc2)/3
4803 reflections(Δ/σ)max = 0.001
363 parametersΔρmax = 0.59 e Å3
44 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cd(C8H7O3)2(C14H12N2)]V = 2580.0 (3) Å3
Mr = 622.93Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.9045 (12) ŵ = 0.90 mm1
b = 8.0547 (6) ÅT = 296 K
c = 19.3625 (14) Å0.48 × 0.26 × 0.17 mm
β = 101.877 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4803 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4307 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.863Rint = 0.017
18898 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02344 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.02Δρmax = 0.59 e Å3
4803 reflectionsΔρmin = 0.47 e Å3
363 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.30422 (17)0.4057 (4)0.12323 (16)0.0450 (4)0.579 (4)
O20.20884 (17)0.2183 (4)0.12535 (17)0.0494 (4)0.579 (4)
O1'0.2860 (3)0.4050 (6)0.1036 (2)0.0450 (4)0.421 (4)
O2'0.2352 (3)0.1914 (5)0.1509 (2)0.0494 (4)0.421 (4)
Cd10.307440 (8)0.144637 (19)0.062350 (7)0.03648 (5)
O30.15835 (11)0.2486 (2)0.25184 (8)0.0552 (4)
O40.20186 (9)0.05972 (19)0.02720 (8)0.0483 (4)
O50.25548 (9)0.12268 (18)0.05286 (8)0.0460 (4)
O60.04132 (8)0.00151 (19)0.07279 (8)0.0473 (4)
N10.43234 (10)0.0689 (2)0.13255 (9)0.0425 (4)
N20.40861 (10)0.2261 (2)0.00289 (9)0.0404 (4)
C10.44175 (16)0.0095 (3)0.19443 (12)0.0563 (6)
C20.51880 (18)0.0427 (4)0.23466 (15)0.0736 (9)
H20.52440.09800.27750.088*
C30.58528 (18)0.0059 (4)0.21110 (17)0.0778 (9)
H30.63640.01580.23810.093*
C40.57759 (14)0.0884 (3)0.14638 (16)0.0625 (7)
C50.64459 (16)0.1445 (4)0.1188 (2)0.0816 (10)
H50.69680.12680.14450.098*
C60.63385 (15)0.2224 (4)0.0567 (2)0.0784 (9)
H60.67890.25880.04040.094*
C70.55435 (14)0.2517 (3)0.01409 (15)0.0587 (6)
C80.54051 (17)0.3281 (3)0.05163 (17)0.0725 (8)
H80.58400.36380.07040.087*
C90.4639 (2)0.3511 (3)0.08871 (15)0.0700 (8)
H90.45510.40060.13300.084*
C100.39695 (15)0.2994 (3)0.05982 (12)0.0520 (6)
C110.48584 (12)0.2002 (3)0.03993 (12)0.0443 (5)
C120.49803 (13)0.1175 (3)0.10742 (13)0.0448 (5)
C130.36708 (19)0.0598 (4)0.21911 (14)0.0796 (9)
H13A0.33480.03660.22270.119*
H13B0.38190.11200.26450.119*
H13C0.33660.13640.18600.119*
C140.31198 (18)0.3251 (4)0.09904 (14)0.0695 (8)
H14A0.28060.22780.09460.104*
H14B0.31170.34500.14800.104*
H14C0.28910.41900.07970.104*
C150.20540 (11)0.4688 (3)0.18954 (10)0.0353 (4)
C160.16481 (12)0.4150 (3)0.24222 (10)0.0387 (5)
C170.13494 (13)0.5310 (3)0.28312 (12)0.0479 (5)
H170.10910.49550.31850.057*
C180.14315 (14)0.6992 (3)0.27181 (13)0.0516 (6)
H180.12280.77580.29960.062*
C190.18119 (13)0.7540 (3)0.21972 (12)0.0482 (5)
H190.18620.86700.21180.058*
C200.21190 (13)0.6384 (3)0.17919 (11)0.0416 (5)
H200.23760.67550.14400.050*
C210.24280 (12)0.3527 (3)0.14442 (11)0.0405 (4)
C220.1085 (2)0.1952 (4)0.29900 (16)0.0758 (8)
H22A0.12990.23740.34540.114*
H22B0.10760.07610.30040.114*
H22C0.05450.23610.28280.114*
C230.13813 (11)0.2080 (3)0.02853 (10)0.0351 (4)
C240.05986 (12)0.1656 (3)0.06558 (10)0.0384 (5)
C250.00480 (13)0.2911 (3)0.09126 (12)0.0495 (6)
H250.04670.26380.11610.059*
C260.02634 (15)0.4555 (3)0.07995 (13)0.0562 (6)
H260.01070.53800.09780.067*
C270.10208 (15)0.4998 (3)0.04248 (12)0.0519 (6)
H270.11600.61090.03460.062*
C280.15693 (13)0.3753 (3)0.01683 (11)0.0422 (5)
H280.20770.40430.00890.051*
C290.20123 (11)0.0812 (3)0.00066 (10)0.0345 (4)
C300.03947 (14)0.0418 (4)0.10615 (14)0.0611 (7)
H30A0.04940.00860.15480.092*
H30B0.04650.15970.10330.092*
H30C0.07680.01380.08280.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0453 (7)0.0492 (6)0.0427 (9)0.0018 (6)0.0146 (7)0.0052 (6)
O20.0472 (8)0.0521 (7)0.0521 (9)0.0004 (6)0.0172 (7)0.0110 (7)
O1'0.0453 (7)0.0492 (6)0.0427 (9)0.0018 (6)0.0146 (7)0.0052 (6)
O2'0.0472 (8)0.0521 (7)0.0521 (9)0.0004 (6)0.0172 (7)0.0110 (7)
Cd10.02953 (8)0.04385 (9)0.03711 (8)0.00541 (6)0.00932 (6)0.00570 (6)
O30.0769 (11)0.0434 (9)0.0519 (9)0.0021 (8)0.0286 (8)0.0021 (7)
O40.0421 (8)0.0463 (9)0.0512 (9)0.0114 (7)0.0027 (7)0.0072 (7)
O50.0435 (8)0.0485 (9)0.0412 (8)0.0067 (7)0.0027 (7)0.0022 (6)
O60.0338 (7)0.0507 (9)0.0547 (9)0.0001 (7)0.0029 (6)0.0011 (7)
N10.0392 (9)0.0404 (9)0.0450 (10)0.0038 (8)0.0015 (8)0.0075 (8)
N20.0408 (9)0.0401 (9)0.0438 (9)0.0072 (8)0.0170 (8)0.0088 (8)
C10.0659 (15)0.0497 (14)0.0444 (13)0.0037 (12)0.0096 (11)0.0048 (11)
C20.0766 (19)0.0648 (17)0.0639 (17)0.0070 (15)0.0215 (15)0.0022 (14)
C30.0603 (16)0.0705 (18)0.084 (2)0.0167 (15)0.0292 (15)0.0167 (16)
C40.0367 (12)0.0559 (14)0.0887 (19)0.0029 (11)0.0017 (12)0.0290 (14)
C50.0339 (13)0.077 (2)0.130 (3)0.0012 (13)0.0076 (16)0.0381 (19)
C60.0363 (12)0.0722 (18)0.137 (3)0.0151 (12)0.0415 (15)0.0456 (19)
C70.0500 (12)0.0493 (13)0.0879 (17)0.0141 (11)0.0403 (12)0.0275 (13)
C80.0705 (16)0.0641 (17)0.101 (2)0.0256 (13)0.0593 (16)0.0288 (15)
C90.099 (2)0.0605 (16)0.0643 (16)0.0215 (15)0.0495 (16)0.0069 (13)
C100.0627 (14)0.0468 (12)0.0520 (13)0.0112 (11)0.0243 (11)0.0067 (11)
C110.0339 (10)0.0379 (11)0.0653 (14)0.0075 (9)0.0198 (10)0.0226 (10)
C120.0342 (10)0.0397 (11)0.0579 (13)0.0007 (9)0.0039 (10)0.0179 (10)
C130.089 (2)0.096 (2)0.0483 (14)0.0276 (18)0.0030 (14)0.0169 (15)
C140.0814 (19)0.0728 (18)0.0538 (15)0.0059 (15)0.0128 (14)0.0141 (13)
C150.0286 (9)0.0458 (11)0.0301 (9)0.0018 (8)0.0026 (7)0.0014 (8)
C160.0364 (10)0.0446 (11)0.0347 (10)0.0004 (9)0.0065 (8)0.0014 (9)
C170.0482 (12)0.0548 (14)0.0460 (12)0.0004 (10)0.0220 (10)0.0021 (10)
C180.0496 (12)0.0521 (13)0.0566 (13)0.0092 (11)0.0192 (11)0.0078 (11)
C190.0484 (12)0.0401 (12)0.0558 (13)0.0055 (10)0.0103 (10)0.0040 (10)
C200.0373 (11)0.0501 (12)0.0376 (11)0.0003 (9)0.0080 (9)0.0049 (9)
C210.0389 (7)0.0452 (7)0.0374 (7)0.0038 (5)0.0080 (5)0.0022 (5)
C220.105 (2)0.0601 (16)0.0738 (18)0.0175 (16)0.0444 (17)0.0048 (14)
C230.0340 (9)0.0429 (11)0.0308 (9)0.0057 (9)0.0121 (8)0.0045 (8)
C240.0349 (10)0.0487 (12)0.0339 (10)0.0069 (9)0.0123 (8)0.0047 (9)
C250.0380 (11)0.0634 (15)0.0467 (12)0.0119 (11)0.0080 (9)0.0099 (11)
C260.0549 (13)0.0560 (15)0.0600 (14)0.0227 (11)0.0170 (11)0.0167 (12)
C270.0642 (14)0.0415 (12)0.0551 (13)0.0086 (11)0.0242 (11)0.0073 (10)
C280.0433 (11)0.0467 (12)0.0395 (11)0.0021 (9)0.0151 (9)0.0047 (9)
C290.0293 (9)0.0435 (11)0.0324 (9)0.0020 (8)0.0107 (8)0.0041 (8)
C300.0420 (12)0.0708 (17)0.0654 (16)0.0091 (12)0.0007 (11)0.0055 (13)
Geometric parameters (Å, º) top
O1—C211.266 (3)C8—H80.9300
O1—Cd12.416 (3)C9—C101.424 (4)
O2—C211.245 (3)C9—H90.9300
O2—Cd12.336 (3)C10—C141.495 (4)
O1'—C211.254 (4)C11—C121.443 (3)
O1'—Cd12.299 (5)C13—H13A0.9600
O2'—C211.314 (4)C13—H13B0.9600
O2'—Cd12.331 (4)C13—H13C0.9600
Cd1—O52.3184 (15)C14—H14A0.9600
Cd1—O42.3207 (14)C14—H14B0.9600
Cd1—N22.3435 (16)C14—H14C0.9600
Cd1—N12.3444 (17)C15—C201.388 (3)
Cd1—C292.660 (2)C15—C161.410 (3)
Cd1—C212.691 (2)C15—C211.505 (3)
O3—C161.361 (3)C16—C171.385 (3)
O3—C221.430 (3)C17—C181.384 (3)
O4—C291.258 (3)C17—H170.9300
O5—C291.262 (2)C18—C191.376 (3)
O6—C241.359 (3)C18—H180.9300
O6—C301.429 (3)C19—C201.385 (3)
N1—C11.335 (3)C19—H190.9300
N1—C121.359 (3)C20—H200.9300
N2—C101.328 (3)C22—H22A0.9600
N2—C111.370 (3)C22—H22B0.9600
C1—C21.399 (4)C22—H22C0.9600
C1—C131.495 (4)C23—C281.392 (3)
C2—C31.355 (5)C23—C241.411 (3)
C2—H20.9300C23—C291.501 (3)
C3—C41.401 (4)C24—C251.395 (3)
C3—H30.9300C25—C261.378 (4)
C4—C121.419 (3)C25—H250.9300
C4—C51.421 (4)C26—C271.382 (3)
C5—C61.336 (5)C26—H260.9300
C5—H50.9300C27—C281.387 (3)
C6—C71.444 (4)C27—H270.9300
C6—H60.9300C28—H280.9300
C7—C81.389 (4)C30—H30A0.9600
C7—C111.415 (3)C30—H30B0.9600
C8—C91.358 (4)C30—H30C0.9600
C21—O1—Cd188.12 (18)C7—C11—C12118.7 (2)
C21—O2—Cd192.34 (17)N1—C12—C4121.1 (2)
C21—O1'—Cd193.8 (3)N1—C12—C11118.83 (18)
C21—O2'—Cd190.8 (2)C4—C12—C11120.0 (2)
O1'—Cd1—O5142.22 (10)C1—C13—H13A109.5
O1'—Cd1—O4112.12 (12)C1—C13—H13B109.5
O5—Cd1—O456.39 (5)H13A—C13—H13B109.5
O1'—Cd1—O2'56.84 (12)C1—C13—H13C109.5
O5—Cd1—O2'87.78 (10)H13A—C13—H13C109.5
O4—Cd1—O2'99.14 (12)H13B—C13—H13C109.5
O5—Cd1—O288.74 (8)C10—C14—H14A109.5
O4—Cd1—O286.75 (8)C10—C14—H14B109.5
O1'—Cd1—N295.65 (10)H14A—C14—H14B109.5
O5—Cd1—N2121.61 (6)C10—C14—H14C109.5
O4—Cd1—N2104.02 (6)H14A—C14—H14C109.5
O2'—Cd1—N2149.50 (10)H14B—C14—H14C109.5
O2—Cd1—N2148.95 (8)C20—C15—C16118.13 (19)
O1'—Cd1—N1102.91 (12)C20—C15—C21118.20 (18)
O5—Cd1—N194.91 (6)C16—C15—C21123.67 (19)
O4—Cd1—N1144.97 (6)O3—C16—C17122.47 (19)
O2'—Cd1—N199.26 (12)O3—C16—C15117.81 (18)
O2—Cd1—N1114.69 (9)C17—C16—C15119.7 (2)
N2—Cd1—N172.33 (6)C18—C17—C16120.6 (2)
O5—Cd1—O1143.18 (8)C18—C17—H17119.7
O4—Cd1—O1121.99 (8)C16—C17—H17119.7
O2—Cd1—O155.52 (9)C19—C18—C17120.5 (2)
N2—Cd1—O195.04 (8)C19—C18—H18119.8
N1—Cd1—O192.96 (8)C17—C18—H18119.8
O1'—Cd1—C29129.77 (11)C18—C19—C20119.1 (2)
O2'—Cd1—C2991.94 (11)C18—C19—H19120.5
O2—Cd1—C2985.42 (8)C20—C19—H19120.5
N2—Cd1—C29117.66 (6)C19—C20—C15122.0 (2)
N1—Cd1—C29121.76 (6)C19—C20—H20119.0
O1—Cd1—C29137.15 (8)C15—C20—H20119.0
O1'—Cd1—C2127.70 (10)O2—C21—O1'113.5 (3)
O5—Cd1—C21115.59 (6)O2—C21—O1123.7 (3)
O4—Cd1—C21106.35 (6)O1'—C21—O2'118.2 (3)
O2—Cd1—C2127.53 (8)O1—C21—O2'117.8 (3)
N2—Cd1—C21122.80 (6)O2—C21—C15119.3 (2)
N1—Cd1—C21104.26 (6)O1'—C21—C15121.7 (3)
C29—Cd1—C21111.87 (6)O1—C21—C15116.7 (2)
C16—O3—C22117.27 (19)O2'—C21—C15119.9 (2)
C29—O4—Cd191.07 (11)O2—C21—Cd160.13 (15)
C29—O5—Cd191.08 (12)O1'—C21—Cd158.5 (2)
C24—O6—C30117.56 (18)O1—C21—Cd163.82 (17)
C1—N1—C12120.2 (2)O2'—C21—Cd160.0 (2)
C1—N1—Cd1124.78 (16)C15—C21—Cd1179.11 (14)
C12—N1—Cd1114.99 (14)O3—C22—H22A109.5
C10—N2—C11119.51 (19)O3—C22—H22B109.5
C10—N2—Cd1126.00 (15)H22A—C22—H22B109.5
C11—N2—Cd1114.41 (14)O3—C22—H22C109.5
N1—C1—C2121.0 (3)H22A—C22—H22C109.5
N1—C1—C13117.6 (2)H22B—C22—H22C109.5
C2—C1—C13121.4 (3)C28—C23—C24118.41 (18)
C3—C2—C1119.9 (3)C28—C23—C29118.45 (18)
C3—C2—H2120.0C24—C23—C29123.11 (19)
C1—C2—H2120.0O6—C24—C25123.07 (19)
C2—C3—C4120.5 (2)O6—C24—C23117.39 (17)
C2—C3—H3119.8C25—C24—C23119.5 (2)
C4—C3—H3119.8C26—C25—C24120.3 (2)
C3—C4—C12117.2 (3)C26—C25—H25119.9
C3—C4—C5123.5 (3)C24—C25—H25119.9
C12—C4—C5119.3 (3)C25—C26—C27121.2 (2)
C6—C5—C4121.1 (3)C25—C26—H26119.4
C6—C5—H5119.5C27—C26—H26119.4
C4—C5—H5119.5C26—C27—C28118.7 (2)
C5—C6—C7122.0 (3)C26—C27—H27120.7
C5—C6—H6119.0C28—C27—H27120.7
C7—C6—H6119.0C27—C28—C23121.9 (2)
C8—C7—C11117.3 (2)C27—C28—H28119.1
C8—C7—C6123.9 (2)C23—C28—H28119.1
C11—C7—C6118.9 (3)O4—C29—O5120.88 (18)
C9—C8—C7120.5 (2)O4—C29—C23121.38 (17)
C9—C8—H8119.8O5—C29—C23117.70 (18)
C7—C8—H8119.8O4—C29—Cd160.71 (10)
C8—C9—C10120.1 (3)O5—C29—Cd160.61 (10)
C8—C9—H9120.0C23—C29—Cd1175.00 (13)
C10—C9—H9120.0O6—C30—H30A109.5
N2—C10—C9120.6 (2)O6—C30—H30B109.5
N2—C10—C14118.2 (2)H30A—C30—H30B109.5
C9—C10—C14121.2 (2)O6—C30—H30C109.5
N2—C11—C7122.1 (2)H30A—C30—H30C109.5
N2—C11—C12119.18 (18)H30B—C30—H30C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O5i0.932.463.312 (3)152
C17—H17···O6ii0.932.603.487 (3)161
C14—H14A···O40.962.453.322 (3)150
C6—H6···O5iii0.932.553.206 (3)128
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cd(C8H7O3)2(C14H12N2)]
Mr622.93
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.9045 (12), 8.0547 (6), 19.3625 (14)
β (°) 101.877 (1)
V3)2580.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.48 × 0.26 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.673, 0.863
No. of measured, independent and
observed [I > 2σ(I)] reflections
18898, 4803, 4307
Rint0.017
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.060, 1.02
No. of reflections4803
No. of parameters363
No. of restraints44
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.47

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O5i0.932.463.312 (3)151.9
C17—H17···O6ii0.932.603.487 (3)160.7
C14—H14A···O40.962.453.322 (3)150.2
C6—H6···O5iii0.932.553.206 (3)127.6
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z.
 

Acknowledgements

Financial support from the National Natural Science Foundation of Henan Education Committee (2011 A150018) is gratefully acknowledged.

References

First citationBruker (2004). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, F. & Zhang, S. (2011). Acta Cryst. E67, m1247.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDhar, S., Senapatic, D., Das, P. K., Chattopadhyay, P., Nethaji, M. & Chakravarty, A. K. (2003). J. Am. Chem. Soc. 125, 12118–12124.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDing, C.-F., Zhu, M., Li, X.-M., Ouyang, P.-K. & Zhang, S.-S. (2005). Acta Cryst. E61, m2058–m2059.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarvey, M., Baggio, S., Suescun, L. & Baggio, R. F. (2000). Acta Cryst. C56, 811–813.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMizuno, T., Wei, W. H., Eller, L. R. & Sessler, J. L. (2002). J. Am. Chem. Soc. 124, 1134–1135.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWall, M., Linkletter, B., Williams, D., Lebuis, A. M., Hynes, R. C. & Chin, J. (1999). J. Am. Chem. Soc. 121, 4710–4711.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds