organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6H,13H-5,12:7,14-Di­methano­di­naphtho­[2,3-d:2,3-i][1,3,6,8]tetra­azecine

aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Grupo de Investigación Síntesis de Heterociclos, Cra 30 No.45-03, Bogotá, Código Postal 111321, Colombia, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 11 January 2012; accepted 7 March 2012; online 14 March 2012)

In the title compound, C24H20N4, obtained through the condensation of naphthalene-2,3-diamine with formaldehyde in methanol, the mol­ecule is located on a special position of site symmetry -4. Due to symmetry considerations, the aromatic rings are strictly perpendicular to each other. In the crystal, mol­ecules are linked by pairs of C—H⋯π inter­actions into columns along [110].

Related literature

For chemical background to the synthesis of the title compound, see: Volpp (1962[Volpp, G. (1962). Chem. Ber. 95, 1493-1494.]). For related structures, see: Murray-Rust & Smith (1975[Murray-Rust, P. & Smith, I. (1975). Acta Cryst. B31, 587-589.]); Rivera et al. (2009[Rivera, A., Maldonado, M., Ríos-Motta, J., González-Salas, D. & Dacunha-Marinho, B. (2009). Acta Cryst. E65, o2553.], 2011[Rivera, A., Maldonado, M., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2011). Acta Cryst. E67, o2395.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20N4

  • Mr = 364.5

  • Tetragonal, [I \overline 42m ]

  • a = 7.1996 (2) Å

  • c = 17.4511 (5) Å

  • V = 904.56 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.63 mm−1

  • T = 120 K

  • 0.45 × 0.22 × 0.15 mm

Data collection
  • Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.50, Tmax = 0.90

  • 4873 measured reflections

  • 273 independent reflections

  • 268 reflections with I > 3σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.077

  • S = 1.85

  • 273 reflections

  • 51 parameters

  • Only H-atom coordinates refined

  • Δρmax = 0.08 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C4/C2′–C4′ and C4–C6/C4′–C6′ rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg2i 1.042 (18) 2.648 (14) 3.6921 (14) 178.2 (15)
C5—H5⋯Cg1i 1.047 (18) 2.652 (14) 3.6979 (14) 178.0 (16)
Symmetry code: (i) [-y+{\script{1\over 2}}, x-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

We have as a general goal the design and synthesis of new macrocyclic saturated ring-fused aminals, of considerable interest as useful intermediates for the synthesis of N-containing heterocyclic compounds. These aminals comprise a family of preformed electrophilic reagents which have been utilized in condensation reactions with electron-rich aromatic compounds in a variant of the Mannich reaction. These ring-fused aminals are frequently prepared by reaction of 1,2-diamines with formaldehyde (Volpp, 1962). By an analogous route we prepared for the first time 6H,13H-5,12:7,14-dimethanodinaphtho[2,3-d:2,3-i][1,3,6,8]tetraazecine (I).

The molecular structure and atom-numbering scheme for (I) are shown in Fig. 1. Unlike the related structures, which crystallized in orthorhombic space groups Aba2 (Rivera et al., 2009, 2011) and Pbcn (Murray-Rust & Smith, 1975), the title compound (I) crystallizes in the tetragonal I42m space group with one quarter-molecule in the asymmetric unit (located on a special position of site symmetry 4). The X-ray structure of I shows similar features to other ring-fused aminals. So, the bond lengths and angles are normal (Allen et al., 1987) and similar to those observed for related structures (Murray-Rust & Smith, 1975; Rivera et al., 2009; Rivera et al., 2011).

Due to symmetry considerations the aromatic rings are strictly perpendicular to each other. In the crystal packing (Fig. 2), the molecules are linked by a pair of C—H···π interactions (Table 1) into columns along [110].

Related literature top

For chemical background to the synthesis of the title compound, see: Volpp (1962). For related structures, see: Murray-Rust & Smith (1975); Rivera et al. (2009, 2011). For bond-length data, see: Allen et al. (1987).

Experimental top

A solution of naphthalene-2,3-diamine (158 mg, 1 mmol) in methanol (10 ml) was added dropwise at 273 K to 5 ml of 37% aqueous formaldehyde. The reaction mixture was stirring at this temperature for 1 h and its completion was monitored by TLC. After completion, the contents were poured over cold water (10 ml). The resultant solid was isolated by filtration, washed with cold water, dried in vacuum and recrystallized from ethyl acetate to give the title compound with 28% yield. The melting point of the title structure is 484 K.

1H NMR (δ, 400 MHz, CDCl3): 4.55, 7.52, 7.74, 7.86. 13C NMR (δ, 100 MHz, CDCl3): 70.2, 125.6, 126.2, 127.7, 133.0, 151.9.

Refinement top

The H atoms atoms were found in difference Fourier maps and their coordinates were refined freely. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2×Ueq of the parent atom. As the structure contains only light atoms, the Friedel-pair reflections were merged and the Flack parameter has not been determined.

Structure description top

We have as a general goal the design and synthesis of new macrocyclic saturated ring-fused aminals, of considerable interest as useful intermediates for the synthesis of N-containing heterocyclic compounds. These aminals comprise a family of preformed electrophilic reagents which have been utilized in condensation reactions with electron-rich aromatic compounds in a variant of the Mannich reaction. These ring-fused aminals are frequently prepared by reaction of 1,2-diamines with formaldehyde (Volpp, 1962). By an analogous route we prepared for the first time 6H,13H-5,12:7,14-dimethanodinaphtho[2,3-d:2,3-i][1,3,6,8]tetraazecine (I).

The molecular structure and atom-numbering scheme for (I) are shown in Fig. 1. Unlike the related structures, which crystallized in orthorhombic space groups Aba2 (Rivera et al., 2009, 2011) and Pbcn (Murray-Rust & Smith, 1975), the title compound (I) crystallizes in the tetragonal I42m space group with one quarter-molecule in the asymmetric unit (located on a special position of site symmetry 4). The X-ray structure of I shows similar features to other ring-fused aminals. So, the bond lengths and angles are normal (Allen et al., 1987) and similar to those observed for related structures (Murray-Rust & Smith, 1975; Rivera et al., 2009; Rivera et al., 2011).

Due to symmetry considerations the aromatic rings are strictly perpendicular to each other. In the crystal packing (Fig. 2), the molecules are linked by a pair of C—H···π interactions (Table 1) into columns along [110].

For chemical background to the synthesis of the title compound, see: Volpp (1962). For related structures, see: Murray-Rust & Smith (1975); Rivera et al. (2009, 2011). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. A view of (I) with the numbering scheme, displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) 1 + y,1 - x,-z; (ii) 2 - x,-y,z; (iii) 1 - y,-1 + x,-z.
[Figure 2] Fig. 2. Packing of the molecules of the title compound view along b axis.
1,12,14,25- tetraazaheptacyclo[12.12.1.112,25.02,11.04,9.015,24.017,22]octacosa- 2,4(9),5,7,10,15,17 (22),18,20,23-decaene top
Crystal data top
C24H20N4Dx = 1.338 Mg m3
Mr = 364.5Cu Kα radiation, λ = 1.5418 Å
Tetragonal, I42mCell parameters from 3581 reflections
Hall symbol: I -4 2θ = 5.1–67.0°
a = 7.1996 (2) ŵ = 0.63 mm1
c = 17.4511 (5) ÅT = 120 K
V = 904.56 (6) Å3Irregular shape, yellow
Z = 20.45 × 0.22 × 0.15 mm
F(000) = 384
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
273 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source268 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.3784 pixels mm-1θmax = 67.1°, θmin = 5.1°
Rotation method, ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 88
Tmin = 0.50, Tmax = 0.90l = 2020
4873 measured reflections
Refinement top
Refinement on F24 constraints
R[F > 3σ(F)] = 0.027Only H-atom coordinates refined
wR(F) = 0.077Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
S = 1.85(Δ/σ)max = 0.003
273 reflectionsΔρmax = 0.08 e Å3
51 parametersΔρmin = 0.15 e Å3
0 restraints
Crystal data top
C24H20N4Z = 2
Mr = 364.5Cu Kα radiation
Tetragonal, I42mµ = 0.63 mm1
a = 7.1996 (2) ÅT = 120 K
c = 17.4511 (5) Å0.45 × 0.22 × 0.15 mm
V = 904.56 (6) Å3
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
273 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
268 reflections with I > 3σ(I)
Tmin = 0.50, Tmax = 0.90Rint = 0.025
4873 measured reflections
Refinement top
R[F > 3σ(F)] = 0.0270 restraints
wR(F) = 0.077Only H-atom coordinates refined
S = 1.85Δρmax = 0.08 e Å3
273 reflectionsΔρmin = 0.15 e Å3
51 parameters
Special details top

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.86029 (13)0.13971 (13)0.04360 (8)0.0180 (4)
C10.7560 (2)000.0187 (4)
C20.92982 (16)0.07018 (16)0.11529 (9)0.0175 (4)
C30.86239 (18)0.13761 (18)0.18326 (11)0.0194 (4)
C40.9299 (2)0.0701 (2)0.25428 (9)0.0181 (4)
C50.86279 (18)0.13721 (18)0.32562 (11)0.0221 (4)
C60.93073 (18)0.06927 (18)0.39302 (9)0.0222 (4)
H10.677 (2)0.0686 (18)0.0400 (7)0.0225*
H30.760 (2)0.240 (2)0.1798 (11)0.0233*
H50.760 (2)0.240 (2)0.3243 (12)0.0265*
H60.886 (2)0.114 (2)0.4421 (13)0.0266*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0174 (5)0.0174 (5)0.0191 (8)0.0016 (7)0.0002 (4)0.0002 (4)
C10.0152 (8)0.0201 (8)0.0210 (7)000.0003 (7)
C20.0158 (5)0.0158 (5)0.0208 (9)0.0001 (7)0.0016 (5)0.0016 (5)
C30.0174 (6)0.0174 (6)0.0235 (10)0.0026 (7)0.0007 (5)0.0007 (5)
C40.0168 (6)0.0168 (6)0.0208 (8)0.0015 (7)0.0008 (5)0.0008 (5)
C50.0211 (6)0.0211 (6)0.0240 (10)0.0031 (8)0.0002 (4)0.0002 (4)
C60.0234 (6)0.0234 (6)0.0196 (7)0.0012 (8)0.0007 (5)0.0007 (5)
Geometric parameters (Å, º) top
N1—C11.4680 (13)C3—H31.042 (18)
N1—C1i1.4680 (13)C4—C4iii1.428 (2)
N1—C21.437 (2)C4—C51.420 (2)
C1—H11.027 (13)C5—C61.365 (2)
C1—H1ii1.027 (13)C5—H51.047 (18)
C2—C2iii1.4292 (17)C6—C6iii1.4106 (18)
C2—C31.370 (2)C6—H60.97 (2)
C3—C41.417 (2)
C1—N1—C1i115.64 (9)C2—C3—C4120.94 (12)
C1—N1—C2113.00 (8)C2—C3—H3116.7 (11)
C1i—N1—C2113.00 (8)C4—C3—H3122.3 (11)
N1—C1—N1iv118.44 (11)C3—C4—C4iii118.99 (14)
N1—C1—H1107.8 (7)C3—C4—C5122.26 (13)
N1—C1—H1ii105.1 (7)C4iii—C4—C5118.74 (14)
N1iv—C1—H1105.1 (7)C4—C5—C6120.80 (13)
N1iv—C1—H1ii107.8 (7)C4—C5—H5117.5 (11)
H1—C1—H1ii112.7 (11)C6—C5—H5121.7 (11)
N1—C2—C2iii119.50 (13)C5—C6—C6iii120.46 (14)
N1—C2—C3120.43 (11)C5—C6—H6121.7 (10)
C2iii—C2—C3120.06 (14)C6iii—C6—H6117.8 (10)
Symmetry codes: (i) y+1, x+1, z; (ii) x, y, z; (iii) x+2, y, z; (iv) y+1, x1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C4/C2'–C4' and C4–C6/C4'–C6' rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg2v1.042 (18)2.648 (14)3.6921 (14)178.2 (15)
C5—H5···Cg1v1.047 (18)2.652 (14)3.6979 (14)178.0 (16)
Symmetry code: (v) y+1/2, x1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H20N4
Mr364.5
Crystal system, space groupTetragonal, I42m
Temperature (K)120
a, c (Å)7.1996 (2), 17.4511 (5)
V3)904.56 (6)
Z2
Radiation typeCu Kα
µ (mm1)0.63
Crystal size (mm)0.45 × 0.22 × 0.15
Data collection
DiffractometerAgilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.50, 0.90
No. of measured, independent and
observed [I > 3σ(I)] reflections
4873, 273, 268
Rint0.025
(sin θ/λ)max1)0.597
Refinement
R[F > 3σ(F)], wR(F), S 0.027, 0.077, 1.85
No. of reflections273
No. of parameters51
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.08, 0.15

Computer programs: CrysAlis PRO (Agilent, 2010), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C4/C2'–C4' and C4–C6/C4'–C6' rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg2i1.042 (18)2.648 (14)3.6921 (14)178.2 (15)
C5—H5···Cg1i1.047 (18)2.652 (14)3.6979 (14)178.0 (16)
Symmetry code: (i) y+1/2, x1/2, z+1/2.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences of the Czech Republic.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationMurray-Rust, P. & Smith, I. (1975). Acta Cryst. B31, 587–589.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.  Google Scholar
First citationRivera, A., Maldonado, M., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2011). Acta Cryst. E67, o2395.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Maldonado, M., Ríos-Motta, J., González-Salas, D. & Dacunha-Marinho, B. (2009). Acta Cryst. E65, o2553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVolpp, G. (1962). Chem. Ber. 95, 1493–1494.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds