metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1H-benzimidazole-κN3)bis­­[2-(naphthalen-1-yl)acetato-κ2O,O′]nickel(II) monohydrate

aJiangsu Marine Resources Development Research Institute, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, bDepartment of Mathematics and Science, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, cDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, dHuaiyin Insititute of Technology, Huaiyin 223003, People's Republic of China, and eQian'an College, Hebei United University, Tangshan 063009, People's Republic of China
*Correspondence e-mail: yfj1999@126.com

(Received 26 February 2012; accepted 7 March 2012; online 14 March 2012)

In the title compound, [Ni(C12H9O2)2(C7H6N2)2]·H2O, The NiII cation is located on a twofold rotation axis and is six-coordinated in a distorted NiN2O4 octa­hedral geometry. The asymmetric unit consists of a nickel(II) ion, one 2-(naphthalen-1-yl)acetate anion, a neutral benzotriazole ligand and one half of a lattice water mol­ecule. The crystal packing is stabilized by O—H⋯O and N—H⋯O hydrogen bonds. The title compound is isotypic with its CdII analogue.

Related literature

For the crystal structures of related 2-(naphthalen-1-yl)acetate complexes, see: Yin et al. (2011a[Yin, F.-J., Han, L.-J., Yang, S.-P. & Xu, X. Y. (2011a). Acta Cryst. E67, m1772.],b[Yin, F.-J., Han, L.-J., Yang, S.-P., Xu, X.-Y. & Gu, Y. (2011b). Acta Cryst. E67, m1821.]); Liu et al. (2007[Liu, Y.-F., Xia, H.-T., Wang, D.-Q., Yang, S.-P. & Meng, Y.-L. (2007). Acta Cryst. E63, m2544.]); Yang et al. (2008[Yang, Y.-Q., Li, C.-H. L. W. & Kuang, Y.-F. (2008). Chin. J. Struct. Chem. 27, 404-408.]); Tang et al. (2006[Tang, D.-X., Feng, L.-X. & Zhang, X.-Q. (2006). Chin. J. Inorg. Chem. 22, 1891-1894.]); Ji et al. (2011[Ji, L.-L., Liu, J.-S. & Song, W.-D. (2011). Acta Cryst. E67, m606.]). For the isotypic CdII complex, see: Duan et al. (2007[Duan, J.-G., Liu, J.-W. & Wu, S. (2007). Acta Cryst. E63, m692-m694.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H9O2)2(C7H6N2)2]·H2O

  • Mr = 683.37

  • Monoclinic, C 2/c

  • a = 11.573 (4) Å

  • b = 19.991 (7) Å

  • c = 14.290 (5) Å

  • β = 105.903 (4)°

  • V = 3179.5 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 298 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.952, Tmax = 0.952

  • 11840 measured reflections

  • 2807 independent reflections

  • 1849 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.122

  • S = 0.99

  • 2807 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O4 0.90 (8) 2.24 (8) 2.988 (6) 141 (8)
N2—H2⋯O4i 0.86 2.00 2.791 (4) 152
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years particular interest has been devoted to the 1-naphthylacetate ligand in coordination chemistry due to its ability to form metal complexes (Yin et al., 2011a, 2011b; Liu et al.,2007; Yang et al., 2008; Tang et al.,2006 ; Ji et al., 2011). The crystal structure of the title compound was determined as part of an ongoing study of the properties of nickel complexes containing imidazole ligands. In the title mononuclear metal complex, the asymmetric unit consists of a nickel cation, one 2-(naphthalen-1-yl)acetate anion,a benzotriazole ligand, and half of a lattic water molecule. The NiII cation is located on a two fold rotation axis and is six coordinated by two N from two benzotriazoles and four O atoms from two different 2-(naphthalen-1-yl)acetate anions, displaying a distorted NiN2O4 octahedral geometry, with Ni-O bond lengths in the range 2.056 (2)-2.288 (2)Å; the Ni-N bond length is 2.020 (3)Å. The crystal packing is stabilized by intermolecular N—H···O hydrogen bonding (Fig. 2) interactions which give rise to a one-dimensional chain structure. An isotypic cadmium(II) structure has been reported previously (Duan et al., 2007).

Related literature top

For the crystal structures of related 2-(naphthalen-1-yl)acetate complexes, see: Yin et al. (2011a,b); Liu et al. (2007); Yang et al. (2008); Tang et al. (2006); Ji et al. (2011). For the isotypic CdII complex, see: Duan et al. (2007).

Experimental top

The title compound was synthesized by the reaction ofNi(NO3)2.6H2O, (87.24 mg, 0.3 mmol), 1-naphthylacetic acid(93 mg, 0.5 mmol), benzotriazole (35.4mg, 0.3 mmol) and NaOH (20 mg, 0.5 mmol) in 16 mL of a water-ethanol (2:1) mixture under solvothermal conditions. The mixture was homogenized and transferred into a sealed Teflon-lined solvothermal bomb (volume: 25 ml) and heated to 160°C for three days. After cooling colorless the crystals of the title compound were obtained, which were washed with distilled water and absolute ethanol.

Refinement top

H atoms were placed in calculated positions, with N–H = 0.86 Å ; C—H = 0.93 Å or C—H = 0.97 Å and refined with a riding model, with Uiso(H) = 1.2Ueq(C).Water H atoms were located in Fourier difference maps and refined isotropically..

Structure description top

In recent years particular interest has been devoted to the 1-naphthylacetate ligand in coordination chemistry due to its ability to form metal complexes (Yin et al., 2011a, 2011b; Liu et al.,2007; Yang et al., 2008; Tang et al.,2006 ; Ji et al., 2011). The crystal structure of the title compound was determined as part of an ongoing study of the properties of nickel complexes containing imidazole ligands. In the title mononuclear metal complex, the asymmetric unit consists of a nickel cation, one 2-(naphthalen-1-yl)acetate anion,a benzotriazole ligand, and half of a lattic water molecule. The NiII cation is located on a two fold rotation axis and is six coordinated by two N from two benzotriazoles and four O atoms from two different 2-(naphthalen-1-yl)acetate anions, displaying a distorted NiN2O4 octahedral geometry, with Ni-O bond lengths in the range 2.056 (2)-2.288 (2)Å; the Ni-N bond length is 2.020 (3)Å. The crystal packing is stabilized by intermolecular N—H···O hydrogen bonding (Fig. 2) interactions which give rise to a one-dimensional chain structure. An isotypic cadmium(II) structure has been reported previously (Duan et al., 2007).

For the crystal structures of related 2-(naphthalen-1-yl)acetate complexes, see: Yin et al. (2011a,b); Liu et al. (2007); Yang et al. (2008); Tang et al. (2006); Ji et al. (2011). For the isotypic CdII complex, see: Duan et al. (2007).

Computing details top

Data collection: APEX2 (Bruker 2008); cell refinement: SAINT (Bruker 2008); data reduction: SAINT (Bruker 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. Molecule and the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level.Hydrogenbonding is shown as dashed lines[Symmetry code: (A) 1-x, y, 1.5-z].
[Figure 2] Fig. 2. Part of the one-dimensional chain structure of (I) formed by N—H···O hydrogen bonds (dashed lines)along [001].
Bis(1H-benzimidazole-κN3)bis[2-(naphthalen-1-yl)acetato-κ2O,O']nickel(II) monohydrate top
Crystal data top
[Ni(C12H9O2)2(C7H6N2)2]·H2OF(000) = 1424
Mr = 683.37Dx = 1.428 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1368 reflections
a = 11.573 (4) Åθ = 3.5–23.4°
b = 19.991 (7) ŵ = 0.66 mm1
c = 14.290 (5) ÅT = 298 K
β = 105.903 (4)°Block, colourless
V = 3179.5 (19) Å30.10 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2807 independent reflections
Radiation source: fine-focus sealed tube1849 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
φ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.952, Tmax = 0.952k = 2323
11840 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0569P)2]
where P = (Fo2 + 2Fc2)/3
2807 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Ni(C12H9O2)2(C7H6N2)2]·H2OV = 3179.5 (19) Å3
Mr = 683.37Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.573 (4) ŵ = 0.66 mm1
b = 19.991 (7) ÅT = 298 K
c = 14.290 (5) Å0.10 × 0.10 × 0.10 mm
β = 105.903 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
2807 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1849 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.952Rint = 0.083
11840 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.41 e Å3
2807 reflectionsΔρmin = 0.43 e Å3
221 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6876 (3)0.58948 (19)0.7714 (2)0.0396 (9)
C20.8061 (3)0.6268 (2)0.7974 (3)0.0527 (10)
H2A0.80670.65720.85050.063*
H2B0.87010.59460.82140.063*
C30.8350 (3)0.6664 (2)0.7174 (3)0.0460 (9)
C40.8408 (3)0.7344 (2)0.7213 (3)0.0585 (11)
H40.82520.75640.77380.070*
C50.8696 (4)0.7721 (2)0.6480 (4)0.0679 (13)
H50.87500.81840.65330.081*
C60.8898 (4)0.7412 (2)0.5694 (3)0.0661 (13)
H60.90740.76670.52060.079*
C70.8844 (3)0.6714 (2)0.5609 (3)0.0507 (10)
C80.8573 (3)0.63328 (19)0.6355 (3)0.0433 (9)
C90.8534 (3)0.5631 (2)0.6255 (3)0.0525 (11)
H90.83740.53710.67440.063*
C100.8724 (4)0.5324 (2)0.5464 (4)0.0665 (13)
H100.86900.48600.54160.080*
C110.8969 (4)0.5702 (3)0.4727 (4)0.0741 (14)
H110.90870.54890.41820.089*
C120.9039 (3)0.6382 (3)0.4795 (3)0.0666 (13)
H120.92160.66290.43010.080*
C130.4383 (3)0.44910 (18)0.5645 (2)0.0421 (9)
H130.36340.46970.55000.050*
C140.5879 (3)0.38798 (17)0.5476 (3)0.0428 (9)
C150.6185 (3)0.41847 (17)0.6388 (2)0.0370 (8)
C160.7297 (3)0.40796 (19)0.7041 (3)0.0515 (10)
H160.75070.42780.76530.062*
C170.8083 (4)0.3663 (2)0.6737 (4)0.0638 (12)
H170.88420.35820.71540.077*
C180.7766 (4)0.3365 (2)0.5830 (4)0.0684 (13)
H180.83190.30870.56580.082*
C190.6675 (4)0.34618 (19)0.5176 (3)0.0556 (11)
H190.64720.32610.45650.067*
N10.5211 (2)0.45750 (13)0.64759 (19)0.0380 (7)
N20.4725 (3)0.40802 (14)0.5028 (2)0.0434 (8)
H20.43000.39640.44580.052*
Ni10.50000.52246 (3)0.75000.0369 (2)
O20.6755 (2)0.54170 (12)0.82476 (17)0.0469 (7)
O40.6028 (2)0.60642 (12)0.69919 (17)0.0441 (6)
O1W0.50000.7341 (3)0.75000.163 (4)
H1A0.541 (8)0.711 (4)0.716 (8)0.245*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.038 (2)0.052 (2)0.032 (2)0.0045 (18)0.0159 (17)0.0054 (18)
C20.042 (2)0.069 (3)0.048 (2)0.011 (2)0.0140 (18)0.000 (2)
C30.028 (2)0.054 (3)0.056 (2)0.0035 (18)0.0110 (17)0.001 (2)
C40.047 (3)0.058 (3)0.073 (3)0.003 (2)0.019 (2)0.010 (2)
C50.057 (3)0.047 (3)0.097 (4)0.007 (2)0.017 (3)0.012 (3)
C60.052 (3)0.074 (4)0.074 (3)0.004 (2)0.019 (2)0.022 (3)
C70.032 (2)0.066 (3)0.054 (3)0.001 (2)0.0117 (18)0.007 (2)
C80.0237 (19)0.048 (3)0.057 (2)0.0011 (17)0.0101 (17)0.006 (2)
C90.034 (2)0.057 (3)0.068 (3)0.0009 (19)0.017 (2)0.000 (2)
C100.042 (3)0.070 (3)0.086 (3)0.011 (2)0.015 (2)0.020 (3)
C110.044 (3)0.109 (4)0.069 (3)0.021 (3)0.014 (2)0.021 (3)
C120.041 (3)0.107 (4)0.055 (3)0.009 (3)0.018 (2)0.009 (3)
C130.041 (2)0.046 (2)0.042 (2)0.0002 (18)0.0162 (18)0.0009 (18)
C140.049 (2)0.040 (2)0.046 (2)0.0024 (19)0.0236 (19)0.0021 (18)
C150.036 (2)0.038 (2)0.040 (2)0.0002 (17)0.0171 (17)0.0012 (17)
C160.045 (2)0.052 (3)0.058 (3)0.003 (2)0.016 (2)0.002 (2)
C170.043 (3)0.060 (3)0.088 (3)0.008 (2)0.016 (2)0.004 (3)
C180.064 (3)0.060 (3)0.094 (4)0.015 (2)0.043 (3)0.004 (3)
C190.064 (3)0.052 (3)0.061 (3)0.000 (2)0.035 (2)0.006 (2)
N10.0346 (17)0.0430 (18)0.0379 (16)0.0012 (14)0.0127 (14)0.0027 (14)
N20.045 (2)0.0480 (19)0.0362 (16)0.0053 (16)0.0095 (15)0.0029 (15)
Ni10.0321 (4)0.0448 (4)0.0365 (4)0.0000.0142 (3)0.000
O20.0376 (15)0.0565 (17)0.0476 (15)0.0063 (12)0.0132 (12)0.0065 (13)
O40.0357 (15)0.0578 (17)0.0412 (14)0.0039 (12)0.0143 (12)0.0008 (12)
O1W0.097 (5)0.066 (4)0.320 (13)0.0000.046 (6)0.000
Geometric parameters (Å, º) top
C1—O21.254 (4)C13—N11.316 (4)
C1—O41.260 (4)C13—N21.341 (4)
C1—C21.516 (5)C13—H130.9300
C1—Ni12.498 (4)C14—N21.374 (4)
C2—C31.502 (5)C14—C151.394 (5)
C2—H2A0.9700C14—C191.395 (5)
C2—H2B0.9700C15—C161.383 (5)
C3—C41.361 (5)C15—N11.405 (4)
C3—C81.429 (5)C16—C171.389 (5)
C4—C51.403 (6)C16—H160.9300
C4—H40.9300C17—C181.382 (6)
C5—C61.356 (6)C17—H170.9300
C5—H50.9300C18—C191.364 (6)
C6—C71.401 (6)C18—H180.9300
C6—H60.9300C19—H190.9300
C7—C121.410 (5)N1—Ni12.021 (3)
C7—C81.413 (5)N2—H20.8600
C8—C91.410 (5)Ni1—N1i2.021 (3)
C9—C101.355 (5)Ni1—O22.055 (2)
C9—H90.9300Ni1—O2i2.055 (2)
C10—C111.386 (6)Ni1—O42.287 (2)
C10—H100.9300Ni1—O4i2.288 (2)
C11—C121.364 (6)Ni1—C1i2.498 (4)
C11—H110.9300O1W—H1A0.90 (8)
C12—H120.9300
O2—C1—O4120.7 (3)C14—C15—N1108.8 (3)
O2—C1—C2118.1 (3)C15—C16—C17116.6 (4)
O4—C1—C2121.2 (3)C15—C16—H16121.7
O2—C1—Ni155.05 (17)C17—C16—H16121.7
O4—C1—Ni165.66 (19)C18—C17—C16121.6 (4)
C2—C1—Ni1172.8 (3)C18—C17—H17119.2
C3—C2—C1116.6 (3)C16—C17—H17119.2
C3—C2—H2A108.1C19—C18—C17122.7 (4)
C1—C2—H2A108.1C19—C18—H18118.7
C3—C2—H2B108.1C17—C18—H18118.7
C1—C2—H2B108.1C18—C19—C14116.1 (4)
H2A—C2—H2B107.3C18—C19—H19122.0
C4—C3—C8118.6 (4)C14—C19—H19122.0
C4—C3—C2120.9 (4)C13—N1—C15104.6 (3)
C8—C3—C2120.5 (4)C13—N1—Ni1122.2 (2)
C3—C4—C5121.7 (4)C15—N1—Ni1132.9 (2)
C3—C4—H4119.2C13—N2—C14107.3 (3)
C5—C4—H4119.2C13—N2—H2126.4
C6—C5—C4120.2 (4)C14—N2—H2126.4
C6—C5—H5119.9N1—Ni1—N1i100.03 (15)
C4—C5—H5119.9N1—Ni1—O2101.45 (10)
C5—C6—C7120.8 (4)N1i—Ni1—O292.41 (10)
C5—C6—H6119.6N1—Ni1—O2i92.41 (10)
C7—C6—H6119.6N1i—Ni1—O2i101.45 (10)
C6—C7—C12121.8 (4)O2—Ni1—O2i158.42 (14)
C6—C7—C8119.1 (4)N1—Ni1—O493.73 (10)
C12—C7—C8119.1 (4)N1i—Ni1—O4151.40 (10)
C9—C8—C7117.9 (4)O2—Ni1—O460.13 (9)
C9—C8—C3122.4 (4)O2i—Ni1—O4102.90 (9)
C7—C8—C3119.6 (4)N1—Ni1—O4i151.40 (10)
C10—C9—C8121.7 (4)N1i—Ni1—O4i93.73 (10)
C10—C9—H9119.1O2—Ni1—O4i102.90 (9)
C8—C9—H9119.1O2i—Ni1—O4i60.13 (9)
C9—C10—C11120.1 (4)O4—Ni1—O4i85.60 (12)
C9—C10—H10120.0N1—Ni1—C199.19 (11)
C11—C10—H10120.0N1i—Ni1—C1121.98 (11)
C12—C11—C10120.6 (4)O2—Ni1—C130.01 (10)
C12—C11—H11119.7O2i—Ni1—C1131.69 (12)
C10—C11—H11119.7O4—Ni1—C130.12 (10)
C11—C12—C7120.6 (4)O4i—Ni1—C194.46 (11)
C11—C12—H12119.7N1—Ni1—C1i121.98 (11)
C7—C12—H12119.7N1i—Ni1—C1i99.19 (11)
N1—C13—N2113.5 (3)O2—Ni1—C1i131.69 (12)
N1—C13—H13123.3O2i—Ni1—C1i30.01 (10)
N2—C13—H13123.3O4—Ni1—C1i94.46 (11)
N2—C14—C15105.9 (3)O4i—Ni1—C1i30.12 (10)
N2—C14—C19132.2 (4)C1—Ni1—C1i115.13 (18)
C15—C14—C19122.0 (4)C1—O2—Ni194.9 (2)
C16—C15—C14121.1 (3)C1—O4—Ni184.2 (2)
C16—C15—N1130.1 (3)
O2—C1—C2—C3159.6 (3)C13—N1—Ni1—O2156.1 (3)
O4—C1—C2—C321.6 (5)C15—N1—Ni1—O216.7 (3)
Ni1—C1—C2—C3177 (2)C13—N1—Ni1—O2i7.2 (3)
C1—C2—C3—C4113.3 (4)C15—N1—Ni1—O2i180.0 (3)
C1—C2—C3—C866.9 (5)C13—N1—Ni1—O495.9 (3)
C8—C3—C4—C50.9 (6)C15—N1—Ni1—O476.9 (3)
C2—C3—C4—C5178.9 (4)C13—N1—Ni1—O4i8.2 (4)
C3—C4—C5—C61.7 (6)C15—N1—Ni1—O4i164.6 (2)
C4—C5—C6—C71.2 (6)C13—N1—Ni1—C1125.7 (3)
C5—C6—C7—C12179.4 (4)C15—N1—Ni1—C147.1 (3)
C5—C6—C7—C80.1 (6)C13—N1—Ni1—C1i1.8 (3)
C6—C7—C8—C9179.5 (3)C15—N1—Ni1—C1i174.6 (3)
C12—C7—C8—C91.2 (5)O2—C1—Ni1—N197.0 (2)
C6—C7—C8—C30.6 (5)O4—C1—Ni1—N181.5 (2)
C12—C7—C8—C3178.7 (3)C2—C1—Ni1—N1116 (2)
C4—C3—C8—C9179.9 (3)O2—C1—Ni1—N1i11.0 (2)
C2—C3—C8—C90.1 (5)O4—C1—Ni1—N1i170.49 (17)
C4—C3—C8—C70.2 (5)C2—C1—Ni1—N1i8 (2)
C2—C3—C8—C7180.0 (3)O4—C1—Ni1—O2178.5 (3)
C7—C8—C9—C101.3 (5)C2—C1—Ni1—O219 (2)
C3—C8—C9—C10178.6 (4)O2—C1—Ni1—O2i161.39 (15)
C8—C9—C10—C110.2 (6)O4—C1—Ni1—O2i20.1 (3)
C9—C10—C11—C120.9 (6)C2—C1—Ni1—O2i142 (2)
C10—C11—C12—C71.0 (6)O2—C1—Ni1—O4178.5 (3)
C6—C7—C12—C11179.4 (4)C2—C1—Ni1—O4162 (2)
C8—C7—C12—C110.1 (6)O2—C1—Ni1—O4i108.2 (2)
N2—C14—C15—C16179.0 (3)O4—C1—Ni1—O4i73.3 (2)
C19—C14—C15—C160.5 (5)C2—C1—Ni1—O4i89 (2)
N2—C14—C15—N10.7 (4)O2—C1—Ni1—C1i131.1 (2)
C19—C14—C15—N1179.7 (3)O4—C1—Ni1—C1i50.43 (17)
C14—C15—C16—C170.5 (5)C2—C1—Ni1—C1i112 (2)
N1—C15—C16—C17179.8 (3)O4—C1—O2—Ni11.6 (4)
C15—C16—C17—C180.4 (6)C2—C1—O2—Ni1177.3 (3)
C16—C17—C18—C190.4 (7)N1—Ni1—O2—C188.6 (2)
C17—C18—C19—C140.4 (6)N1i—Ni1—O2—C1170.7 (2)
N2—C14—C19—C18179.0 (4)O2i—Ni1—O2—C140.39 (19)
C15—C14—C19—C180.5 (6)O4—Ni1—O2—C10.86 (19)
N2—C13—N1—C150.3 (4)O4i—Ni1—O2—C176.3 (2)
N2—C13—N1—Ni1174.9 (2)C1i—Ni1—O2—C166.1 (3)
C16—C15—N1—C13179.5 (4)O2—C1—O4—Ni11.4 (3)
C14—C15—N1—C130.3 (4)C2—C1—O4—Ni1177.4 (3)
C16—C15—N1—Ni16.8 (6)N1—Ni1—O4—C1101.9 (2)
C14—C15—N1—Ni1173.4 (2)N1i—Ni1—O4—C117.0 (3)
N1—C13—N2—C140.8 (4)O2—Ni1—O4—C10.86 (19)
C15—C14—N2—C130.9 (4)O2i—Ni1—O4—C1164.7 (2)
C19—C14—N2—C13179.5 (4)O4i—Ni1—O4—C1106.7 (2)
C13—N1—Ni1—N1i109.3 (3)C1i—Ni1—O4—C1135.57 (19)
C15—N1—Ni1—N1i77.9 (3)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O40.90 (8)2.24 (8)2.988 (6)141 (8)
N2—H2···O4ii0.862.002.791 (4)152
Symmetry code: (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C12H9O2)2(C7H6N2)2]·H2O
Mr683.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)11.573 (4), 19.991 (7), 14.290 (5)
β (°) 105.903 (4)
V3)3179.5 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.952, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
11840, 2807, 1849
Rint0.083
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.122, 0.99
No. of reflections2807
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.43

Computer programs: APEX2 (Bruker 2008), SAINT (Bruker 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O40.90 (8)2.24 (8)2.988 (6)141 (8)
N2—H2···O4i0.862.002.791 (4)152
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Jiangsu Marine Resources Development Research Institute and Huaihai Institute of Technology for support of this work.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuan, J.-G., Liu, J.-W. & Wu, S. (2007). Acta Cryst. E63, m692–m694.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJi, L.-L., Liu, J.-S. & Song, W.-D. (2011). Acta Cryst. E67, m606.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Y.-F., Xia, H.-T., Wang, D.-Q., Yang, S.-P. & Meng, Y.-L. (2007). Acta Cryst. E63, m2544.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, D.-X., Feng, L.-X. & Zhang, X.-Q. (2006). Chin. J. Inorg. Chem. 22, 1891–1894.  CAS Google Scholar
First citationYang, Y.-Q., Li, C.-H. L. W. & Kuang, Y.-F. (2008). Chin. J. Struct. Chem. 27, 404–408.  CAS Google Scholar
First citationYin, F.-J., Han, L.-J., Yang, S.-P. & Xu, X. Y. (2011a). Acta Cryst. E67, m1772.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYin, F.-J., Han, L.-J., Yang, S.-P., Xu, X.-Y. & Gu, Y. (2011b). Acta Cryst. E67, m1821.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds