metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m422-m423

Poly[di­aquadi-μ-hydroxido-κ4O:O-dinitrato-κ4O:O′-bis­­[3-(pyridin-4-yl-κN)-5-(pyridin-3-yl)-1,2,4-oxa­diazole]dicopper(II)]

aSchool of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
*Correspondence e-mail: mhshu@sjtu.edu.cn

(Received 27 February 2012; accepted 8 March 2012; online 14 March 2012)

The title compound, [Cu2(NO3)2(OH)2(C12H8N4O)2(H2O)2]n, consists of a neutral polymeric CuII complex in which each CuII atom has a distorted octa­hedral geometry defined by a pyridyl N atom from a 3-(pyridin-3-yl)-5-(pyridin-4-yl)-1,2,4-oxadiazole ligand and five O atoms from a water mol­ecule, two nitrates and two hydroxides. Two CuII ions are bridged by two hydroxide anions resulting in a Cu2O2 loop, located across an inversion center and connected by the nitrate anions into a broad two-dimensional polymeric structure parallel to (100). In the crystal, there are O—H⋯O hydrogen bonds between the coodinated water mol­ecule and the nitrate and hydroxide, and between the hydroxide and the nitrate. Inter­molecular ππ inter­actions are present between pyridine rings in adjacent two-dimensional structures, with a centroid–centroid distance of 3.582 (2) Å.

Related literature

For the preparation of the ligand, see: Chiou & Shine (1989[Chiou, S. & Shine, H. J. (1989). J. Heterocycl. Chem. 26, 125-128.]). For a related structure, see: Sarkar et al. (2008[Sarkar, B., Drew, M. G. B., Estrader, M., Diaz, C. & Ghosh, A. (2008). Polyhedron, 27, 2625-2633.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(NO3)2(OH)2(C12H8N4O)2(H2O)2]

  • Mr = 384.81

  • Monoclinic, P 21 /c

  • a = 17.7718 (11) Å

  • b = 5.9088 (4) Å

  • c = 13.6268 (8) Å

  • β = 105.572 (1)°

  • V = 1378.43 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.63 mm−1

  • T = 293 K

  • 0.51 × 0.31 × 0.08 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.594, Tmax = 1.000

  • 7672 measured reflections

  • 2976 independent reflections

  • 2768 reflections with I > 2σ(I)

  • Rint = 0.119

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.139

  • S = 1.05

  • 2976 reflections

  • 229 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.14 e Å−3

  • Δρmin = −1.05 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H6⋯O3i 0.86 (2) 1.84 (2) 2.680 (2) 166 (2)
O2—H7⋯O5ii 0.86 (3) 2.00 (3) 2.857 (3) 178 (5)
O2—H7⋯O6ii 0.86 (3) 2.58 (3) 3.137 (3) 124 (2)
O3—H8⋯O5iii 0.86 (2) 2.22 (3) 2.987 (3) 150 (3)
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, [Cu2(C12H8N4O)2(H2O)2(OH)2 (NO3)2]n, was obtained unintentionally during an attempted synthesis of infinite network complex of copper(II) with a rod-like nitrogen containing ligand, 3-(pyridin-3-yl)-5-(pyridin-4-yl)-1,2,4-oxadiazole(Chiou and Shine, 1989).

In the structure, each CuII ion has a distorted octahedral geometry defined by a pyridyl N atom from a 3-(pyridin-3-yl)-5-(pyridin-4-yl)-1,2,4-oxadiazole ligand and five O atoms from a water molecule, two nitrates, and two hydroxides(Fig.1). For each CuII center, the equatorial sites are occupied by a water molecule, a pyridyl N atom, and two hydroxides, the apical sites being occupied by two oxygen atoms of nitrate anions. The equatorial bond distances are in the range 1.945 (2)-1.999 (2) Å while the axial bond distances are 2.431 (2) and 2.716 (2) Å. Neighbouring CuII ions are connected by two hydroxide anions into Cu2O2 loops with a Cu···Cu distance of 2.956 (1) Å. Similar Cu2O2 structure can be constructed by acetates (Sarkar et al. 2008). The result is the formation of centrosymmetric dimeric units, further connected by the nitrate anions to form broad two-dimensional structures parallel to (100).

In the crystal, there are O—H···O hydrogen bonds between the coodinated water molecule and the nitrate or hydroxide, and between the hydroxide and the nitrate. The details are listed in Table 1. There are also intermolecular ππ interactions between pyridine rings in neighboring two-dimensional structures, with a centroid—centroid distance of 3.582 (2)Å (Fig 2).

Related literature top

For the preparation of the ligand, see: Chiou & Shine (1989). For a related structure, see: Sarkar et al. (2008).

Experimental top

A solution of 3-(pyridin-3-yl)-5-(pyridin-4-yl)-1,2,4-oxadiazole(0.2 mmol) in methanol(10 ml) was layered carefully on the solution of Cu(NO3)2.3H2O(0.2 mmol) in water(5 ml) in a straight test tube. The test tube was covered and kept in the refrigerator. Green crystals suitable for X-ray diffraction analysis were obtained after 2 weeks.

Refinement top

H atoms bonded to O atoms were located in a difference map and refined with distance restraints of O—H = 0.86 (2) Å. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.93(aromatic) and C—H = 0.96(CH3) Å. All H atoms were refined with Uiso(H) = 1.2 (1.5 for methyl groups) timesUeq(C).

Structure description top

The title compound, [Cu2(C12H8N4O)2(H2O)2(OH)2 (NO3)2]n, was obtained unintentionally during an attempted synthesis of infinite network complex of copper(II) with a rod-like nitrogen containing ligand, 3-(pyridin-3-yl)-5-(pyridin-4-yl)-1,2,4-oxadiazole(Chiou and Shine, 1989).

In the structure, each CuII ion has a distorted octahedral geometry defined by a pyridyl N atom from a 3-(pyridin-3-yl)-5-(pyridin-4-yl)-1,2,4-oxadiazole ligand and five O atoms from a water molecule, two nitrates, and two hydroxides(Fig.1). For each CuII center, the equatorial sites are occupied by a water molecule, a pyridyl N atom, and two hydroxides, the apical sites being occupied by two oxygen atoms of nitrate anions. The equatorial bond distances are in the range 1.945 (2)-1.999 (2) Å while the axial bond distances are 2.431 (2) and 2.716 (2) Å. Neighbouring CuII ions are connected by two hydroxide anions into Cu2O2 loops with a Cu···Cu distance of 2.956 (1) Å. Similar Cu2O2 structure can be constructed by acetates (Sarkar et al. 2008). The result is the formation of centrosymmetric dimeric units, further connected by the nitrate anions to form broad two-dimensional structures parallel to (100).

In the crystal, there are O—H···O hydrogen bonds between the coodinated water molecule and the nitrate or hydroxide, and between the hydroxide and the nitrate. The details are listed in Table 1. There are also intermolecular ππ interactions between pyridine rings in neighboring two-dimensional structures, with a centroid—centroid distance of 3.582 (2)Å (Fig 2).

For the preparation of the ligand, see: Chiou & Shine (1989). For a related structure, see: Sarkar et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with atom labels and 30% probability displacement ellipsoids for non-H atoms. Hydrogen atoms bound to the carbon atoms were omitted for clarity. Symmetry codes A: 1-x,-y,-z; B: x,1/2-y,-1/2+z; C: 1-x,-1/2+y,1/2-z.
[Figure 2] Fig. 2. Packing view of the complex down the a axis, showing the two-dimensional structures in projection. O—H···O hydrogen bonds are shown in dashed lines. Note interdigitation of the aromatic groups in neighbouring two-dimensional structures, leading to ππ interactions.
Poly[diaquadi-µ-hydroxido-κ4O:O-dinitrato- κ4O:O'-bis[3-(pyridin-4-yl-κN)-5-(pyridin-3-yl)- 1,2,4-oxadiazole]dicopper(II)] top
Crystal data top
[Cu2(NO3)2(OH)2(C12H8N4O)2(H2O)2]F(000) = 780
Mr = 384.81Dx = 1.854 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5190 reflections
a = 17.7718 (11) Åθ = 4.8–56.4°
b = 5.9088 (4) ŵ = 1.63 mm1
c = 13.6268 (8) ÅT = 293 K
β = 105.572 (1)°Block, blue
V = 1378.43 (15) Å30.51 × 0.31 × 0.08 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
2976 independent reflections
Radiation source: fine-focus sealed tube2768 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.119
phi and ω scansθmax = 27.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1722
Tmin = 0.594, Tmax = 1.000k = 77
7672 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.089P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2976 reflectionsΔρmax = 1.14 e Å3
229 parametersΔρmin = 1.05 e Å3
3 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0143 (18)
Crystal data top
[Cu2(NO3)2(OH)2(C12H8N4O)2(H2O)2]V = 1378.43 (15) Å3
Mr = 384.81Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.7718 (11) ŵ = 1.63 mm1
b = 5.9088 (4) ÅT = 293 K
c = 13.6268 (8) Å0.51 × 0.31 × 0.08 mm
β = 105.572 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2976 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2768 reflections with I > 2σ(I)
Tmin = 0.594, Tmax = 1.000Rint = 0.119
7672 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0483 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.14 e Å3
2976 reflectionsΔρmin = 1.05 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.568231 (15)0.14812 (5)0.04093 (2)0.02002 (18)
O11.03390 (11)0.2157 (4)0.16936 (16)0.0378 (5)
O20.58494 (10)0.4687 (3)0.08870 (12)0.0228 (4)
O30.54446 (11)0.1523 (3)0.02081 (14)0.0211 (4)
O40.59173 (11)0.0905 (4)0.22324 (14)0.0351 (4)
O50.47452 (11)0.0938 (4)0.24387 (14)0.0327 (4)
O60.57569 (13)0.1084 (4)0.37477 (14)0.0433 (5)
N10.98046 (13)0.1098 (4)0.10703 (16)0.0270 (5)
N20.95355 (13)0.2348 (5)0.1616 (2)0.0391 (6)
N30.68350 (13)0.1057 (4)0.06699 (16)0.0219 (4)
N41.20685 (16)0.3615 (4)0.1113 (2)0.0412 (6)
N50.54702 (13)0.0982 (4)0.28059 (16)0.0268 (5)
C10.73297 (14)0.2588 (4)0.04712 (19)0.0262 (5)
H1B0.71290.39680.01900.031*
C20.81232 (15)0.2217 (5)0.06637 (19)0.0274 (5)
H2C0.84490.33350.05280.033*
C30.84262 (14)0.0141 (4)0.10637 (17)0.0229 (5)
C40.79131 (16)0.1452 (4)0.1275 (2)0.0278 (6)
H4B0.80970.28490.15510.033*
C50.71365 (14)0.0937 (5)0.10707 (19)0.0260 (5)
H5A0.68000.20150.12150.031*
C60.92614 (14)0.0393 (4)0.12543 (18)0.0246 (5)
C71.04446 (14)0.0069 (4)0.13676 (18)0.0255 (5)
C81.12382 (14)0.0631 (5)0.13945 (18)0.0252 (5)
C91.18772 (15)0.0806 (5)0.1720 (2)0.0304 (5)
H9A1.18140.22850.19180.036*
C101.26094 (16)0.0024 (5)0.1741 (2)0.0355 (6)
H10A1.30490.08880.19570.043*
C111.26778 (16)0.2211 (6)0.1440 (2)0.0377 (7)
H11A1.31740.27500.14640.045*
C121.13696 (16)0.2822 (5)0.1103 (2)0.0334 (6)
H12A1.09420.37830.08890.040*
H70.5678 (18)0.504 (6)0.1398 (16)0.045 (9)*
H80.5559 (17)0.160 (4)0.0774 (13)0.024 (5)*
H60.5725 (15)0.576 (4)0.0449 (17)0.024 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0140 (2)0.0237 (3)0.0225 (2)0.00041 (9)0.00511 (15)0.00202 (9)
O10.0176 (9)0.0423 (11)0.0543 (12)0.0047 (8)0.0112 (8)0.0142 (10)
O20.0233 (8)0.0238 (9)0.0227 (8)0.0004 (7)0.0087 (7)0.0011 (7)
O30.0163 (9)0.0265 (10)0.0214 (8)0.0014 (6)0.0066 (7)0.0020 (6)
O40.0307 (10)0.0526 (11)0.0257 (9)0.0025 (9)0.0141 (8)0.0074 (9)
O50.0248 (10)0.0409 (11)0.0336 (10)0.0020 (8)0.0098 (7)0.0022 (8)
O60.0442 (12)0.0669 (14)0.0187 (9)0.0024 (10)0.0083 (8)0.0033 (9)
N10.0185 (10)0.0351 (11)0.0282 (11)0.0013 (9)0.0077 (8)0.0006 (9)
N20.0186 (11)0.0451 (15)0.0544 (15)0.0036 (11)0.0114 (10)0.0152 (12)
N30.0151 (10)0.0285 (10)0.0223 (10)0.0001 (8)0.0051 (8)0.0007 (8)
N40.0341 (15)0.0455 (16)0.0456 (15)0.0060 (10)0.0133 (11)0.0039 (11)
N50.0292 (12)0.0311 (10)0.0223 (10)0.0024 (10)0.0106 (8)0.0038 (9)
C10.0225 (13)0.0269 (12)0.0309 (12)0.0006 (10)0.0102 (9)0.0037 (10)
C20.0212 (12)0.0317 (13)0.0309 (12)0.0018 (11)0.0098 (10)0.0028 (11)
C30.0185 (11)0.0316 (12)0.0190 (10)0.0007 (9)0.0057 (8)0.0005 (9)
C40.0216 (14)0.0303 (14)0.0307 (13)0.0007 (9)0.0053 (10)0.0072 (9)
C50.0197 (12)0.0289 (12)0.0287 (12)0.0025 (10)0.0053 (9)0.0048 (10)
C60.0185 (11)0.0340 (14)0.0218 (11)0.0004 (10)0.0062 (9)0.0002 (9)
C70.0189 (11)0.0360 (13)0.0217 (10)0.0028 (10)0.0058 (9)0.0004 (10)
C80.0174 (11)0.0363 (14)0.0226 (11)0.0019 (10)0.0065 (8)0.0019 (10)
C90.0231 (13)0.0359 (14)0.0328 (13)0.0025 (11)0.0086 (10)0.0006 (11)
C100.0186 (12)0.0509 (17)0.0354 (13)0.0047 (12)0.0046 (10)0.0072 (13)
C110.0220 (13)0.0542 (18)0.0387 (15)0.0071 (13)0.0110 (11)0.0059 (14)
C120.0247 (13)0.0404 (15)0.0351 (13)0.0035 (12)0.0082 (10)0.0034 (12)
Geometric parameters (Å, º) top
Cu—O3i1.9474 (19)N4—C111.342 (4)
Cu—O31.9613 (16)C1—C21.381 (3)
Cu—N31.999 (2)C1—H1B0.9300
Cu—O21.9992 (17)C2—C31.390 (4)
Cu—O42.4301 (18)C2—H2C0.9300
Cu—Cui2.9559 (5)C3—C41.393 (4)
O1—C71.341 (3)C3—C61.471 (3)
O1—N21.408 (3)C4—C51.367 (4)
O2—H70.856 (10)C4—H4B0.9300
O2—H60.859 (10)C5—H5A0.9300
O3—H80.849 (10)C7—C81.461 (3)
O4—N51.256 (3)C8—C121.392 (4)
O5—N51.251 (3)C8—C91.392 (4)
O6—N51.249 (3)C9—C101.384 (4)
N1—C71.299 (3)C9—H9A0.9300
N1—C61.379 (3)C10—C111.371 (4)
N2—C61.298 (4)C10—H10A0.9300
N3—C11.339 (3)C11—H11A0.9300
N3—C51.348 (3)C12—H12A0.9300
N4—C121.324 (4)
O3i—Cu—O381.73 (7)C2—C1—H1B118.4
O3i—Cu—N3173.18 (8)C1—C2—C3118.9 (2)
O3—Cu—N393.16 (8)C1—C2—H2C120.6
O3i—Cu—O295.23 (7)C3—C2—H2C120.6
O3—Cu—O2173.40 (7)C2—C3—C4118.1 (2)
N3—Cu—O290.31 (8)C2—C3—C6121.7 (2)
O3i—Cu—O491.93 (7)C4—C3—C6120.3 (2)
O3—Cu—O4105.65 (8)C5—C4—C3119.3 (2)
N3—Cu—O485.07 (7)C5—C4—H4B120.4
O2—Cu—O480.23 (7)C3—C4—H4B120.4
O3i—Cu—Cui41.04 (5)N3—C5—C4123.1 (2)
O3—Cu—Cui40.69 (6)N3—C5—H5A118.4
N3—Cu—Cui133.69 (6)C4—C5—H5A118.4
O2—Cu—Cui135.98 (5)N2—C6—N1115.3 (2)
O4—Cu—Cui101.61 (5)N2—C6—C3121.1 (2)
C7—O1—N2106.1 (2)N1—C6—C3123.6 (2)
Cu—O2—H7116 (2)N1—C7—O1113.8 (2)
Cu—O2—H6119 (2)N1—C7—C8128.0 (2)
H7—O2—H6108 (3)O1—C7—C8118.2 (2)
Cui—O3—Cu98.27 (7)C12—C8—C9118.3 (2)
Cui—O3—H8111 (2)C12—C8—C7119.4 (2)
Cu—O3—H8111.2 (17)C9—C8—C7122.3 (2)
N5—O4—Cu131.85 (16)C10—C9—C8118.2 (3)
C7—N1—C6101.6 (2)C10—C9—H9A120.9
C6—N2—O1103.1 (2)C8—C9—H9A120.9
C1—N3—C5117.5 (2)C11—C10—C9119.1 (3)
C1—N3—Cu125.22 (18)C11—C10—H10A120.4
C5—N3—Cu117.30 (17)C9—C10—H10A120.4
C12—N4—C11117.1 (3)N4—C11—C10123.6 (3)
O6—N5—O5120.3 (2)N4—C11—H11A118.2
O6—N5—O4119.3 (2)C10—C11—H11A118.2
O5—N5—O4120.4 (2)N4—C12—C8123.7 (3)
N3—C1—C2123.1 (2)N4—C12—H12A118.1
N3—C1—H1B118.4C8—C12—H12A118.1
O3i—Cu—O3—Cui0.0Cu—N3—C5—C4179.3 (2)
N3—Cu—O3—Cui175.46 (7)C3—C4—C5—N30.0 (4)
O4—Cu—O3—Cui89.69 (8)O1—N2—C6—N10.6 (3)
O3i—Cu—O4—N59.7 (2)O1—N2—C6—C3179.3 (2)
O3—Cu—O4—N591.7 (3)C7—N1—C6—N21.3 (3)
N3—Cu—O4—N5176.4 (3)C7—N1—C6—C3178.6 (2)
O2—Cu—O4—N585.3 (2)C2—C3—C6—N2179.1 (3)
Cui—Cu—O4—N549.9 (2)C4—C3—C6—N20.3 (4)
C7—O1—N2—C60.3 (3)C2—C3—C6—N11.0 (4)
O2—Cu—N3—C140.0 (2)C4—C3—C6—N1179.6 (2)
O4—Cu—N3—C1120.2 (2)C6—N1—C7—O11.5 (3)
Cui—Cu—N3—C1138.47 (18)C6—N1—C7—C8177.8 (2)
O3—Cu—N3—C545.1 (2)N2—O1—C7—N11.2 (3)
O2—Cu—N3—C5140.52 (18)N2—O1—C7—C8178.1 (2)
O4—Cu—N3—C560.36 (18)N1—C7—C8—C122.0 (4)
Cui—Cu—N3—C541.0 (2)O1—C7—C8—C12177.2 (2)
Cu—O4—N5—O6165.23 (19)N1—C7—C8—C9179.1 (3)
Cu—O4—N5—O515.4 (4)O1—C7—C8—C91.7 (4)
C5—N3—C1—C20.4 (4)C12—C8—C9—C100.3 (4)
Cu—N3—C1—C2179.92 (19)C7—C8—C9—C10178.5 (2)
N3—C1—C2—C31.4 (4)C8—C9—C10—C110.2 (4)
C1—C2—C3—C41.5 (4)C12—N4—C11—C101.2 (4)
C1—C2—C3—C6177.9 (2)C9—C10—C11—N40.5 (4)
C2—C3—C4—C50.9 (4)C11—N4—C12—C81.1 (4)
C6—C3—C4—C5178.6 (2)C9—C8—C12—N40.3 (4)
C1—N3—C5—C40.3 (4)C7—C8—C12—N4179.2 (3)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H6···O3ii0.86 (2)1.84 (2)2.680 (2)166 (2)
O2—H7···O5iii0.86 (3)2.00 (3)2.857 (3)178 (5)
O2—H7···O6iii0.86 (3)2.58 (3)3.137 (3)124 (2)
O3—H8···O5i0.86 (2)2.22 (3)2.987 (3)150 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(NO3)2(OH)2(C12H8N4O)2(H2O)2]
Mr384.81
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.7718 (11), 5.9088 (4), 13.6268 (8)
β (°) 105.572 (1)
V3)1378.43 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.63
Crystal size (mm)0.51 × 0.31 × 0.08
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.594, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7672, 2976, 2768
Rint0.119
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.139, 1.05
No. of reflections2976
No. of parameters229
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.14, 1.05

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H6···O3i0.86 (2)1.84 (2)2.680 (2)166 (2)
O2—H7···O5ii0.86 (3)2.00 (3)2.857 (3)178 (5)
O2—H7···O6ii0.86 (3)2.58 (3)3.137 (3)124 (2)
O3—H8···O5iii0.86 (2)2.22 (3)2.987 (3)150 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z.
 

Acknowledgements

The authors thank Professor D.-J. Xu, Zhejiang University, China, for his helpful suggestions.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiou, S. & Shine, H. J. (1989). J. Heterocycl. Chem. 26, 125–128.  CrossRef CAS Google Scholar
First citationSarkar, B., Drew, M. G. B., Estrader, M., Diaz, C. & Ghosh, A. (2008). Polyhedron, 27, 2625–2633.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m422-m423
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds