metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(8-Amino­quinoline-κ2N,N′)bis­­(1,1,1,5,5,5-hexa­fluoro­pentane-2,4-dionato-κ2O,O′)cobalt(II)

aMolecular Technology Research Unit, Department of Chemistry, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
*Correspondence e-mail: hdavid@wu.ac.th

(Received 9 March 2012; accepted 15 March 2012; online 21 March 2012)

In the title compound, [Co(C5HF6O2)2(C9H8N2)], the CoII centre exhibits a pseudooctahedral coordination geometry, comprising two N-atom donors from the bidentate amino­quinoline ligand and four O-atom donor atoms from two bidentate chelating 1,1,1,5,5,5-hexafluoropentane-2,4-dionate ligands. In the crystal, molecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers. These dimers are further connected through ππ interactions between neighbouring quinoline rings [centroid–centroid distance = 3.472 (2) Å], and stack along the c axis.

Related literature

For related structures, see: Sertphon et al. (2011[Sertphon, D., Harding, D. J., Harding, P. & Adams, H. (2011). Polyhedron, 30, 2740-2745.]); Aakeröy et al. (2004[Aakeröy, C. B., Desper, J. & Valdés-Martínez, J. (2004). CrystEngComm, 6, 413-418.], 2005[Aakeröy, C. B., Schultheiss, N. & Desper, J. (2005). Inorg. Chem. 44, 4983-4991.], 2007[Aakeröy, C. B., Schultheiss, N., Desper, J. & Moore, C. (2007). CrystEngComm, 9, 421-426.]); Harding et al. (2009[Harding, P., Harding, D. J., Phonsri, W., Saithong, S. & Phetmung, H. (2009). Inorg. Chim. Acta, 362, 78-82.], 2010[Harding, P., Harding, D. J., Soponrat, N. & Adams, H. (2010). Acta Cryst. E66, m1138-m1139.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C5HF6O2)2(C9H8N2)]

  • Mr = 617.22

  • Triclinic, [P \overline 1]

  • a = 9.6102 (4) Å

  • b = 10.2681 (5) Å

  • c = 12.4154 (6) Å

  • α = 114.149 (1)°

  • β = 90.927 (1)°

  • γ = 95.202 (1)°

  • V = 1111.40 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 100 K

  • 0.29 × 0.18 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.682, Tmax = 0.746

  • 10217 measured reflections

  • 5113 independent reflections

  • 4735 reflections with I > 2σ(I)

  • Rint = 0.010

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.05

  • 5113 reflections

  • 399 parameters

  • 54 restraints

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.90 2.14 3.024 (2) 169
N2—H2B⋯O4i 0.90 2.56 3.069 (2) 117
Symmetry code: (i) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2003[Bruker (2003). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Metal β-diketonates can serve as excellent building blocks in the formation of supramolecular networks. For instance, the use of hydrogen-bonding ligands allows isolation of linear chains (Aakeröy et al., 2004,2005). In this paper we report the synthesis and structure of [Co(hfac)2(NH2-quin)] (hfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dionato; NH2-quin = 8-aminoquinoline).

The reaction of [Co(hfac)2(H2O)2] with 8-aminoquinoline in THF yields [Co(hfac)2(NH2-quin)] 1 which crystallizes from CH2Cl2/hexanes in the space group P1 (Figure 1). The cobalt metal centre is six-coordinate with a distorted octahedral geometry, the hfac ligands adopting a cis arrangement enforced by the chelating NH2-quin ligand. The compound is isostructural with [Ni(hfac)2(NH2-quin)] (Sertphon et al., 2011). The Co—N and Co—O bond lengths (Table 1) are comparable with those reported in trans-[M(hfac)2(py-CH=CH—C6F4Br)2] (Aakeröy et al., 2007) and [Co(hfac)2(ppaBr)] {ppaBr = 4-bromophenyl(2-pyridylmethylidene)amine, Harding et al., 2010}. The β-diketonate ligands exhibit a planar coordination mode in which the angles between the planes defined by the Co and oxygen atoms and the carbon and oxygen atoms of the β-diketonate ligand are 1.7° and 7.6°. Similarly, in trans-[M(hfac)2(py-CH=CH—C6F4Br)2] (M = Co, Cu) the β-diketonate ligands are also planar (Aakeröy et al., 2007).

The packing in the structure involves two sets of N–H···O interactions between the amino protons of the NH2-quin ligand and the coordinated O atoms of the β-diketonate forming discrete dimers {N2—H2A···O2 = 2.135 (2) Å, N2—H2B···O2 2.557 (2) Å, Figure 2 & Table 2}. Similar interactions are also found in [Ni(dbm)2(dmae)] (dmae = dimethylaminoethylamine) and appear to be a feature of these types of compounds (Harding et al., 2009). In addition, there is a π-π interaction between the quinolyl rings of neighbouring NH2-quin ligands as shown in Figure 3 {Cg1—Cg1i = 3.472 (2) Å where Cg1 is the centroid of the ring C11—C15,N1; i = symmetry code = -x, 1 - y, 2 - z}. The hydrogen bonds mentioned above combine with the π-π interactions to form one-dimensional chains.

Related literature top

For related structures, see: Sertphon et al. (2011); Aakeröy et al. (2004, 2005, 2007); Harding et al. (2009, 2010).

Experimental top

To a deep orange red solution of [Co(hfac)2(H2O)2] (1.0300 g, 2 mmol) in THF (10 ml) was added 8-aminoquinoline (0.2884 g, 2 mmol) giving a red-brown solution which was stirred for 2 hr. After evaporating to low volume (ca. 2 ml), hexane (3 ml) was added giving an orange precipitate which was filtered and washed with hexanes (2×4 ml) and air dried giving orange microcrystals, 0.8794 g (71%). X-ray quality crystals were grown by layering a CH2Cl2 solution with hexane (10 ml) leading to orange crystals after 2 days. IR in KBr disc νC=O 1642 cm-1. UV-Vis (in CH2Cl2, ε mol.dm-3cm-1) 406sh (340), 416sh (300), 505 (120). C19H10Co F12N2O4; calc. C 37.0, H 1.6, N 4.5; found C 36.8, H 1.5, N 4.3.

Refinement top

Hydrogen atoms were placed geometrically and refined with a riding model and with Uiso constrained to be 1.2 (aromatic CH) or 1.5 (NH2) × Ueq of the carrier atom.

Two of the CF3 groups in one of the hfac ligands were found to be disordered and were modeled by refining the fluorine atoms in two positions. SIMU and DELU restrainsts were applied resulting in an occupancy of 70/30 (2) for F1A—F3B and 57/43 (3) for F4A—F6B.

Structure description top

Metal β-diketonates can serve as excellent building blocks in the formation of supramolecular networks. For instance, the use of hydrogen-bonding ligands allows isolation of linear chains (Aakeröy et al., 2004,2005). In this paper we report the synthesis and structure of [Co(hfac)2(NH2-quin)] (hfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dionato; NH2-quin = 8-aminoquinoline).

The reaction of [Co(hfac)2(H2O)2] with 8-aminoquinoline in THF yields [Co(hfac)2(NH2-quin)] 1 which crystallizes from CH2Cl2/hexanes in the space group P1 (Figure 1). The cobalt metal centre is six-coordinate with a distorted octahedral geometry, the hfac ligands adopting a cis arrangement enforced by the chelating NH2-quin ligand. The compound is isostructural with [Ni(hfac)2(NH2-quin)] (Sertphon et al., 2011). The Co—N and Co—O bond lengths (Table 1) are comparable with those reported in trans-[M(hfac)2(py-CH=CH—C6F4Br)2] (Aakeröy et al., 2007) and [Co(hfac)2(ppaBr)] {ppaBr = 4-bromophenyl(2-pyridylmethylidene)amine, Harding et al., 2010}. The β-diketonate ligands exhibit a planar coordination mode in which the angles between the planes defined by the Co and oxygen atoms and the carbon and oxygen atoms of the β-diketonate ligand are 1.7° and 7.6°. Similarly, in trans-[M(hfac)2(py-CH=CH—C6F4Br)2] (M = Co, Cu) the β-diketonate ligands are also planar (Aakeröy et al., 2007).

The packing in the structure involves two sets of N–H···O interactions between the amino protons of the NH2-quin ligand and the coordinated O atoms of the β-diketonate forming discrete dimers {N2—H2A···O2 = 2.135 (2) Å, N2—H2B···O2 2.557 (2) Å, Figure 2 & Table 2}. Similar interactions are also found in [Ni(dbm)2(dmae)] (dmae = dimethylaminoethylamine) and appear to be a feature of these types of compounds (Harding et al., 2009). In addition, there is a π-π interaction between the quinolyl rings of neighbouring NH2-quin ligands as shown in Figure 3 {Cg1—Cg1i = 3.472 (2) Å where Cg1 is the centroid of the ring C11—C15,N1; i = symmetry code = -x, 1 - y, 2 - z}. The hydrogen bonds mentioned above combine with the π-π interactions to form one-dimensional chains.

For related structures, see: Sertphon et al. (2011); Aakeröy et al. (2004, 2005, 2007); Harding et al. (2009, 2010).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (1) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing in (1) showing the N—H···O hydrogen bonding interactions forming dimers. Only selected atoms are labelled for clairty. [Symmetry codes: (i) -x, -y, 1 - z].
[Figure 3] Fig. 3. The molecular packing in (1) showing the π···π interactions between the quinolyl ring. Only selected atoms are labelled for clairty. [Symmetry codes: (i) -x, 1 - y, 2 - z].
(8-Aminoquinoline-κ2N,N')bis(1,1,1,5,5,5-hexafluoropentane- 2,4-dionato-κ2O,O')cobalt(II) top
Crystal data top
[Co(C5HF6O2)2(C9H8N2)]Z = 2
Mr = 617.22F(000) = 610
Triclinic, P1Dx = 1.844 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6102 (4) ÅCell parameters from 6750 reflections
b = 10.2681 (5) Åθ = 2.7–27.6°
c = 12.4154 (6) ŵ = 0.90 mm1
α = 114.149 (1)°T = 100 K
β = 90.927 (1)°Prism, orange
γ = 95.202 (1)°0.29 × 0.18 × 0.16 mm
V = 1111.40 (9) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5113 independent reflections
Radiation source: fine-focus sealed tube4735 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
φ and ω scansθmax = 27.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1212
Tmin = 0.682, Tmax = 0.746k = 1313
10217 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0369P)2 + 0.8282P]
where P = (Fo2 + 2Fc2)/3
5113 reflections(Δ/σ)max = 0.001
399 parametersΔρmax = 0.79 e Å3
54 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Co(C5HF6O2)2(C9H8N2)]γ = 95.202 (1)°
Mr = 617.22V = 1111.40 (9) Å3
Triclinic, P1Z = 2
a = 9.6102 (4) ÅMo Kα radiation
b = 10.2681 (5) ŵ = 0.90 mm1
c = 12.4154 (6) ÅT = 100 K
α = 114.149 (1)°0.29 × 0.18 × 0.16 mm
β = 90.927 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5113 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
4735 reflections with I > 2σ(I)
Tmin = 0.682, Tmax = 0.746Rint = 0.010
10217 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03154 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.05Δρmax = 0.79 e Å3
5113 reflectionsΔρmin = 0.55 e Å3
399 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.12629 (2)0.20101 (2)0.679585 (17)0.01788 (7)
O10.17857 (12)0.15131 (12)0.82150 (10)0.0233 (2)
O20.23066 (12)0.02680 (12)0.57507 (10)0.0226 (2)
O30.30314 (12)0.34361 (12)0.71520 (10)0.0220 (2)
O40.08649 (12)0.23137 (11)0.52671 (9)0.0206 (2)
N10.00333 (14)0.36365 (14)0.78304 (11)0.0194 (3)
N20.07051 (15)0.07814 (14)0.66194 (12)0.0228 (3)
H2A0.11310.05750.59090.027*
H2B0.05730.00510.66670.027*
C180.27315 (19)0.0996 (2)0.78771 (16)0.0305 (4)
H180.29660.00070.75280.037*
C80.26994 (16)0.41960 (17)0.55914 (14)0.0210 (3)
H80.30610.48450.52940.025*
C130.16746 (19)0.5479 (2)0.94323 (14)0.0289 (4)
H130.22300.61010.99720.035*
C60.33529 (16)0.41998 (16)0.66082 (13)0.0195 (3)
C10.24544 (17)0.05082 (17)0.81746 (14)0.0228 (3)
C90.15234 (16)0.32484 (16)0.50105 (13)0.0187 (3)
C30.30849 (18)0.04772 (18)0.72205 (15)0.0262 (3)
H30.36100.11270.73440.031*
C190.15744 (17)0.15903 (18)0.75482 (14)0.0225 (3)
C100.09259 (17)0.33064 (17)0.38720 (14)0.0224 (3)
C110.03646 (18)0.50439 (17)0.83206 (14)0.0232 (3)
H110.11970.54150.81310.028*
C40.29504 (17)0.05146 (17)0.60907 (14)0.0225 (3)
C140.20721 (17)0.39818 (19)0.89415 (14)0.0250 (3)
C70.46039 (17)0.53403 (19)0.71976 (15)0.0250 (3)
C20.2559 (2)0.0349 (2)0.93543 (17)0.0350 (4)
C120.04797 (19)0.60071 (18)0.91146 (15)0.0279 (4)
H120.02230.69920.94180.033*
C160.32669 (19)0.3335 (2)0.92501 (16)0.0319 (4)
H160.38490.39030.98000.038*
C170.35721 (19)0.1878 (2)0.87441 (17)0.0349 (4)
H170.43440.14610.89740.042*
C50.3599 (2)0.1715 (2)0.50891 (17)0.0334 (4)
C150.11961 (16)0.30965 (17)0.81087 (13)0.0206 (3)
F1A0.1331 (3)0.0212 (7)0.9737 (4)0.0637 (14)0.70 (2)
F2A0.3201 (4)0.1603 (4)1.0201 (3)0.0529 (8)0.70 (2)
F3A0.3336 (7)0.0600 (6)0.9363 (4)0.0808 (18)0.70 (2)
F1B0.232 (2)0.1358 (14)1.0254 (6)0.114 (7)0.30 (2)
F2B0.3649 (9)0.0234 (15)0.9466 (11)0.076 (4)0.30 (2)
F3B0.1601 (11)0.0845 (17)0.9226 (9)0.086 (5)0.30 (2)
F4A0.4341 (13)0.2489 (11)0.5421 (3)0.050 (2)0.57 (3)
F5A0.4082 (15)0.1279 (15)0.4265 (11)0.0323 (15)0.57 (3)
F6A0.2463 (6)0.2711 (5)0.4388 (4)0.0334 (10)0.57 (3)
F4B0.4928 (14)0.1892 (18)0.5544 (7)0.048 (3)0.43 (3)
F5B0.426 (2)0.1294 (19)0.4389 (17)0.042 (3)0.43 (3)
F6B0.2903 (18)0.2858 (7)0.4676 (15)0.061 (4)0.43 (3)
F70.55505 (16)0.48660 (17)0.76660 (18)0.0789 (6)
F80.52320 (13)0.58172 (16)0.64755 (11)0.0496 (4)
F90.41614 (15)0.64738 (15)0.80499 (13)0.0618 (4)
F100.15304 (14)0.43584 (13)0.36377 (11)0.0434 (3)
F110.04305 (12)0.34529 (16)0.39296 (11)0.0457 (3)
F120.10584 (16)0.20821 (13)0.29438 (10)0.0489 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02444 (12)0.01408 (11)0.01511 (11)0.00426 (8)0.00061 (7)0.00557 (8)
O10.0310 (6)0.0218 (5)0.0190 (5)0.0071 (5)0.0003 (4)0.0095 (4)
O20.0300 (6)0.0178 (5)0.0196 (5)0.0071 (4)0.0017 (4)0.0064 (4)
O30.0248 (5)0.0212 (5)0.0212 (5)0.0030 (4)0.0018 (4)0.0100 (4)
O40.0269 (6)0.0169 (5)0.0177 (5)0.0031 (4)0.0005 (4)0.0068 (4)
N10.0253 (6)0.0176 (6)0.0142 (6)0.0049 (5)0.0014 (5)0.0049 (5)
N20.0294 (7)0.0173 (6)0.0196 (6)0.0025 (5)0.0008 (5)0.0055 (5)
C180.0303 (9)0.0332 (9)0.0310 (9)0.0003 (7)0.0017 (7)0.0172 (8)
C80.0225 (7)0.0219 (7)0.0210 (7)0.0029 (6)0.0012 (6)0.0110 (6)
C130.0335 (9)0.0317 (9)0.0170 (7)0.0169 (7)0.0017 (6)0.0030 (6)
C60.0191 (7)0.0189 (7)0.0203 (7)0.0062 (5)0.0025 (5)0.0070 (6)
C10.0257 (8)0.0223 (7)0.0232 (8)0.0021 (6)0.0014 (6)0.0125 (6)
C90.0228 (7)0.0177 (7)0.0168 (7)0.0076 (6)0.0020 (5)0.0070 (6)
C30.0313 (8)0.0231 (8)0.0277 (8)0.0100 (6)0.0005 (7)0.0125 (7)
C190.0253 (8)0.0244 (8)0.0179 (7)0.0023 (6)0.0027 (6)0.0090 (6)
C100.0280 (8)0.0194 (7)0.0205 (7)0.0019 (6)0.0027 (6)0.0091 (6)
C110.0295 (8)0.0186 (7)0.0196 (7)0.0046 (6)0.0033 (6)0.0057 (6)
C40.0250 (8)0.0170 (7)0.0244 (8)0.0042 (6)0.0012 (6)0.0071 (6)
C140.0267 (8)0.0329 (9)0.0159 (7)0.0110 (7)0.0016 (6)0.0090 (6)
C70.0239 (8)0.0281 (8)0.0244 (8)0.0001 (6)0.0025 (6)0.0129 (7)
C20.0400 (10)0.0456 (11)0.0310 (9)0.0172 (9)0.0071 (8)0.0246 (9)
C120.0376 (9)0.0198 (8)0.0211 (8)0.0104 (7)0.0054 (7)0.0020 (6)
C160.0266 (8)0.0496 (11)0.0229 (8)0.0130 (8)0.0036 (7)0.0164 (8)
C170.0257 (8)0.0539 (12)0.0338 (10)0.0032 (8)0.0041 (7)0.0269 (9)
C50.0448 (11)0.0257 (9)0.0312 (9)0.0176 (8)0.0076 (8)0.0102 (7)
C150.0239 (7)0.0238 (8)0.0144 (7)0.0058 (6)0.0024 (6)0.0076 (6)
F1A0.0482 (12)0.110 (4)0.061 (2)0.0003 (16)0.0112 (12)0.065 (3)
F2A0.0699 (18)0.0644 (15)0.0221 (12)0.0077 (14)0.0076 (11)0.0157 (10)
F3A0.152 (5)0.079 (2)0.0424 (16)0.088 (3)0.032 (2)0.0407 (16)
F1B0.246 (19)0.101 (8)0.030 (3)0.134 (11)0.048 (7)0.039 (4)
F2B0.030 (3)0.172 (11)0.080 (6)0.022 (4)0.001 (3)0.102 (7)
F3B0.082 (5)0.130 (10)0.068 (5)0.056 (6)0.024 (4)0.078 (6)
F4A0.064 (4)0.047 (3)0.0371 (13)0.041 (3)0.0028 (15)0.0078 (14)
F5A0.038 (3)0.038 (3)0.0217 (16)0.015 (2)0.0063 (17)0.0102 (15)
F6A0.0388 (19)0.0193 (12)0.0317 (15)0.0012 (11)0.0010 (11)0.0006 (9)
F4B0.054 (4)0.061 (5)0.039 (2)0.042 (4)0.014 (2)0.022 (3)
F5B0.038 (5)0.030 (3)0.048 (7)0.000 (3)0.019 (4)0.006 (3)
F6B0.070 (6)0.0170 (18)0.072 (5)0.001 (2)0.028 (5)0.004 (2)
F70.0507 (8)0.0669 (10)0.1391 (16)0.0257 (7)0.0618 (10)0.0715 (11)
F80.0389 (7)0.0730 (9)0.0362 (6)0.0255 (6)0.0048 (5)0.0285 (6)
F90.0531 (8)0.0427 (7)0.0511 (8)0.0181 (6)0.0182 (6)0.0156 (6)
F100.0575 (7)0.0416 (7)0.0393 (6)0.0161 (6)0.0194 (5)0.0301 (6)
F110.0288 (6)0.0768 (9)0.0450 (7)0.0097 (6)0.0045 (5)0.0380 (7)
F120.0936 (10)0.0337 (6)0.0180 (5)0.0232 (6)0.0031 (6)0.0060 (5)
Geometric parameters (Å, º) top
Co1—O32.0549 (11)C3—H30.9300
Co1—O42.0805 (11)C19—C151.420 (2)
Co1—O22.0875 (11)C10—F101.3182 (19)
Co1—O12.0906 (11)C10—F111.325 (2)
Co1—N12.1183 (13)C10—F121.3315 (19)
Co1—N22.1318 (14)C11—C121.408 (2)
O1—C11.2487 (19)C11—H110.9300
O2—C41.2515 (19)C4—C51.538 (2)
O3—C61.2500 (19)C14—C161.411 (3)
O4—C91.2529 (19)C14—C151.415 (2)
N1—C111.323 (2)C7—F71.303 (2)
N1—C151.369 (2)C7—F81.316 (2)
N2—C191.446 (2)C7—F91.323 (2)
N2—H2A0.9000C2—F1B1.215 (7)
N2—H2B0.9000C2—F3A1.284 (4)
C18—C191.368 (2)C2—F2B1.285 (9)
C18—C171.412 (3)C2—F1A1.296 (3)
C18—H180.9300C2—F2A1.367 (4)
C8—C91.394 (2)C2—F3B1.417 (8)
C8—C61.399 (2)C12—H120.9300
C8—H80.9300C16—C171.365 (3)
C13—C121.358 (3)C16—H160.9300
C13—C141.415 (3)C17—H170.9300
C13—H130.9300C5—F6B1.202 (8)
C6—C71.539 (2)C5—F5B1.271 (18)
C1—C31.396 (2)C5—F4A1.293 (4)
C1—C21.541 (2)C5—F5A1.346 (13)
C9—C101.543 (2)C5—F6A1.427 (5)
C3—C41.391 (2)C5—F4B1.445 (10)
O3—Co1—O488.59 (4)O2—C4—C3128.69 (15)
O3—Co1—O292.89 (5)O2—C4—C5113.84 (14)
O4—Co1—O286.96 (4)C3—C4—C5117.38 (15)
O3—Co1—O191.57 (5)C16—C14—C13123.78 (16)
O4—Co1—O1173.56 (4)C16—C14—C15118.94 (16)
O2—Co1—O186.60 (4)C13—C14—C15117.26 (16)
O3—Co1—N192.56 (5)F7—C7—F8107.38 (16)
O4—Co1—N193.50 (5)F7—C7—F9107.93 (17)
O2—Co1—N1174.54 (5)F8—C7—F9106.06 (15)
O1—Co1—N192.92 (5)F7—C7—C6111.98 (14)
O3—Co1—N2171.64 (5)F8—C7—C6113.86 (14)
O4—Co1—N293.30 (5)F9—C7—C6109.31 (14)
O2—Co1—N295.34 (5)F1B—C2—F3A122.2 (5)
O1—Co1—N287.47 (5)F1B—C2—F2B113.4 (8)
N1—Co1—N279.21 (5)F1B—C2—F1A65.7 (9)
C1—O1—Co1126.51 (11)F3A—C2—F1A112.9 (3)
C4—O2—Co1127.00 (11)F2B—C2—F1A127.6 (5)
C6—O3—Co1125.51 (10)F3A—C2—F2A103.7 (3)
C9—O4—Co1124.61 (10)F2B—C2—F2A86.9 (6)
C11—N1—C15118.09 (14)F1A—C2—F2A104.3 (3)
C11—N1—Co1128.77 (12)F1B—C2—F3B108.0 (7)
C15—N1—Co1112.72 (10)F3A—C2—F3B75.6 (6)
C19—N2—Co1109.49 (10)F2B—C2—F3B94.7 (7)
C19—N2—H2A109.8F1A—C2—F3B46.1 (6)
Co1—N2—H2A109.8F2A—C2—F3B141.1 (4)
C19—N2—H2B109.8F1B—C2—C1118.3 (3)
Co1—N2—H2B109.8F3A—C2—C1115.0 (2)
H2A—N2—H2B108.2F2B—C2—C1112.9 (5)
C19—C18—C17120.25 (17)F1A—C2—C1111.35 (18)
C19—C18—H18119.9F2A—C2—C1108.60 (19)
C17—C18—H18119.9F3B—C2—C1106.4 (3)
C9—C8—C6122.01 (15)C13—C12—C11119.11 (16)
C9—C8—H8119.0C13—C12—H12120.4
C6—C8—H8119.0C11—C12—H12120.4
C12—C13—C14119.87 (15)C17—C16—C14120.24 (17)
C12—C13—H13120.1C17—C16—H16119.9
C14—C13—H13120.1C14—C16—H16119.9
O3—C6—C8129.11 (15)C16—C17—C18120.95 (17)
O3—C6—C7113.78 (13)C16—C17—H17119.5
C8—C6—C7117.03 (14)C18—C17—H17119.5
O1—C1—C3129.16 (15)F6B—C5—F5B118.2 (12)
O1—C1—C2113.85 (15)F6B—C5—F4A78.3 (6)
C3—C1—C2116.98 (15)F5B—C5—F4A110.8 (13)
O4—C9—C8129.33 (14)F6B—C5—F5A113.3 (10)
O4—C9—C10113.31 (13)F4A—C5—F5A118.9 (8)
C8—C9—C10117.35 (14)F5B—C5—F6A105.6 (9)
C4—C3—C1121.85 (15)F4A—C5—F6A103.5 (4)
C4—C3—H3119.1F5A—C5—F6A98.0 (6)
C1—C3—H3119.1F6B—C5—F4B108.7 (5)
C18—C19—C15119.70 (16)F5B—C5—F4B88.6 (12)
C18—C19—N2123.99 (15)F5A—C5—F4B98.1 (7)
C15—C19—N2116.28 (14)F6A—C5—F4B132.8 (5)
F10—C10—F11107.19 (14)F6B—C5—C4115.5 (4)
F10—C10—F12107.37 (14)F5B—C5—C4113.9 (9)
F11—C10—F12106.61 (14)F4A—C5—C4115.3 (2)
F10—C10—C9114.31 (13)F5A—C5—C4111.8 (6)
F11—C10—C9110.84 (13)F6A—C5—C4106.6 (3)
F12—C10—C9110.16 (13)F4B—C5—C4107.9 (4)
N1—C11—C12123.29 (16)N1—C15—C14122.25 (15)
N1—C11—H11118.4N1—C15—C19117.98 (14)
C12—C11—H11118.4C14—C15—C19119.76 (15)
O3—Co1—O1—C193.11 (14)Co1—O2—C4—C5179.71 (11)
O2—Co1—O1—C10.30 (13)C1—C3—C4—O20.7 (3)
N1—Co1—O1—C1174.25 (14)C1—C3—C4—C5175.65 (16)
N2—Co1—O1—C195.20 (14)C12—C13—C14—C16177.71 (16)
O3—Co1—O2—C488.38 (13)C12—C13—C14—C151.2 (2)
O4—Co1—O2—C4176.82 (13)O3—C6—C7—F736.9 (2)
O1—Co1—O2—C43.02 (13)C8—C6—C7—F7145.89 (17)
N2—Co1—O2—C490.15 (14)O3—C6—C7—F8159.01 (15)
O4—Co1—O3—C69.12 (12)C8—C6—C7—F823.8 (2)
O2—Co1—O3—C696.00 (12)O3—C6—C7—F982.60 (18)
O1—Co1—O3—C6177.32 (12)C8—C6—C7—F994.57 (18)
N1—Co1—O3—C684.33 (12)O1—C1—C2—F1B17.8 (13)
O3—Co1—O4—C98.77 (12)C3—C1—C2—F1B163.1 (13)
O2—Co1—O4—C9101.74 (12)O1—C1—C2—F3A174.6 (4)
N1—Co1—O4—C983.71 (12)C3—C1—C2—F3A6.3 (4)
N2—Co1—O4—C9163.08 (12)O1—C1—C2—F2B153.5 (7)
O3—Co1—N1—C118.91 (13)C3—C1—C2—F2B27.4 (7)
O4—Co1—N1—C1179.83 (13)O1—C1—C2—F1A55.3 (4)
O1—Co1—N1—C11100.61 (13)C3—C1—C2—F1A123.8 (3)
N2—Co1—N1—C11172.53 (14)O1—C1—C2—F2A59.0 (3)
O3—Co1—N1—C15163.40 (10)C3—C1—C2—F2A121.9 (2)
O4—Co1—N1—C15107.86 (10)O1—C1—C2—F3B103.9 (8)
O1—Co1—N1—C1571.70 (10)C3—C1—C2—F3B75.2 (8)
N2—Co1—N1—C1515.16 (10)C14—C13—C12—C111.6 (2)
O4—Co1—N2—C19111.13 (10)N1—C11—C12—C132.2 (2)
O2—Co1—N2—C19161.62 (10)C13—C14—C16—C17179.35 (16)
O1—Co1—N2—C1975.27 (10)C15—C14—C16—C170.4 (2)
N1—Co1—N2—C1918.19 (10)C14—C16—C17—C182.2 (3)
Co1—O3—C6—C86.4 (2)C19—C18—C17—C161.4 (3)
Co1—O3—C6—C7170.37 (10)O2—C4—C5—F6B95.2 (13)
C9—C8—C6—O30.8 (3)C3—C4—C5—F6B81.7 (13)
C9—C8—C6—C7177.45 (14)O2—C4—C5—F5B46.3 (10)
Co1—O1—C1—C33.9 (3)C3—C4—C5—F5B136.8 (10)
Co1—O1—C1—C2175.04 (11)O2—C4—C5—F4A176.1 (8)
Co1—O4—C9—C85.7 (2)C3—C4—C5—F4A7.1 (8)
Co1—O4—C9—C10175.38 (9)O2—C4—C5—F5A36.2 (6)
C6—C8—C9—O41.1 (3)C3—C4—C5—F5A146.9 (6)
C6—C8—C9—C10177.80 (14)O2—C4—C5—F6A69.7 (3)
O1—C1—C3—C44.7 (3)C3—C4—C5—F6A107.2 (3)
C2—C1—C3—C4174.23 (17)O2—C4—C5—F4B143.0 (7)
C17—C18—C19—C151.9 (2)C3—C4—C5—F4B40.1 (7)
C17—C18—C19—N2176.04 (15)C11—N1—C15—C143.4 (2)
Co1—N2—C19—C18162.39 (13)Co1—N1—C15—C14169.82 (11)
Co1—N2—C19—C1519.57 (16)C11—N1—C15—C19177.73 (14)
O4—C9—C10—F10174.74 (14)Co1—N1—C15—C199.06 (16)
C8—C9—C10—F106.2 (2)C16—C14—C15—N1175.13 (14)
O4—C9—C10—F1153.48 (18)C13—C14—C15—N13.9 (2)
C8—C9—C10—F11127.44 (16)C16—C14—C15—C193.7 (2)
O4—C9—C10—F1264.27 (18)C13—C14—C15—C19177.28 (14)
C8—C9—C10—F12114.81 (16)C18—C19—C15—N1174.41 (14)
C15—N1—C11—C120.3 (2)N2—C19—C15—N17.5 (2)
Co1—N1—C11—C12171.68 (12)C18—C19—C15—C144.5 (2)
Co1—O2—C4—C33.3 (3)N2—C19—C15—C14173.64 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.902.143.024 (2)169
N2—H2B···O4i0.902.563.069 (2)117
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Co(C5HF6O2)2(C9H8N2)]
Mr617.22
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.6102 (4), 10.2681 (5), 12.4154 (6)
α, β, γ (°)114.149 (1), 90.927 (1), 95.202 (1)
V3)1111.40 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.29 × 0.18 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.682, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
10217, 5113, 4735
Rint0.010
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.05
No. of reflections5113
No. of parameters399
No. of restraints54
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.55

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.902.1353.024 (2)169
N2—H2B···O4i0.902.5573.069 (2)117
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors gratefully acknowledge the Royal Society of Chemistry for a JWT Jones Travelling Fellowship and a Research Fund award (both to DJH) which partially funded this research. A research grant from Walailak University (grant No. WU53204 to PH) is also acknowledged. Finally, the National Science and Technology Development Agency is thanked for a scholarship (awarded to DS).

References

First citationAakeröy, C. B., Desper, J. & Valdés-Martínez, J. (2004). CrystEngComm, 6, 413–418.  Web of Science CSD CrossRef CAS Google Scholar
First citationAakeröy, C. B., Schultheiss, N. & Desper, J. (2005). Inorg. Chem. 44, 4983–4991.  Web of Science CSD CrossRef PubMed Google Scholar
First citationAakeröy, C. B., Schultheiss, N., Desper, J. & Moore, C. (2007). CrystEngComm, 9, 421–426.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2003). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHarding, P., Harding, D. J., Phonsri, W., Saithong, S. & Phetmung, H. (2009). Inorg. Chim. Acta, 362, 78–82.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarding, P., Harding, D. J., Soponrat, N. & Adams, H. (2010). Acta Cryst. E66, m1138–m1139.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSertphon, D., Harding, D. J., Harding, P. & Adams, H. (2011). Polyhedron, 30, 2740–2745.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds