organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis(4-methyl­benz­yl)diselane

aDepartment of Chemistry, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: tzhwj@jnu.edu.cn

(Received 16 January 2012; accepted 21 February 2012; online 7 March 2012)

The title mol­ecule, C16H18Se2, features a diselenide bridge between two 4-methyl­benzyl units, in which the central C—Se—Se—C torsion angle is 88.1 (3)°, while the two Se—Se—C—C fragments assume gauche conformations, with torsion angles of −51.8 (5) and 59.1 (4)°. The dihedral angle between the benzene rings is 78.9 (2)°.

Related literature

For applications of organoselenium compounds, see: Garud et al. (2007[Garud, D. R., Koketsu, M. & Ishihara, H. (2007). Molecules, 12, 504-535.]). For the synthesis of the title compound, see: Saravanan et al. (2003[Saravanan, V., Porhiel, E. & Chandrasekaran, S. (2003). Tetrahedron Lett. 44, 2257-2260.]); Zhou et al. (2011[Zhou, H., Ou, S.-Y., Yan, R.-A. & Wu, J.-Z. (2011). Acta Cryst. E67, o1938.]). For related structures, see: Hua et al. (2010[Hua, G., Fuller, A. L., Slawin, A. M. Z. & Woollins, J. D. (2010). Acta Cryst. E66, o2579.]); Liu et al. (2006[Liu, W.-J., Wu, M.-H., Bao, C.-Y., Zou, W.-D. & Meng, X.-Y. (2006). Acta Cryst. E62, o3177-o3178.]); Zhou et al. (2011[Zhou, H., Ou, S.-Y., Yan, R.-A. & Wu, J.-Z. (2011). Acta Cryst. E67, o1938.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18Se2

  • Mr = 368.22

  • Monoclinic, P 21 /c

  • a = 5.8748 (7) Å

  • b = 11.5315 (11) Å

  • c = 22.794 (3) Å

  • β = 91.701 (9)°

  • V = 1543.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.77 mm−1

  • T = 293 K

  • 0.40 × 0.09 × 0.09 mm

Data collection
  • Agilent Xcalibur Sapphire3 Gemini Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.469, Tmax = 1.000

  • 4989 measured reflections

  • 2708 independent reflections

  • 1806 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.111

  • S = 1.02

  • 2708 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.91 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Organoseleniums have been synthesized as anticancer agent, and for other medicinal applications, as well as biologically active substances exhibiting antiviral, antibacterial, antihypertensive, and fungicidal properties (Garud et al., 2007). In continuation of our work on the synthesis and structures of derivatives of selenium (Zhou et al., 2011), the title compound was prepared and its crystal structure is reported.

The title molecule (Fig. 1) features a diselenide bridge between two 4-methylbenzyl units. The central C—Se—Se—C torsion angle is 88.1 (3)°, while the two Se—Se—C—C fragments assume gauche conformations with values of -51.8 (5) and 59.1 (4)°. The dihedral angle between the two benzene rings is 78.9 (2)°. All bond lengths and angles are similar to those found in related structures (Hua et al., 2010; Liu et al., 2006; Zhou et al., 2011).

Related literature top

For potential applications of organoselenium compounds, see: Garud et al. (2007). For the synthesis of the title compound, see: Saravanan et al. (2003); Zhou et al. (2011). For related structures, see: Hua et al. (2010); Liu et al. (2006); Zhou et al. (2011).

Experimental top

Sodium borohydride (0.95 g, 25 mmol) was added to a vigorously stirred mixture of selenium powder (2.00 g, 25 mmol) and water (50 ml) at 0°C, then warmed to room temperature and stirred for 2 h. 1-(Bromomethyl)-4-methylbenzene (4.62 g, 25 mmol) was added to the mixture and stirred for 2 h. O2 was passed through the solution slowly, for 2 h (Saravanan et al., 2003; Zhou et al., 2011). The mixture was extracted with ethyl acetate (200 ml) and washed three times with water (50 ml × 3) and dried over anhydrous sodium sulfate. The organic residue was further purified by silica gel column using dichloromethane as eluent. The solvent was then evaporated under vacuum and the solid residue was recrystallized from CH3OH to afford yellow crystals of the title compound (yield: 3.73 g, 80.2%).

Refinement top

Carbon-bound H atoms were positioned geometrically and treated as riding on their C atoms, with C—H distances of 0.93Å (aromatic), 0.97 (CH2) and 0.96 Å (CH3), and were refined with Uiso(H)=1.2Ueq(C) for CH and CH2 groups, and Uiso(H)=1.5Ueq(C) for the methyl groups.

Structure description top

Organoseleniums have been synthesized as anticancer agent, and for other medicinal applications, as well as biologically active substances exhibiting antiviral, antibacterial, antihypertensive, and fungicidal properties (Garud et al., 2007). In continuation of our work on the synthesis and structures of derivatives of selenium (Zhou et al., 2011), the title compound was prepared and its crystal structure is reported.

The title molecule (Fig. 1) features a diselenide bridge between two 4-methylbenzyl units. The central C—Se—Se—C torsion angle is 88.1 (3)°, while the two Se—Se—C—C fragments assume gauche conformations with values of -51.8 (5) and 59.1 (4)°. The dihedral angle between the two benzene rings is 78.9 (2)°. All bond lengths and angles are similar to those found in related structures (Hua et al., 2010; Liu et al., 2006; Zhou et al., 2011).

For potential applications of organoselenium compounds, see: Garud et al. (2007). For the synthesis of the title compound, see: Saravanan et al. (2003); Zhou et al. (2011). For related structures, see: Hua et al. (2010); Liu et al. (2006); Zhou et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at the 30% probability level.
1,2-Bis(4-methylbenzyl)diselane top
Crystal data top
C16H18Se2F(000) = 728
Mr = 368.22Dx = 1.585 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 933 reflections
a = 5.8748 (7) Åθ = 3.2–29.4°
b = 11.5315 (11) ŵ = 4.77 mm1
c = 22.794 (3) ÅT = 293 K
β = 91.701 (9)°Prism, yellow
V = 1543.5 (3) Å30.40 × 0.09 × 0.09 mm
Z = 4
Data collection top
Agilent Xcalibur Sapphire3 Gemini Ultra
diffractometer
2708 independent reflections
Radiation source: Enhance (Mo) X-ray Source1806 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 16.0288 pixels mm-1θmax = 25.0°, θmin = 3.2°
ω scansh = 46
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 713
Tmin = 0.469, Tmax = 1.000l = 2726
4989 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.04P)2]
where P = (Fo2 + 2Fc2)/3
2708 reflections(Δ/σ)max = 0.001
165 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.91 e Å3
0 constraints
Crystal data top
C16H18Se2V = 1543.5 (3) Å3
Mr = 368.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.8748 (7) ŵ = 4.77 mm1
b = 11.5315 (11) ÅT = 293 K
c = 22.794 (3) Å0.40 × 0.09 × 0.09 mm
β = 91.701 (9)°
Data collection top
Agilent Xcalibur Sapphire3 Gemini Ultra
diffractometer
2708 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1806 reflections with I > 2σ(I)
Tmin = 0.469, Tmax = 1.000Rint = 0.041
4989 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.02Δρmax = 0.39 e Å3
2708 reflectionsΔρmin = 0.91 e Å3
165 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.12002 (10)0.36751 (6)0.23758 (3)0.0552 (2)
Se20.50760 (10)0.39377 (5)0.24250 (3)0.0556 (2)
C100.4109 (9)0.5942 (5)0.1691 (3)0.0429 (14)
C60.5077 (10)0.1399 (6)0.0874 (3)0.0559 (17)
H60.64410.14950.06830.067*
C20.1859 (9)0.2269 (5)0.1334 (2)0.0403 (14)
C70.3887 (9)0.2363 (5)0.1049 (2)0.0476 (15)
H70.44680.30960.09730.057*
C30.1048 (9)0.1154 (5)0.1433 (3)0.0500 (16)
H30.03230.10570.16200.060*
C150.2026 (9)0.6475 (5)0.1722 (3)0.0479 (15)
H150.14370.66450.20870.057*
C10.0609 (9)0.3312 (5)0.1532 (3)0.0514 (16)
H1A0.10120.31900.14650.062*
H1B0.10510.39730.12980.062*
C90.5378 (10)0.5602 (5)0.2243 (3)0.0638 (19)
H9A0.48120.60530.25670.077*
H9B0.69770.57870.22040.077*
C130.1619 (11)0.6539 (5)0.0667 (3)0.0590 (18)
C50.4281 (10)0.0295 (5)0.0978 (3)0.0505 (16)
C140.0798 (9)0.6759 (5)0.1216 (3)0.0528 (17)
H140.06190.71090.12460.063*
C110.4962 (10)0.5722 (5)0.1137 (3)0.0530 (17)
H110.63800.53730.11060.064*
C40.2230 (10)0.0197 (5)0.1258 (3)0.0552 (17)
H40.16420.05360.13300.066*
C120.3736 (12)0.6015 (5)0.0636 (3)0.0617 (18)
H120.43340.58600.02710.074*
C80.5624 (11)0.0765 (6)0.0797 (3)0.084 (2)
H8A0.47140.12250.05290.126*
H8B0.60220.12170.11390.126*
H8C0.69860.05230.06100.126*
C160.0258 (13)0.6855 (7)0.0112 (3)0.106 (3)
H16A0.10740.63740.00790.159*
H16B0.11790.67350.02230.159*
H16C0.01910.76540.01300.159*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0591 (4)0.0521 (4)0.0554 (4)0.0040 (3)0.0163 (3)0.0017 (3)
Se20.0581 (4)0.0471 (4)0.0609 (5)0.0025 (3)0.0119 (3)0.0037 (4)
C100.038 (3)0.028 (3)0.063 (4)0.004 (3)0.003 (3)0.001 (3)
C60.051 (4)0.067 (4)0.049 (4)0.005 (4)0.004 (3)0.005 (4)
C20.041 (3)0.037 (3)0.042 (4)0.005 (3)0.012 (3)0.005 (3)
C70.054 (4)0.039 (3)0.049 (4)0.005 (3)0.002 (3)0.000 (3)
C30.041 (3)0.058 (4)0.051 (4)0.006 (3)0.003 (3)0.000 (3)
C150.057 (4)0.036 (3)0.052 (4)0.001 (3)0.010 (3)0.004 (3)
C10.047 (3)0.047 (4)0.060 (4)0.003 (3)0.006 (3)0.002 (3)
C90.063 (4)0.042 (4)0.086 (5)0.010 (3)0.009 (4)0.004 (4)
C130.063 (4)0.045 (4)0.069 (5)0.016 (4)0.008 (4)0.013 (4)
C50.060 (4)0.046 (4)0.044 (4)0.003 (3)0.004 (3)0.009 (3)
C140.044 (3)0.040 (4)0.075 (5)0.003 (3)0.007 (3)0.011 (4)
C110.051 (4)0.035 (4)0.074 (5)0.001 (3)0.015 (3)0.002 (4)
C40.063 (4)0.044 (4)0.058 (5)0.010 (3)0.007 (3)0.002 (4)
C120.082 (5)0.046 (4)0.058 (5)0.009 (4)0.023 (4)0.000 (4)
C80.098 (6)0.061 (5)0.092 (6)0.010 (4)0.001 (4)0.021 (5)
C160.113 (6)0.127 (7)0.077 (6)0.014 (6)0.031 (5)0.034 (6)
Geometric parameters (Å, º) top
Se1—Se22.2964 (9)C9—H9A0.9700
Se1—C11.989 (6)C9—H9B0.9700
Se2—C91.973 (6)C13—C141.377 (9)
C10—C151.373 (7)C13—C121.386 (9)
C10—C91.496 (8)C13—C161.521 (8)
C10—C111.396 (8)C5—C41.385 (8)
C6—H60.9300C5—C81.519 (8)
C6—C71.379 (7)C14—H140.9300
C6—C51.379 (8)C11—H110.9300
C2—C71.378 (7)C11—C121.373 (8)
C2—C31.392 (7)C4—H40.9300
C2—C11.487 (7)C12—H120.9300
C7—H70.9300C8—H8A0.9600
C3—H30.9300C8—H8B0.9600
C3—C41.369 (8)C8—H8C0.9600
C15—H150.9300C16—H16A0.9600
C15—C141.383 (8)C16—H16B0.9600
C1—H1A0.9700C16—H16C0.9600
C1—H1B0.9700
C1—Se1—Se2102.67 (16)H9A—C9—H9B107.8
C9—Se2—Se1102.31 (17)C14—C13—C12117.7 (6)
C15—C10—C9119.7 (6)C14—C13—C16121.4 (6)
C15—C10—C11118.2 (5)C12—C13—C16120.9 (7)
C11—C10—C9122.0 (5)C6—C5—C4117.3 (6)
C7—C6—H6119.4C6—C5—C8121.0 (6)
C7—C6—C5121.1 (6)C4—C5—C8121.7 (6)
C5—C6—H6119.4C15—C14—H14119.1
C7—C2—C3117.0 (5)C13—C14—C15121.8 (6)
C7—C2—C1121.4 (5)C13—C14—H14119.1
C3—C2—C1121.6 (5)C10—C11—H11119.6
C6—C7—H7119.1C12—C11—C10120.9 (6)
C2—C7—C6121.7 (5)C12—C11—H11119.6
C2—C7—H7119.1C3—C4—C5121.6 (6)
C2—C3—H3119.4C3—C4—H4119.2
C4—C3—C2121.2 (5)C5—C4—H4119.2
C4—C3—H3119.4C13—C12—H12119.5
C10—C15—H15119.8C11—C12—C13121.0 (6)
C10—C15—C14120.4 (6)C11—C12—H12119.5
C14—C15—H15119.8C5—C8—H8A109.5
Se1—C1—H1A109.0C5—C8—H8B109.5
Se1—C1—H1B109.0C5—C8—H8C109.5
C2—C1—Se1112.9 (4)H8A—C8—H8B109.5
C2—C1—H1A109.0H8A—C8—H8C109.5
C2—C1—H1B109.0H8B—C8—H8C109.5
H1A—C1—H1B107.8C13—C16—H16A109.5
Se2—C9—H9A109.0C13—C16—H16B109.5
Se2—C9—H9B109.0C13—C16—H16C109.5
C10—C9—Se2112.7 (4)H16A—C16—H16B109.5
C10—C9—H9A109.0H16A—C16—H16C109.5
C10—C9—H9B109.0H16B—C16—H16C109.5
Se1—Se2—C9—C1051.8 (5)C1—Se1—Se2—C988.1 (3)
Se2—Se1—C1—C259.1 (4)C1—C2—C7—C6178.8 (5)
C10—C15—C14—C131.0 (9)C1—C2—C3—C4178.8 (5)
C10—C11—C12—C130.1 (9)C9—C10—C15—C14177.8 (5)
C6—C5—C4—C30.8 (9)C9—C10—C11—C12178.2 (5)
C2—C3—C4—C50.1 (9)C5—C6—C7—C20.0 (9)
C7—C6—C5—C40.7 (9)C14—C13—C12—C110.4 (9)
C7—C6—C5—C8178.5 (5)C11—C10—C15—C141.4 (8)
C7—C2—C3—C40.6 (8)C11—C10—C9—Se278.6 (6)
C7—C2—C1—Se197.9 (6)C12—C13—C14—C150.1 (9)
C3—C2—C7—C60.7 (8)C8—C5—C4—C3178.5 (6)
C3—C2—C1—Se181.6 (6)C16—C13—C14—C15180.0 (6)
C15—C10—C9—Se2100.6 (6)C16—C13—C12—C11179.6 (6)
C15—C10—C11—C120.9 (9)

Experimental details

Crystal data
Chemical formulaC16H18Se2
Mr368.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.8748 (7), 11.5315 (11), 22.794 (3)
β (°) 91.701 (9)
V3)1543.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)4.77
Crystal size (mm)0.40 × 0.09 × 0.09
Data collection
DiffractometerAgilent Xcalibur Sapphire3 Gemini Ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.469, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4989, 2708, 1806
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.111, 1.02
No. of reflections2708
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.91

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by grants from the National Natural Science Fund (Nos. 31000816 and 21071062).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationGarud, D. R., Koketsu, M. & Ishihara, H. (2007). Molecules, 12, 504–535.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHua, G., Fuller, A. L., Slawin, A. M. Z. & Woollins, J. D. (2010). Acta Cryst. E66, o2579.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, W.-J., Wu, M.-H., Bao, C.-Y., Zou, W.-D. & Meng, X.-Y. (2006). Acta Cryst. E62, o3177–o3178.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaravanan, V., Porhiel, E. & Chandrasekaran, S. (2003). Tetrahedron Lett. 44, 2257–2260.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, H., Ou, S.-Y., Yan, R.-A. & Wu, J.-Z. (2011). Acta Cryst. E67, o1938.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds