organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Meth­­oxy-N-(4-nitro­benz­yl)aniline

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bSchool of Biology & Chemistry, College of Sciences, Shri Mata Vaishno Devi University, Katra 182 320 (J&K), India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 17 February 2012; accepted 25 February 2012; online 7 March 2012)

In the title compound, C14H14N2O3, the nitro group is nearly coplanar with the benzene ring to which it is bonded [dihedral angle = 1.70 (2)°], and this ring is para-substituted by the amino­methyl­ene group. The dihedral angle between the benzene rings is 57.8 (1)°. The crystal structure is stabilized by N—H⋯O and C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions are also observed.

Related literature

For related structures, see: Iwasaki et al. (1988[Iwasaki, F., Masuko, Y., Monma, S., Watanabe, T. & Mutai, K. (1988). Bull. Chem. Soc. Jpn, 61, 1085-1090.]). For the biological properties of aldimines, see: Rjosk & Neumann (1971[Rjosk, H.-K. & Neumann, H.-G. (1971). Z. Krebsforsch. 75, 209-220.]); Hillesheim et al. (1995[Hillesheim, W., Jaeschke, H. & Neumann, H.-G. (1995). Chem. Biol. Interact. 98, 85-95.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N2O3

  • Mr = 258.27

  • Monoclinic, P 21 /n

  • a = 7.4993 (3) Å

  • b = 17.1516 (7) Å

  • c = 10.0048 (5) Å

  • β = 96.861 (4)°

  • V = 1277.65 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.955, Tmax = 1.000

  • 11435 measured reflections

  • 2511 independent reflections

  • 1692 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.130

  • S = 1.05

  • 2511 reflections

  • 178 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the nitro­phenyl (C1–C6) and meth­oxy­phenyl (C9–C14) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯O1i 0.89 (2) 2.42 (3) 3.231 (2) 152.8 (19)
C16—H16B⋯O2ii 0.96 2.47 3.372 (3) 155
C3—H3⋯Cg2iii 0.93 2.77 3.560 (2) 143
C6—H6⋯Cg2iv 0.93 2.87 3.524 (2) 129
C16—H16ACg1v 0.96 2.96 3.830 (2) 151
Symmetry codes: (i) -x, -y, -z+1; (ii) x+2, y, z+1; (iii) -x, -y+1, -z; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) x+1, y, z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our project on the preparation of various aldimines from p-anisidine and aromatic aldehydes in refluxing methanol, the title compound has been prepared using the reductive amination method. In undergoing further applications of aldimines in various cycloaddition reactions (Rjosk & Neumann, 1971; Hillesheim et al., 1995), we observed that aldimines undergo a reductive amination with NaBH4 in presence of catalytic amounts of AcOH in MeOH, to afford 4-methoxy-N-(4-nitrobenzyl)aniline as one of the products. We further tried to prepare this compound under similar conditions in a separate flask, and the title compound was obtained in high yield (> 90%) through reductive amination of p-nitrobenzaldehyde with p-anisidine.

The bond lengths in the molecule are within normal ranges (Allen et al., 1987) and comparable with those found in related molecules (Iwasaki et al., 1988). The nitro group is nearly coplanar to the benzene ring to which it is bonded, the dihedral angle being 1.70 (2)°. The 4-methoxy phenyl group is trans to the 4-nitro phenyl group about the C7—N8 bond. The torsion angle C1—C7—N8—C9 is 178.22 (17)°. Hydrogen H8 on atom N8 forms an intermolecular hydrogen bond with the nitro O atom O1 of a neighbouring centrosymmetrically related molecule. This interaction links the molecules into N—H···O hydrogen bonded dimers. Dimers are connected via C—H···O hydrogen bonds and form chains along the c-axis of the unit cell (Table 1, Fig. 2). On the other hand, C—H···π interactions (Cg1 is the centroid of the nitro-phenyl ring and Cg2 is the centroid of the methoxy-phenyl ring, Table 1) play important role in stabilizing the crystal structure.

Related literature top

For related structures, see: Iwasaki et al. (1988). For the biological properties of aldimines, see: Rjosk & Neumann (1971); Hillesheim et al. (1995). For bond-length data, see: Allen et al. (1987).

Experimental top

To a stirred solution of p-nitro-benzaldehyde (0.5 g, 3.3 mmol) in MeOH (10 ml) was added p-anisidine (0.41 g, 3.3 mmol) at room temperature and the mixture was refluxed for 4 h. The resulting reaction mixture was cooled to 273 K, which resulted in the precipitation of the corresponding aldimine intermediate. Few drops of AcOH were added, followed by NaBH4 (0.09 g, 2.5 mmol), at the same temperature. The combined reaction mixture was stirred additionally for 2 h and quenched with sat. NaHCO3 solution, extracted with EtOAc (2×15 ml), and concentrated under reduced pressure. The resulting crude amine compound was crystallized in hexane/EtOAc (2:1), to afford the title compound with 92% yield. 1H-NMR: 3.68 (s, 3H), 4.38 (s, 2H), 6.40 (d, 2H), 6.72 (d, 2H), 7.65 (d, 2H), 8.10 (d, 2H).

Refinement top

Hydrogen atom H8 was found in a difference map and refined isotropically. All other H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

In continuation of our project on the preparation of various aldimines from p-anisidine and aromatic aldehydes in refluxing methanol, the title compound has been prepared using the reductive amination method. In undergoing further applications of aldimines in various cycloaddition reactions (Rjosk & Neumann, 1971; Hillesheim et al., 1995), we observed that aldimines undergo a reductive amination with NaBH4 in presence of catalytic amounts of AcOH in MeOH, to afford 4-methoxy-N-(4-nitrobenzyl)aniline as one of the products. We further tried to prepare this compound under similar conditions in a separate flask, and the title compound was obtained in high yield (> 90%) through reductive amination of p-nitrobenzaldehyde with p-anisidine.

The bond lengths in the molecule are within normal ranges (Allen et al., 1987) and comparable with those found in related molecules (Iwasaki et al., 1988). The nitro group is nearly coplanar to the benzene ring to which it is bonded, the dihedral angle being 1.70 (2)°. The 4-methoxy phenyl group is trans to the 4-nitro phenyl group about the C7—N8 bond. The torsion angle C1—C7—N8—C9 is 178.22 (17)°. Hydrogen H8 on atom N8 forms an intermolecular hydrogen bond with the nitro O atom O1 of a neighbouring centrosymmetrically related molecule. This interaction links the molecules into N—H···O hydrogen bonded dimers. Dimers are connected via C—H···O hydrogen bonds and form chains along the c-axis of the unit cell (Table 1, Fig. 2). On the other hand, C—H···π interactions (Cg1 is the centroid of the nitro-phenyl ring and Cg2 is the centroid of the methoxy-phenyl ring, Table 1) play important role in stabilizing the crystal structure.

For related structures, see: Iwasaki et al. (1988). For the biological properties of aldimines, see: Rjosk & Neumann (1971); Hillesheim et al. (1995). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with thermal ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed down the a axis. The broken lines show the intermolecular N—H···O and C—H···O hydrogen bonds.
4-Methoxy-N-(4-nitrobenzyl)aniline top
Crystal data top
C14H14N2O3F(000) = 544
Mr = 258.27Dx = 1.343 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4747 reflections
a = 7.4993 (3) Åθ = 3.6–29.0°
b = 17.1516 (7) ŵ = 0.10 mm1
c = 10.0048 (5) ÅT = 293 K
β = 96.861 (4)°Block, red
V = 1277.65 (10) Å30.3 × 0.2 × 0.1 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2511 independent reflections
Radiation source: fine-focus sealed tube1692 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.6°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 2121
Tmin = 0.955, Tmax = 1.000l = 1212
11435 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.2077P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2511 reflectionsΔρmax = 0.18 e Å3
178 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0116 (18)
Primary atom site location: structure-invariant direct methods
Crystal data top
C14H14N2O3V = 1277.65 (10) Å3
Mr = 258.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4993 (3) ŵ = 0.10 mm1
b = 17.1516 (7) ÅT = 293 K
c = 10.0048 (5) Å0.3 × 0.2 × 0.1 mm
β = 96.861 (4)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2511 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
1692 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 1.000Rint = 0.035
11435 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.18 e Å3
2511 reflectionsΔρmin = 0.15 e Å3
178 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2703 (2)0.01096 (11)0.2223 (2)0.0948 (6)
O20.3470 (3)0.12998 (13)0.2161 (3)0.1390 (10)
N10.2400 (2)0.07908 (13)0.24933 (19)0.0695 (5)
C10.2618 (2)0.14226 (11)0.45527 (19)0.0499 (5)
C20.2220 (3)0.06469 (12)0.4248 (2)0.0581 (5)
H20.30720.02650.45050.070*
C30.0581 (3)0.04336 (11)0.3571 (2)0.0550 (5)
H30.03200.00860.33670.066*
C40.0654 (2)0.10088 (11)0.32049 (18)0.0491 (5)
C50.0304 (3)0.17839 (12)0.3476 (2)0.0563 (5)
H50.11550.21650.32100.068*
C60.1338 (3)0.19793 (11)0.4152 (2)0.0547 (5)
H60.15930.25010.43440.066*
C70.4411 (3)0.16668 (12)0.5260 (2)0.0636 (6)
H7A0.52840.16680.46190.076*
H7B0.43190.21950.55920.076*
N80.5039 (2)0.11659 (10)0.63639 (18)0.0597 (5)
C90.6719 (2)0.13024 (10)0.71064 (19)0.0464 (5)
C100.7998 (2)0.17809 (11)0.66267 (19)0.0511 (5)
H100.77190.20420.58140.061*
C110.9671 (3)0.18720 (11)0.73402 (19)0.0531 (5)
H111.05070.21940.70000.064*
C121.0133 (2)0.14945 (10)0.85483 (19)0.0485 (5)
C130.8871 (3)0.10262 (10)0.90428 (19)0.0510 (5)
H130.91520.07720.98630.061*
C140.7188 (2)0.09308 (10)0.83278 (19)0.0505 (5)
H140.63540.06100.86740.061*
O151.18447 (17)0.16348 (8)0.91664 (14)0.0652 (4)
C161.2455 (3)0.12020 (13)1.0336 (2)0.0724 (7)
H16A1.17230.13211.10340.109*
H16B1.36810.13371.06330.109*
H16C1.23750.06551.01350.109*
H80.421 (3)0.0966 (13)0.683 (2)0.072 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0735 (11)0.0908 (13)0.1143 (15)0.0263 (10)0.0125 (10)0.0124 (11)
O20.0739 (12)0.1245 (17)0.199 (3)0.0363 (13)0.0627 (14)0.0507 (16)
N10.0484 (10)0.0889 (14)0.0686 (12)0.0022 (11)0.0032 (9)0.0163 (11)
C10.0495 (11)0.0541 (11)0.0451 (11)0.0046 (9)0.0008 (8)0.0047 (8)
C20.0502 (11)0.0527 (11)0.0680 (14)0.0079 (9)0.0063 (9)0.0017 (10)
C30.0534 (11)0.0500 (11)0.0604 (13)0.0011 (9)0.0020 (9)0.0047 (9)
C40.0407 (10)0.0625 (12)0.0435 (11)0.0003 (9)0.0030 (8)0.0043 (9)
C50.0539 (12)0.0570 (12)0.0570 (12)0.0117 (10)0.0021 (9)0.0001 (10)
C60.0603 (12)0.0471 (11)0.0557 (12)0.0016 (9)0.0029 (9)0.0009 (9)
C70.0614 (13)0.0599 (12)0.0648 (14)0.0114 (10)0.0119 (10)0.0118 (10)
N80.0488 (10)0.0669 (11)0.0601 (11)0.0124 (9)0.0074 (8)0.0165 (9)
C90.0459 (10)0.0408 (9)0.0505 (11)0.0027 (8)0.0026 (8)0.0000 (8)
C100.0549 (11)0.0525 (11)0.0442 (11)0.0055 (9)0.0011 (9)0.0067 (9)
C110.0520 (11)0.0520 (11)0.0545 (12)0.0124 (9)0.0033 (9)0.0048 (9)
C120.0470 (10)0.0426 (10)0.0533 (12)0.0028 (8)0.0044 (9)0.0038 (8)
C130.0582 (12)0.0454 (10)0.0473 (11)0.0010 (9)0.0020 (9)0.0067 (8)
C140.0503 (11)0.0457 (10)0.0544 (12)0.0075 (9)0.0017 (9)0.0081 (9)
O150.0553 (8)0.0660 (9)0.0688 (10)0.0128 (7)0.0150 (7)0.0086 (7)
C160.0653 (13)0.0741 (14)0.0711 (15)0.0024 (12)0.0196 (11)0.0062 (12)
Geometric parameters (Å, º) top
O1—N11.214 (2)N8—C91.404 (2)
O2—N11.206 (2)N8—H80.89 (2)
N1—C41.462 (2)C9—C141.386 (2)
C1—C61.379 (3)C9—C101.390 (3)
C1—C21.389 (3)C10—C111.377 (2)
C1—C71.502 (2)C10—H100.9300
C2—C31.380 (3)C11—C121.378 (3)
C2—H20.9300C11—H110.9300
C3—C41.373 (3)C12—C131.378 (3)
C3—H30.9300C12—O151.378 (2)
C4—C51.376 (3)C13—C141.384 (2)
C5—C61.373 (3)C13—H130.9300
C5—H50.9300C14—H140.9300
C6—H60.9300O15—C161.415 (2)
C7—N81.433 (2)C16—H16A0.9600
C7—H7A0.9700C16—H16B0.9600
C7—H7B0.9700C16—H16C0.9600
O2—N1—O1122.31 (19)C9—N8—H8115.1 (14)
O2—N1—C4118.5 (2)C7—N8—H8116.8 (14)
O1—N1—C4119.17 (19)C14—C9—C10117.59 (16)
C6—C1—C2118.38 (17)C14—C9—N8120.47 (16)
C6—C1—C7119.78 (18)C10—C9—N8121.88 (17)
C2—C1—C7121.81 (17)C11—C10—C9120.77 (17)
C3—C2—C1121.14 (18)C11—C10—H10119.6
C3—C2—H2119.4C9—C10—H10119.6
C1—C2—H2119.4C10—C11—C12121.28 (17)
C4—C3—C2118.24 (18)C10—C11—H11119.4
C4—C3—H3120.9C12—C11—H11119.4
C2—C3—H3120.9C13—C12—O15125.72 (17)
C3—C4—C5122.36 (17)C13—C12—C11118.53 (16)
C3—C4—N1118.84 (18)O15—C12—C11115.75 (16)
C5—C4—N1118.80 (18)C12—C13—C14120.43 (17)
C6—C5—C4118.15 (18)C12—C13—H13119.8
C6—C5—H5120.9C14—C13—H13119.8
C4—C5—H5120.9C13—C14—C9121.41 (17)
C5—C6—C1121.73 (18)C13—C14—H14119.3
C5—C6—H6119.1C9—C14—H14119.3
C1—C6—H6119.1C12—O15—C16118.13 (15)
N8—C7—C1112.89 (16)O15—C16—H16A109.5
N8—C7—H7A109.0O15—C16—H16B109.5
C1—C7—H7A109.0H16A—C16—H16B109.5
N8—C7—H7B109.0O15—C16—H16C109.5
C1—C7—H7B109.0H16A—C16—H16C109.5
H7A—C7—H7B107.8H16B—C16—H16C109.5
C9—N8—C7119.94 (16)
C6—C1—C2—C30.5 (3)C1—C7—N8—C9178.22 (17)
C7—C1—C2—C3178.52 (19)C7—N8—C9—C14166.83 (19)
C1—C2—C3—C40.1 (3)C7—N8—C9—C1016.1 (3)
C2—C3—C4—C50.8 (3)C14—C9—C10—C110.7 (3)
C2—C3—C4—N1179.66 (18)N8—C9—C10—C11176.45 (18)
O2—N1—C4—C3179.1 (2)C9—C10—C11—C120.1 (3)
O1—N1—C4—C31.3 (3)C10—C11—C12—C130.7 (3)
O2—N1—C4—C50.5 (3)C10—C11—C12—O15179.83 (17)
O1—N1—C4—C5178.3 (2)O15—C12—C13—C14179.92 (17)
C3—C4—C5—C60.8 (3)C11—C12—C13—C140.9 (3)
N1—C4—C5—C6179.63 (17)C12—C13—C14—C90.3 (3)
C4—C5—C6—C10.1 (3)C10—C9—C14—C130.5 (3)
C2—C1—C6—C50.5 (3)N8—C9—C14—C13176.68 (17)
C7—C1—C6—C5178.53 (18)C13—C12—O15—C167.4 (3)
C6—C1—C7—N8138.5 (2)C11—C12—O15—C16173.61 (18)
C2—C1—C7—N843.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the nitrophenyl (C1–C6) and methoxyphenyl (C9–C14) rings, respectively.
D—H···AD—HH···AD···AD—H···A
N8—H8···O1i0.89 (2)2.42 (3)3.231 (2)152.8 (19)
C16—H16B···O2ii0.962.473.372 (3)155
C3—H3···Cg2iii0.932.773.560 (2)143
C6—H6···Cg2iv0.932.873.524 (2)129
C16—H16A···Cg1v0.962.963.830 (2)151
Symmetry codes: (i) x, y, z+1; (ii) x+2, y, z+1; (iii) x, y+1, z; (iv) x1/2, y+1/2, z1/2; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H14N2O3
Mr258.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.4993 (3), 17.1516 (7), 10.0048 (5)
β (°) 96.861 (4)
V3)1277.65 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.955, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11435, 2511, 1692
Rint0.035
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.130, 1.05
No. of reflections2511
No. of parameters178
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.15

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the nitrophenyl (C1–C6) and methoxyphenyl (C9–C14) rings, respectively.
D—H···AD—HH···AD···AD—H···A
N8—H8···O1i0.89 (2)2.42 (3)3.231 (2)152.8 (19)
C16—H16B···O2ii0.962.473.372 (3)155
C3—H3···Cg2iii0.932.773.560 (2)143.32
C6—H6···Cg2iv0.932.873.524 (2)128.46
C16—H16A···Cg1v0.962.963.830 (2)150.91
Symmetry codes: (i) x, y, z+1; (ii) x+2, y, z+1; (iii) x, y+1, z; (iv) x1/2, y+1/2, z1/2; (v) x+1, y, z+1.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He is also thankful to the University of Jammu (India) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHillesheim, W., Jaeschke, H. & Neumann, H.-G. (1995). Chem. Biol. Interact. 98, 85–95.  CrossRef CAS PubMed Web of Science Google Scholar
First citationIwasaki, F., Masuko, Y., Monma, S., Watanabe, T. & Mutai, K. (1988). Bull. Chem. Soc. Jpn, 61, 1085–1090.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRjosk, H.-K. & Neumann, H.-G. (1971). Z. Krebsforsch. 75, 209–220.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds