organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1185-o1186

4-Bromo­benzoic acid–6-(4-bromo­phen­yl)-3-methyl-1,2,4-triazolo[3,4-b][1,3,4]thia­diazole (1/1)

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Chemistry, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 5 March 2012; accepted 21 March 2012; online 24 March 2012)

In the title 1:1 co-crystal, C10H7BrN4S·C7H5BrO2, the triazolothia­diazole system is approximately planar [with a maximum deviation of 0.030 (4) Å] and forms a dihedral angle of 8.6 (1)° with the bromo­phenyl ring. In the carb­oxy­lic acid mol­ecule, the carboxyl group is rotated by 6.4 (3)° out of the benzene ring plane. The crystal structure features O—H⋯N and C—H⋯O hydrogen bonds, ππ stacking inter­actions [centroid–centroid distances = 3.713 (2), 3.670 (2) and 3.859 (3) Å] and short S⋯N [2.883 (4) Å] contacts.

Related literature

For the biological activity of triazole derivatives, thia­diazo­les and triazolothia­diazole compounds, see: Chaturvedi et al. (1988[Chaturvedi, B., Tiwari, N. & Nizamuddin (1988). Agric. Biol. Chem. 52, 1229-1232.]); Holla et al. (2003[Holla, B. S., Veerendra, B., Shivananda, M. K. & Poojary, B. (2003). Eur. J. Med. Chem. 38, 759-767.]); Bhat et al. (2004[Bhat, K. S., Prasad, D. J., Poojary, B. & Holla, B. S. (2004). Phosphorus Sulfur Silicon Relat. Elem. 179, 1595-1603.]); Bekircan & Bektas (2006[Bekircan, O. & Bektas, H. (2006). Molecules, 11, 469-477.]); Shawali & Sayed (2006[Shawali, A. S. & Sayed, A. R. (2006). J. Sulfur Chem. 27, 233-244.]); Mathew et al. (2007[Mathew, V., Keshavayya, J., Vaidya, V. P. & Giles, D. (2007). Eur. J. Med. Chem. 42, 823-840.]); Karthikeyan et al. (2007[Karthikeyan, M. S., Holla, B. S., Kalluraya, B. & Kumari, N. S. (2007). Monatsh. Chem. 138, 1309-1316.]); Zhou et al. (2007[Zhou, S., Zhang, L., Jin, J., Zhang, A., Lei, X., Lin, J., He, J. & Zhang, H. (2007). Phosphorus Sulfur Silicon Relat. Elem. 182, 419-432.]). For related structures, see: Dinçer et al. (2005[Dinçer, M., Özdemir, N., Çetin, A., Cansız, A. & Büyükgüngör, O. (2005). Acta Cryst. C61, o665-o667.]); Arshad et al. (2009[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Waheed, A. (2009). Acta Cryst. E65, o640.]); Jia et al. (2011[Jia, W., Wang, Z., Jia, X., Zhang, J. & Wang, W. (2011). Acta Cryst. E67, o1093.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7BrN4S·C7H5BrO2

  • Mr = 496.19

  • Triclinic, [P \overline 1]

  • a = 7.7592 (3) Å

  • b = 8.0634 (4) Å

  • c = 14.9076 (7) Å

  • α = 94.090 (4)°

  • β = 92.961 (3)°

  • γ = 99.326 (4)°

  • V = 916.13 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.56 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.581, Tmax = 1.000

  • 8264 measured reflections

  • 3594 independent reflections

  • 2254 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.116

  • S = 1.01

  • 3594 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O24—H24⋯N2i 0.82 1.87 2.674 (4) 169
C9—H9A⋯O23i 0.96 2.48 3.393 (6) 159
Symmetry code: (i) -x-1, -y, -z+2.

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Derivatives of 1,2,4-triazole possess a wide spectrum of biological activity, such as anticancer, anticonvulsant, analgesic, antibacterial, anthelmintic, antitubercular and anti-inflammatory activities (Holla et al., 2003; Bekircan & Bektas, 2006; Zhou et al., 2007). Similarly 1,3,4-thiadiazoles were also found to possess antitumor, anti-inflammatory, antibacterial, antifungal, anticonvulsant and antitubercular properties (Bhat et al., 2004; Mathew et al., 2007). Thus triazolothiadiazole systems may be viewed as cyclic analogues of two very important components, which often display diverse pharmacological properties. Triazolothiadiazoles obtained by fusing the 1,2,4-trizole and 1,3,4-thiadiazole rings together have been reported to possess similar biological properties (Chaturvedi et al., 1988; Shawali & Sayed, 2006; Karthikeyan et al., 2007). Here we report the crystal structure of the 1:1 cocrystal of a triazolothiadiazole derivative and 4-bromobenzoic acid.

Bond lengths (Allen et al., 1987) and angles in the title compound (Fig. 1) have normal values and also correspond to those observed in related structures (Dinçer et al., 2005; Arshad et al., 2009; Jia et al., 2011). The triazolothiadiazole ring is planar with a maximum deviation of 0.030 (4) Å for atom C6. The plane through the benzene ring forms dihedral angle of 8.6 (1)° with the triazolothiadiazole unit. In the molecular structure, an intramolecular C15—H15···S7 contact leads to the formation of a five-membered ring which is fused with the phenyl ring (Fig. 1).

In the crystal structure of the title compound, intermolecular O—H···N and C—H···O hydrogen bonds (Table 2) link the triazolothiadiazole molecule with 4-bromobenzoic acid (Fig. 2). In addition to these interactions, the crystal structure contains three ππ stacking interactions. The first of these is between the thiadiazole ring and its symmetry-related partner at (-x, 1-y, -z), with a distance of 3.713 (2) Å between the ring centroids, and a perpendicular distance between the rings of 3.468 Å. The second is between the triazole ring and the benzene ring at (-x, 1-y, -z), with a distance of 3.670 (2) Å between the ring centroids and a perpendicular distance between the rings of 3.427 Å. The third is between the benzene rings (C10···C15) and (C16···C21) in the asymmetric unit, with a distance of 3.859 (3) Å between the ring centroids and a perpendicular distance between the rings of 3.599 Å. A short contact distance not listed in tables, yet noteworthy, is S7···N1 with N1 at position (-x-1, -y+1, -z+2), the S···N separation being 2.883 (4) Å, which may cause steric hindrance.

Related literature top

For the biological activity of triazole derivatives, thiadiazoles and triazolothiadiazole compounds, see: Chaturvedi et al. (1988); Holla et al. (2003); Bhat et al. (2004); Bekircan & Bektas (2006); Shawali & Sayed (2006); Mathew et al. (2007); Karthikeyan et al. (2007); Zhou et al. (2007). For related structures, see: Dinçer et al. (2005); Arshad et al. (2009); Jia et al. (2011). For bond-length data, see: Allen et al. (1987).

Experimental top

4-Amino-5-mercapto-3-methyl-1,2,4-triazole (0.130 g, 1 mmol) and 4-bromo-β-chlorocinnamic acid (0.261 g, 1 mmol) were stirred in POCl3 (3 ml) at 80 °C for 30 min. 6-(4-Bromophenyl)-3-methyl-1,2,4-triazolo[3,4-b][1,3,4]thiadiazole was obtained along with 4-bromobenzoic acid after pouring the reaction mixture in crushed ice followed by washing with dilute NaOH. Finally, it was crystallized from methanol, affording white crystals.

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent atoms, with O—H = 0.82 Å for OH, C—H = 0.93 Å for aromatic H, C—H = 0.96 Å for methyl H, and with Uiso(Haryl) = 1.2Ueq(Caryl), Uiso(Hmethyl) = 1.5Ueq(methyl C), and Uiso(H24) = 1.5Ueq(O24).

Structure description top

Derivatives of 1,2,4-triazole possess a wide spectrum of biological activity, such as anticancer, anticonvulsant, analgesic, antibacterial, anthelmintic, antitubercular and anti-inflammatory activities (Holla et al., 2003; Bekircan & Bektas, 2006; Zhou et al., 2007). Similarly 1,3,4-thiadiazoles were also found to possess antitumor, anti-inflammatory, antibacterial, antifungal, anticonvulsant and antitubercular properties (Bhat et al., 2004; Mathew et al., 2007). Thus triazolothiadiazole systems may be viewed as cyclic analogues of two very important components, which often display diverse pharmacological properties. Triazolothiadiazoles obtained by fusing the 1,2,4-trizole and 1,3,4-thiadiazole rings together have been reported to possess similar biological properties (Chaturvedi et al., 1988; Shawali & Sayed, 2006; Karthikeyan et al., 2007). Here we report the crystal structure of the 1:1 cocrystal of a triazolothiadiazole derivative and 4-bromobenzoic acid.

Bond lengths (Allen et al., 1987) and angles in the title compound (Fig. 1) have normal values and also correspond to those observed in related structures (Dinçer et al., 2005; Arshad et al., 2009; Jia et al., 2011). The triazolothiadiazole ring is planar with a maximum deviation of 0.030 (4) Å for atom C6. The plane through the benzene ring forms dihedral angle of 8.6 (1)° with the triazolothiadiazole unit. In the molecular structure, an intramolecular C15—H15···S7 contact leads to the formation of a five-membered ring which is fused with the phenyl ring (Fig. 1).

In the crystal structure of the title compound, intermolecular O—H···N and C—H···O hydrogen bonds (Table 2) link the triazolothiadiazole molecule with 4-bromobenzoic acid (Fig. 2). In addition to these interactions, the crystal structure contains three ππ stacking interactions. The first of these is between the thiadiazole ring and its symmetry-related partner at (-x, 1-y, -z), with a distance of 3.713 (2) Å between the ring centroids, and a perpendicular distance between the rings of 3.468 Å. The second is between the triazole ring and the benzene ring at (-x, 1-y, -z), with a distance of 3.670 (2) Å between the ring centroids and a perpendicular distance between the rings of 3.427 Å. The third is between the benzene rings (C10···C15) and (C16···C21) in the asymmetric unit, with a distance of 3.859 (3) Å between the ring centroids and a perpendicular distance between the rings of 3.599 Å. A short contact distance not listed in tables, yet noteworthy, is S7···N1 with N1 at position (-x-1, -y+1, -z+2), the S···N separation being 2.883 (4) Å, which may cause steric hindrance.

For the biological activity of triazole derivatives, thiadiazoles and triazolothiadiazole compounds, see: Chaturvedi et al. (1988); Holla et al. (2003); Bhat et al. (2004); Bekircan & Bektas (2006); Shawali & Sayed (2006); Mathew et al. (2007); Karthikeyan et al. (2007); Zhou et al. (2007). For related structures, see: Dinçer et al. (2005); Arshad et al. (2009); Jia et al. (2011). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2010); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the asymmetric unit of the title cocrystal, with thermal ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed down the a axis. The broken lines show the intermolecular O—H···N and C—H···O interactions.
4-Bromobenzoic acid–6-(4-bromophenyl)-3-methyl-1,2,4- triazolo[3,4-b][1,3,4]thiadiazole (1/1) top
Crystal data top
C10H7BrN4S·C7H5BrO2Z = 2
Mr = 496.19F(000) = 488
Triclinic, P1Dx = 1.799 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7592 (3) ÅCell parameters from 2731 reflections
b = 8.0634 (4) Åθ = 3.4–28.9°
c = 14.9076 (7) ŵ = 4.56 mm1
α = 94.090 (4)°T = 293 K
β = 92.961 (3)°Block, white
γ = 99.326 (4)°0.3 × 0.2 × 0.2 mm
V = 916.13 (7) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3594 independent reflections
Radiation source: fine-focus sealed tube2254 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
k = 99
Tmin = 0.581, Tmax = 1.000l = 1818
8264 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.2229P]
where P = (Fo2 + 2Fc2)/3
3594 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.51 e Å3
0 constraints
Crystal data top
C10H7BrN4S·C7H5BrO2γ = 99.326 (4)°
Mr = 496.19V = 916.13 (7) Å3
Triclinic, P1Z = 2
a = 7.7592 (3) ÅMo Kα radiation
b = 8.0634 (4) ŵ = 4.56 mm1
c = 14.9076 (7) ÅT = 293 K
α = 94.090 (4)°0.3 × 0.2 × 0.2 mm
β = 92.961 (3)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3594 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
2254 reflections with I > 2σ(I)
Tmin = 0.581, Tmax = 1.000Rint = 0.036
8264 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.01Δρmax = 0.43 e Å3
3594 reflectionsΔρmin = 0.51 e Å3
236 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.48693 (7)0.65776 (8)0.62657 (4)0.0850 (3)
Br20.15874 (8)0.27859 (8)0.50571 (4)0.0967 (3)
N10.4623 (4)0.3387 (4)1.0195 (2)0.0462 (9)
N20.4261 (4)0.1982 (4)1.0619 (2)0.0445 (9)
C30.2777 (5)0.1581 (5)1.0362 (3)0.0397 (10)
N40.2150 (4)0.2704 (4)0.9772 (2)0.0352 (8)
N50.0694 (4)0.2926 (4)0.9277 (2)0.0375 (8)
C60.0778 (5)0.4209 (5)0.8811 (3)0.0340 (9)
S70.25764 (12)0.52658 (14)0.89676 (7)0.0435 (3)
C80.3311 (5)0.3782 (5)0.9699 (3)0.0360 (9)
C90.1926 (5)0.0180 (5)1.0658 (3)0.0554 (13)
H9A0.25290.03111.11460.083*
H9B0.07280.06031.08550.083*
H9C0.19700.06611.01640.083*
C100.0567 (5)0.4805 (5)0.8205 (3)0.0361 (9)
C110.2088 (5)0.4096 (5)0.8184 (3)0.0440 (10)
H110.22510.32620.85650.053*
C120.3355 (5)0.4618 (6)0.7602 (3)0.0527 (12)
H120.43590.41280.75830.063*
C130.3124 (5)0.5858 (6)0.7056 (3)0.0480 (11)
C140.1622 (6)0.6563 (6)0.7054 (3)0.0657 (14)
H140.14650.73900.66670.079*
C150.0365 (6)0.6033 (6)0.7628 (3)0.0547 (12)
H150.06480.65110.76290.066*
C160.2498 (6)0.0900 (5)0.7076 (3)0.0474 (11)
C170.2908 (7)0.1880 (7)0.6397 (3)0.0694 (15)
H170.40230.21590.63420.083*
C180.1704 (8)0.2442 (7)0.5808 (4)0.0782 (16)
H180.19890.31080.53570.094*
C190.0075 (7)0.2015 (6)0.5886 (3)0.0596 (13)
C200.0382 (6)0.1051 (6)0.6543 (3)0.0614 (13)
H200.15000.07760.65900.074*
C210.0852 (6)0.0486 (6)0.7140 (3)0.0557 (12)
H210.05600.01810.75900.067*
C220.3841 (6)0.0335 (6)0.7719 (3)0.0541 (12)
O230.5243 (5)0.0796 (5)0.7726 (3)0.0950 (13)
O240.3345 (4)0.0720 (4)0.8274 (2)0.0619 (9)
H240.41240.09920.86120.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0729 (4)0.1007 (5)0.0763 (4)0.0147 (3)0.0444 (3)0.0090 (3)
Br20.1079 (5)0.0963 (5)0.0782 (5)0.0219 (4)0.0536 (4)0.0087 (3)
N10.0459 (19)0.044 (2)0.056 (2)0.0171 (16)0.0223 (17)0.0206 (18)
N20.0456 (19)0.044 (2)0.049 (2)0.0128 (16)0.0183 (16)0.0164 (17)
C30.044 (2)0.041 (3)0.039 (2)0.0135 (19)0.0142 (19)0.0119 (19)
N40.0386 (17)0.0350 (19)0.0361 (19)0.0122 (15)0.0118 (14)0.0096 (15)
N50.0347 (17)0.041 (2)0.041 (2)0.0145 (15)0.0147 (14)0.0099 (16)
C60.036 (2)0.033 (2)0.034 (2)0.0071 (17)0.0065 (17)0.0032 (18)
S70.0403 (5)0.0434 (7)0.0537 (7)0.0157 (5)0.0182 (5)0.0205 (5)
C80.037 (2)0.039 (2)0.038 (2)0.0161 (18)0.0110 (18)0.0093 (18)
C90.058 (3)0.054 (3)0.065 (3)0.026 (2)0.025 (2)0.032 (2)
C100.034 (2)0.039 (2)0.036 (2)0.0052 (17)0.0076 (17)0.0027 (18)
C110.043 (2)0.046 (3)0.048 (3)0.011 (2)0.0139 (19)0.014 (2)
C120.038 (2)0.065 (3)0.058 (3)0.009 (2)0.014 (2)0.008 (3)
C130.040 (2)0.056 (3)0.044 (3)0.008 (2)0.020 (2)0.000 (2)
C140.079 (3)0.065 (4)0.062 (3)0.018 (3)0.031 (3)0.032 (3)
C150.061 (3)0.059 (3)0.054 (3)0.024 (2)0.023 (2)0.026 (2)
C160.057 (3)0.039 (3)0.046 (3)0.002 (2)0.018 (2)0.004 (2)
C170.075 (3)0.075 (4)0.068 (4)0.022 (3)0.024 (3)0.034 (3)
C180.096 (4)0.079 (4)0.065 (4)0.013 (3)0.026 (3)0.036 (3)
C190.068 (3)0.055 (3)0.050 (3)0.011 (3)0.024 (2)0.002 (2)
C200.058 (3)0.062 (3)0.063 (3)0.002 (2)0.014 (2)0.009 (3)
C210.057 (3)0.055 (3)0.055 (3)0.004 (2)0.014 (2)0.014 (2)
C220.059 (3)0.049 (3)0.056 (3)0.006 (2)0.025 (2)0.015 (2)
O230.092 (3)0.107 (3)0.112 (3)0.055 (2)0.064 (2)0.065 (3)
O240.0582 (18)0.075 (2)0.058 (2)0.0100 (17)0.0270 (15)0.0309 (18)
Geometric parameters (Å, º) top
Br1—C131.888 (4)C12—C131.362 (6)
Br2—C191.895 (4)C12—H120.9300
N1—C81.301 (5)C13—C141.377 (6)
N1—N21.395 (4)C14—C151.367 (6)
N2—C31.313 (5)C14—H140.9300
C3—N41.359 (5)C15—H150.9300
C3—C91.480 (5)C16—C211.372 (6)
N4—C81.355 (4)C16—C171.383 (6)
N4—N51.375 (4)C16—C221.491 (6)
N5—C61.295 (5)C17—C181.362 (7)
C6—C101.460 (5)C17—H170.9300
C6—S71.766 (4)C18—C191.364 (7)
S7—C81.724 (4)C18—H180.9300
C9—H9A0.9600C19—C201.360 (7)
C9—H9B0.9600C20—C211.386 (6)
C9—H9C0.9600C20—H200.9300
C10—C151.380 (6)C21—H210.9300
C10—C111.394 (5)C22—O231.205 (5)
C11—C121.379 (5)C22—O241.315 (5)
C11—H110.9300O24—H240.8200
C8—N1—N2104.9 (3)C12—C13—C14121.1 (4)
C3—N2—N1110.0 (3)C12—C13—Br1119.3 (3)
N2—C3—N4107.2 (4)C14—C13—Br1119.6 (4)
N2—C3—C9126.9 (4)C15—C14—C13119.1 (4)
N4—C3—C9125.9 (3)C15—C14—H14120.4
C8—N4—C3106.8 (3)C13—C14—H14120.4
C8—N4—N5118.7 (3)C14—C15—C10121.5 (4)
C3—N4—N5134.5 (3)C14—C15—H15119.3
C6—N5—N4107.6 (3)C10—C15—H15119.3
N5—C6—C10122.4 (3)C21—C16—C17118.6 (4)
N5—C6—S7116.7 (3)C21—C16—C22121.9 (4)
C10—C6—S7120.9 (3)C17—C16—C22119.5 (4)
C8—S7—C687.70 (18)C18—C17—C16121.0 (5)
N1—C8—N4111.2 (3)C18—C17—H17119.5
N1—C8—S7139.6 (3)C16—C17—H17119.5
N4—C8—S7109.2 (3)C17—C18—C19119.2 (5)
C3—C9—H9A109.5C17—C18—H18120.4
C3—C9—H9B109.5C19—C18—H18120.4
H9A—C9—H9B109.5C20—C19—C18121.6 (4)
C3—C9—H9C109.5C20—C19—Br2119.4 (4)
H9A—C9—H9C109.5C18—C19—Br2119.0 (4)
H9B—C9—H9C109.5C19—C20—C21118.7 (4)
C15—C10—C11118.2 (4)C19—C20—H20120.6
C15—C10—C6122.0 (4)C21—C20—H20120.6
C11—C10—C6119.8 (4)C16—C21—C20120.7 (5)
C12—C11—C10120.6 (4)C16—C21—H21119.6
C12—C11—H11119.7C20—C21—H21119.6
C10—C11—H11119.7O23—C22—O24123.5 (4)
C13—C12—C11119.5 (4)O23—C22—C16123.2 (5)
C13—C12—H12120.3O24—C22—C16113.2 (4)
C11—C12—H12120.3C22—O24—H24109.5
C8—N1—N2—C30.4 (5)C15—C10—C11—C120.3 (6)
N1—N2—C3—N40.1 (5)C6—C10—C11—C12178.6 (4)
N1—N2—C3—C9179.6 (4)C10—C11—C12—C131.1 (7)
N2—C3—N4—C80.5 (5)C11—C12—C13—C142.0 (7)
C9—C3—N4—C8179.2 (4)C11—C12—C13—Br1179.6 (3)
N2—C3—N4—N5179.2 (4)C12—C13—C14—C151.6 (7)
C9—C3—N4—N51.1 (7)Br1—C13—C14—C15179.9 (4)
C8—N4—N5—C60.6 (5)C13—C14—C15—C100.2 (8)
C3—N4—N5—C6179.1 (4)C11—C10—C15—C140.7 (7)
N4—N5—C6—C10180.0 (3)C6—C10—C15—C14179.0 (4)
N4—N5—C6—S72.0 (4)C21—C16—C17—C180.7 (8)
N5—C6—S7—C82.3 (3)C22—C16—C17—C18178.9 (5)
C10—C6—S7—C8179.8 (3)C16—C17—C18—C190.6 (9)
N2—N1—C8—N40.8 (5)C17—C18—C19—C200.4 (8)
N2—N1—C8—S7179.3 (4)C17—C18—C19—Br2179.5 (4)
C3—N4—C8—N10.8 (5)C18—C19—C20—C210.4 (8)
N5—N4—C8—N1179.0 (3)Br2—C19—C20—C21179.5 (4)
C3—N4—C8—S7179.2 (3)C17—C16—C21—C200.6 (7)
N5—N4—C8—S71.0 (4)C22—C16—C21—C20178.9 (4)
C6—S7—C8—N1178.3 (5)C19—C20—C21—C160.5 (7)
C6—S7—C8—N41.7 (3)C21—C16—C22—O23173.5 (5)
N5—C6—C10—C15171.8 (4)C17—C16—C22—O236.0 (8)
S7—C6—C10—C1510.4 (6)C21—C16—C22—O246.7 (6)
N5—C6—C10—C116.5 (6)C17—C16—C22—O24173.7 (4)
S7—C6—C10—C11171.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O24—H24···N2i0.821.872.674 (4)169
C9—H9A···O23i0.962.483.393 (6)159
Symmetry code: (i) x1, y, z+2.

Experimental details

Crystal data
Chemical formulaC10H7BrN4S·C7H5BrO2
Mr496.19
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.7592 (3), 8.0634 (4), 14.9076 (7)
α, β, γ (°)94.090 (4), 92.961 (3), 99.326 (4)
V3)916.13 (7)
Z2
Radiation typeMo Kα
µ (mm1)4.56
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
Tmin, Tmax0.581, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8264, 3594, 2254
Rint0.036
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.116, 1.01
No. of reflections3594
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.51

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2010), CrysAlis PRO RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O24—H24···N2i0.821.872.674 (4)169
C9—H9A···O23i0.962.483.393 (6)159
Symmetry code: (i) x1, y, z+2.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He is also thankful to the University of Jammu, Jammu, India, for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Waheed, A. (2009). Acta Cryst. E65, o640.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBekircan, O. & Bektas, H. (2006). Molecules, 11, 469–477.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBhat, K. S., Prasad, D. J., Poojary, B. & Holla, B. S. (2004). Phosphorus Sulfur Silicon Relat. Elem. 179, 1595–1603.  Web of Science CrossRef CAS Google Scholar
First citationChaturvedi, B., Tiwari, N. & Nizamuddin (1988). Agric. Biol. Chem. 52, 1229–1232.  Google Scholar
First citationDinçer, M., Özdemir, N., Çetin, A., Cansız, A. & Büyükgüngör, O. (2005). Acta Cryst. C61, o665–o667.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHolla, B. S., Veerendra, B., Shivananda, M. K. & Poojary, B. (2003). Eur. J. Med. Chem. 38, 759–767.  Web of Science CrossRef PubMed Google Scholar
First citationJia, W., Wang, Z., Jia, X., Zhang, J. & Wang, W. (2011). Acta Cryst. E67, o1093.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Holla, B. S., Kalluraya, B. & Kumari, N. S. (2007). Monatsh. Chem. 138, 1309–1316.  Web of Science CrossRef CAS Google Scholar
First citationMathew, V., Keshavayya, J., Vaidya, V. P. & Giles, D. (2007). Eur. J. Med. Chem. 42, 823–840.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationShawali, A. S. & Sayed, A. R. (2006). J. Sulfur Chem. 27, 233–244.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, S., Zhang, L., Jin, J., Zhang, A., Lei, X., Lin, J., He, J. & Zhang, H. (2007). Phosphorus Sulfur Silicon Relat. Elem. 182, 419–432.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1185-o1186
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds