organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-methyl­benzamide

aPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China
*Correspondence e-mail: liuyanju886@163.com

(Received 8 February 2012; accepted 27 February 2012; online 3 March 2012)

There are two mol­ecules in the asymmetric unit of the title compound, C8H8ClNO, which are linked in the crystal structure via N—H⋯O hydrogen bonds into chains along the b axis. C—H⋯O contacts also occur. The benzene ring makes dihedral angles of 5.9 (1) and 16.7 (1)°with the attached amide group in the two independent molecules.

Related literature

For applications of the title compound and background to the synthesis, see: Lee et al. (2009[Lee, S., Song, K. H., Choe, J., Ju, J. & Jo, Y. (2009). J. Org. Chem. 74, 6358-6361.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8ClNO

  • Mr = 169.61

  • Triclinic, [P \overline 1]

  • a = 3.9420 (8) Å

  • b = 9.2250 (18) Å

  • c = 21.864 (4) Å

  • α = 96.46 (3)°

  • β = 90.34 (3)°

  • γ = 90.99 (3)°

  • V = 789.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 296 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.921, Tmax = 0.959

  • 3079 measured reflections

  • 2887 independent reflections

  • 1633 reflections with I > 2σ(I)

  • Rint = 0.047

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.188

  • S = 1.00

  • 2887 reflections

  • 199 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.07 2.876 (4) 157
N2—H2B⋯O1ii 0.86 2.06 2.887 (4) 160
C5—H5A⋯O2i 0.93 2.53 3.417 (5) 159
C9—H9A⋯O1ii 0.93 2.60 3.379 (5) 142
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+2, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzamide derivatives exhibit interesting biological activities such as antibacterial and antifungal effects (Lee et al., 2009). We report here the crystal structure of the title compound 4-chloro-N-methylbenzamide, (I).

The molecular structure of (I) is shown in Fig. 1. The title compound was connected together via N—H···O intermolecular hydrogen bonds (Table 1), supported by a C—H···O contact, forming chains along b axis direction (Figure 2.).

The asymmetric unit contains two title molecules of 4-chloro-N-methylbenzamide. The rings of these molecules are planar with r.m.s. deviation of 0.0048 Å and 0.0034 Å. The dihedral angles of the planes A(C1—C6), B(C7/O1/N1/H1A), C(C9—C14), D(C15/O2/N2/H2B) are: A/B = 5.9 (1)°, C/D = 16.7 (1)° and A/C = 16.77 (16) °.

Related literature top

For applications of the title compound and background to the synthesis, see: Lee et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I) was prepared by a method reported in literature (Lee et al., 2009). The crystals were obtained by dissolving (I) (0.1 g) in methanol (30 ml) and evaporating the solvent slowly at room temperature for about 8 d.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å for aromatic H, 0.96 Å for methyl H and 0.86 Å for N—H, respectively. The Uiso(H) = xUeq(C), where x = 1.2 for aromatic H and N—H, and x = 1.5 for methyl H.

Structure description top

Benzamide derivatives exhibit interesting biological activities such as antibacterial and antifungal effects (Lee et al., 2009). We report here the crystal structure of the title compound 4-chloro-N-methylbenzamide, (I).

The molecular structure of (I) is shown in Fig. 1. The title compound was connected together via N—H···O intermolecular hydrogen bonds (Table 1), supported by a C—H···O contact, forming chains along b axis direction (Figure 2.).

The asymmetric unit contains two title molecules of 4-chloro-N-methylbenzamide. The rings of these molecules are planar with r.m.s. deviation of 0.0048 Å and 0.0034 Å. The dihedral angles of the planes A(C1—C6), B(C7/O1/N1/H1A), C(C9—C14), D(C15/O2/N2/H2B) are: A/B = 5.9 (1)°, C/D = 16.7 (1)° and A/C = 16.77 (16) °.

For applications of the title compound and background to the synthesis, see: Lee et al. (2009). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I) showing N-H..O hydrogen-bonded chains along b axis. H atoms not involved in bonding are omitted for clarity.
4-Chloro-N-methylbenzamide top
Crystal data top
C8H8ClNOZ = 4
Mr = 169.61F(000) = 352
Triclinic, P1Dx = 1.426 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.9420 (8) ÅCell parameters from 25 reflections
b = 9.2250 (18) Åθ = 9–12°
c = 21.864 (4) ŵ = 0.42 mm1
α = 96.46 (3)°T = 296 K
β = 90.34 (3)°Block, colourless
γ = 90.99 (3)°0.20 × 0.10 × 0.10 mm
V = 789.9 (3) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1633 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 25.4°, θmin = 1.9°
ω/2θ scansh = 44
Absorption correction: ψ scan
(North et al., 1968)
k = 110
Tmin = 0.921, Tmax = 0.959l = 2626
3079 measured reflections3 standard reflections every 200 reflections
2887 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.094P)2]
where P = (Fo2 + 2Fc2)/3
2887 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.29 e Å3
2 restraintsΔρmin = 0.25 e Å3
Crystal data top
C8H8ClNOγ = 90.99 (3)°
Mr = 169.61V = 789.9 (3) Å3
Triclinic, P1Z = 4
a = 3.9420 (8) ÅMo Kα radiation
b = 9.2250 (18) ŵ = 0.42 mm1
c = 21.864 (4) ÅT = 296 K
α = 96.46 (3)°0.20 × 0.10 × 0.10 mm
β = 90.34 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1633 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.047
Tmin = 0.921, Tmax = 0.9593 standard reflections every 200 reflections
3079 measured reflections intensity decay: 1%
2887 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0682 restraints
wR(F2) = 0.188H-atom parameters constrained
S = 1.00Δρmax = 0.29 e Å3
2887 reflectionsΔρmin = 0.25 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.2503 (4)0.71959 (16)1.02286 (5)0.0971 (5)
N10.7112 (8)0.7694 (3)0.73236 (14)0.0536 (8)
H1A0.66190.68420.74240.064*
O10.9592 (8)0.9833 (3)0.75794 (13)0.0748 (9)
C11.1009 (11)0.9251 (5)0.87664 (19)0.0723 (13)
H1B1.13811.01950.86670.087*
C21.1874 (12)0.8941 (5)0.9344 (2)0.0751 (13)
H2A1.28580.96580.96260.090*
C31.1290 (11)0.7593 (5)0.94995 (19)0.0642 (11)
C40.9934 (12)0.6541 (5)0.9090 (2)0.0732 (13)
H4A0.96230.56100.92070.088*
C50.8993 (12)0.6791 (4)0.85058 (19)0.0659 (12)
H5A0.79880.60640.82310.079*
C60.9649 (9)0.8253 (3)0.83385 (16)0.0478 (9)
C70.8729 (9)0.8632 (4)0.77223 (17)0.0470 (9)
C80.6136 (11)0.8043 (4)0.67242 (18)0.0625 (11)
H8A0.49460.72240.65070.094*
H8B0.81250.82660.64990.094*
H8C0.46830.88720.67660.094*
Cl20.3429 (3)0.77031 (14)0.52328 (5)0.0843 (5)
O20.3948 (7)0.5109 (3)0.25934 (13)0.0690 (8)
N20.3020 (8)0.7363 (3)0.23575 (14)0.0575 (9)
H2B0.21290.82090.24700.069*
C90.0638 (11)0.8149 (4)0.36052 (18)0.0615 (11)
H9A0.12350.89150.33860.074*
C100.0805 (11)0.8473 (4)0.41801 (18)0.0626 (11)
H10A0.11450.94350.43500.075*
C110.1731 (10)0.7327 (4)0.44960 (18)0.0592 (10)
C120.1202 (10)0.5922 (4)0.42494 (18)0.0608 (11)
H12A0.18410.51630.44700.073*
C130.0237 (10)0.5619 (4)0.36903 (18)0.0593 (11)
H13A0.05890.46520.35280.071*
C140.1232 (9)0.6758 (3)0.33430 (16)0.0444 (8)
C150.2870 (10)0.6352 (4)0.27428 (17)0.0504 (9)
C160.4602 (11)0.7105 (4)0.17627 (19)0.0694 (12)
H16A0.44030.79680.15570.104*
H16B0.69570.68610.18090.104*
H16C0.35070.63120.15240.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1301 (12)0.1145 (11)0.0491 (7)0.0039 (8)0.0234 (7)0.0221 (7)
N10.076 (2)0.0421 (17)0.0432 (18)0.0096 (15)0.0155 (15)0.0103 (14)
O10.113 (2)0.0438 (16)0.069 (2)0.0172 (15)0.0122 (17)0.0171 (14)
C10.102 (3)0.062 (3)0.053 (3)0.020 (2)0.011 (2)0.012 (2)
C20.099 (3)0.072 (3)0.052 (3)0.032 (2)0.022 (2)0.001 (2)
C30.072 (3)0.072 (3)0.051 (3)0.015 (2)0.002 (2)0.013 (2)
C40.116 (4)0.052 (2)0.053 (3)0.005 (2)0.010 (2)0.015 (2)
C50.104 (3)0.041 (2)0.054 (3)0.004 (2)0.013 (2)0.0096 (17)
C60.061 (2)0.0419 (19)0.039 (2)0.0028 (16)0.0064 (17)0.0023 (15)
C70.058 (2)0.0308 (18)0.054 (2)0.0032 (16)0.0016 (17)0.0098 (15)
C80.080 (3)0.061 (2)0.048 (2)0.005 (2)0.012 (2)0.0118 (18)
Cl20.1028 (9)0.1021 (10)0.0483 (7)0.0030 (7)0.0151 (6)0.0110 (6)
O20.099 (2)0.0387 (15)0.068 (2)0.0151 (14)0.0110 (16)0.0061 (13)
N20.085 (2)0.0421 (17)0.046 (2)0.0030 (15)0.0068 (16)0.0078 (14)
C90.093 (3)0.041 (2)0.052 (3)0.002 (2)0.015 (2)0.0115 (17)
C100.102 (3)0.037 (2)0.049 (2)0.001 (2)0.003 (2)0.0020 (16)
C110.064 (3)0.067 (3)0.047 (2)0.015 (2)0.0010 (19)0.0052 (19)
C120.079 (3)0.053 (2)0.054 (3)0.011 (2)0.008 (2)0.0194 (19)
C130.080 (3)0.042 (2)0.057 (3)0.0145 (19)0.003 (2)0.0108 (18)
C140.052 (2)0.0384 (19)0.043 (2)0.0040 (15)0.0077 (16)0.0034 (15)
C150.064 (2)0.044 (2)0.044 (2)0.0031 (17)0.0059 (18)0.0069 (17)
C160.086 (3)0.066 (3)0.057 (3)0.007 (2)0.022 (2)0.013 (2)
Geometric parameters (Å, º) top
Cl1—C31.741 (4)Cl2—C111.737 (4)
N1—C71.311 (4)O2—C151.224 (4)
N1—C81.436 (4)N2—C151.327 (4)
N1—H1A0.8600N2—C161.433 (5)
O1—C71.227 (4)N2—H2B0.8600
C1—C61.339 (5)C9—C141.360 (5)
C1—C21.368 (6)C9—C101.376 (5)
C1—H1B0.9300C9—H9A0.9300
C2—C31.342 (6)C10—C111.379 (5)
C2—H2A0.9300C10—H10A0.9300
C3—C41.345 (6)C11—C121.359 (5)
C4—C51.373 (5)C12—C131.343 (5)
C4—H4A0.9300C12—H12A0.9300
C5—C61.456 (4)C13—C141.423 (5)
C5—H5A0.9300C13—H13A0.9300
C6—C71.474 (5)C14—C151.467 (5)
C8—H8A0.9600C16—H16A0.9600
C8—H8B0.9600C16—H16B0.9600
C8—H8C0.9600C16—H16C0.9600
C7—N1—C8122.2 (3)C15—N2—C16122.8 (3)
C7—N1—H1A118.9C15—N2—H2B118.6
C8—N1—H1A118.9C16—N2—H2B118.6
C6—C1—C2122.7 (4)C14—C9—C10123.0 (3)
C6—C1—H1B118.6C14—C9—H9A118.5
C2—C1—H1B118.6C10—C9—H9A118.5
C3—C2—C1119.4 (4)C9—C10—C11117.9 (4)
C3—C2—H2A120.3C9—C10—H10A121.0
C1—C2—H2A120.3C11—C10—H10A121.0
C2—C3—C4120.7 (4)C12—C11—C10121.0 (4)
C2—C3—Cl1119.0 (3)C12—C11—Cl2120.0 (3)
C4—C3—Cl1120.2 (3)C10—C11—Cl2118.9 (3)
C3—C4—C5122.5 (4)C13—C12—C11120.5 (4)
C3—C4—H4A118.8C13—C12—H12A119.7
C5—C4—H4A118.8C11—C12—H12A119.7
C4—C5—C6116.6 (4)C12—C13—C14120.9 (4)
C4—C5—H5A121.7C12—C13—H13A119.6
C6—C5—H5A121.7C14—C13—H13A119.6
C1—C6—C5118.1 (4)C9—C14—C13116.7 (4)
C1—C6—C7121.1 (3)C9—C14—C15125.2 (3)
C5—C6—C7120.8 (3)C13—C14—C15118.1 (3)
O1—C7—N1120.1 (3)O2—C15—N2121.1 (4)
O1—C7—C6118.8 (3)O2—C15—C14121.2 (3)
N1—C7—C6121.1 (3)N2—C15—C14117.6 (3)
N1—C8—H8A109.5N2—C16—H16A109.5
N1—C8—H8B109.5N2—C16—H16B109.5
H8A—C8—H8B109.5H16A—C16—H16B109.5
N1—C8—H8C109.5N2—C16—H16C109.5
H8A—C8—H8C109.5H16A—C16—H16C109.5
H8B—C8—H8C109.5H16B—C16—H16C109.5
C6—C1—C2—C31.4 (7)C14—C9—C10—C111.1 (6)
C1—C2—C3—C41.4 (7)C9—C10—C11—C120.7 (6)
C1—C2—C3—Cl1178.3 (4)C9—C10—C11—Cl2177.9 (3)
C2—C3—C4—C51.9 (7)C10—C11—C12—C130.1 (6)
Cl1—C3—C4—C5178.8 (4)Cl2—C11—C12—C13177.3 (3)
C3—C4—C5—C62.2 (7)C11—C12—C13—C140.2 (6)
C2—C1—C6—C51.7 (7)C10—C9—C14—C130.9 (6)
C2—C1—C6—C7179.6 (4)C10—C9—C14—C15177.7 (4)
C4—C5—C6—C12.0 (6)C12—C13—C14—C90.2 (6)
C4—C5—C6—C7179.9 (4)C12—C13—C14—C15178.4 (4)
C8—N1—C7—O13.2 (6)C16—N2—C15—O23.7 (6)
C8—N1—C7—C6179.0 (3)C16—N2—C15—C14179.0 (3)
C1—C6—C7—O18.5 (6)C9—C14—C15—O2164.7 (4)
C5—C6—C7—O1173.6 (4)C13—C14—C15—O213.9 (5)
C1—C6—C7—N1173.6 (4)C9—C14—C15—N218.0 (6)
C5—C6—C7—N14.3 (5)C13—C14—C15—N2163.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.072.876 (4)157
N2—H2B···O1ii0.862.062.887 (4)160
C5—H5A···O2i0.932.533.417 (5)159
C9—H9A···O1ii0.932.603.379 (5)142
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC8H8ClNO
Mr169.61
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)3.9420 (8), 9.2250 (18), 21.864 (4)
α, β, γ (°)96.46 (3), 90.34 (3), 90.99 (3)
V3)789.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.921, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
3079, 2887, 1633
Rint0.047
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.188, 1.00
No. of reflections2887
No. of parameters199
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.25

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.86002.07002.876 (4)157.00
N2—H2B···O1ii0.86002.06002.887 (4)160.00
C5—H5A···O2i0.93002.53003.417 (5)159.00
C9—H9A···O1ii0.93002.60003.379 (5)142.00
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+1.
 

Acknowledgements

This study was supported by the Science and Technology Department of Henan Province (102102310321) and the Doctoral Research Fund of Henan Chinese Medicine (BSJJ2009–38). The authors thank the Center of Testing and Analysis, Nanjing University for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLee, S., Song, K. H., Choe, J., Ju, J. & Jo, Y. (2009). J. Org. Chem. 74, 6358–6361.  Web of Science PubMed Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds