organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Chloro-2-fluoro­phen­yl)-4-di­fluoro­methyl-3-methyl-1H-1,2,4-triazol-5(4H)-one

aSecurity and Environment Engineering College, Capital University of Economics and Business, Beijing 10070, People's Republic of China
*Correspondence e-mail: nanoren@126.com

(Received 25 February 2012; accepted 4 March 2012; online 14 March 2012)

In the crystal structure of the title compound, C10H7ClF3N3O, pairs of mol­ecules are connected into dimers via pairs of C—H⋯O hydrogen bonds. The dihedral angle between the benzene ring and attached triazolone ring is 53.2 (1)°.

Related literature

For background to this class of compound, see: Ager & Polz (1996[Ager, J. W. & Polz, C. A. (1996). EP Patent No. 1273232.]); Li & Han (2010[Li, M. F. & Han, B. Y. (2010). Mod. Agrochem. 9, 28-33.]). For the synthesis of the title compound, see: Jaidev & Plainsboro (1998[Jaidev, S. G. & Plainsboro, N. J. (1998). US Patent No. 5756755.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7ClF3N3O

  • Mr = 277.64

  • Monoclinic, C 2/c

  • a = 15.286 (3) Å

  • b = 13.610 (3) Å

  • c = 11.231 (2) Å

  • β = 100.91 (3)°

  • V = 2294.3 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.899, Tmax = 0.965

  • 4290 measured reflections

  • 2115 independent reflections

  • 1273 reflections with I > 2σ(I)

  • Rint = 0.036

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.143

  • S = 1.00

  • 2115 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯Oi 0.98 2.41 3.259 (4) 144
Symmetry code: (i) [-x+1, y, -z-{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is an important intermediate used to synthesize the Carfentrazone-ethyl, which can be utilized to synthesize herbicides (Jaidev & Plainsboro, 1998), which are of wide interest for applications in control of broadleaf weeds and sedges (Ager & Polz, 1996). They are widely used in protection of wheat, barley, oats, rice, corn, etc (Li & Han, 2010). We report here the crystal structure of the title compound, (I), which is of interest to us in the field.

The molecular structure of (I) is shown in Figure 1. In the structure, the molecules were connected together via C—H···O intermolecular hydrogen bonds (Table 1 and Figure 2.) to form dimers. The dihedral angle of the rings A(C1—C6), B(N1/N3/C8/N2/C7) is: A/B = 53.2 (1)°.

Related literature top

The title compound is an intermediate in organic synthesis. For background to this class of compound, see: Ager & Polz (1996); Li & Han (2010). For the synthesis of the title compound, see: Jaidev & Plainsboro (1998). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I) was prepared by a method reported in literature (Jaidev & Plainsboro, 1998). The crystals were obtained by dissolving (I) (0.2 g) in acetone (50 ml) and evaporating the solvent slowly at room temperature for about 10 d.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å for aromatic H and 0.96 Å for alkyl H. The Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for alkyl H.

Structure description top

The title compound is an important intermediate used to synthesize the Carfentrazone-ethyl, which can be utilized to synthesize herbicides (Jaidev & Plainsboro, 1998), which are of wide interest for applications in control of broadleaf weeds and sedges (Ager & Polz, 1996). They are widely used in protection of wheat, barley, oats, rice, corn, etc (Li & Han, 2010). We report here the crystal structure of the title compound, (I), which is of interest to us in the field.

The molecular structure of (I) is shown in Figure 1. In the structure, the molecules were connected together via C—H···O intermolecular hydrogen bonds (Table 1 and Figure 2.) to form dimers. The dihedral angle of the rings A(C1—C6), B(N1/N3/C8/N2/C7) is: A/B = 53.2 (1)°.

The title compound is an intermediate in organic synthesis. For background to this class of compound, see: Ager & Polz (1996); Li & Han (2010). For the synthesis of the title compound, see: Jaidev & Plainsboro (1998). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I) showing the dimers formed by C—H···O H-bonds.
1-(4-Chloro-2-fluorophenyl)-4-difluoromethyl-3-methyl-1H- 1,2,4-triazol-5(4H)-one top
Crystal data top
C10H7ClF3N3OF(000) = 1120
Mr = 277.64Dx = 1.608 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 15.286 (3) Åθ = 10–13°
b = 13.610 (3) ŵ = 0.36 mm1
c = 11.231 (2) ÅT = 293 K
β = 100.91 (3)°Block, colorless
V = 2294.3 (8) Å30.30 × 0.20 × 0.10 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
1273 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 25.4°, θmin = 2.0°
ω/2θ scansh = 018
Absorption correction: ψ scan
(North et al., 1968)
k = 1616
Tmin = 0.899, Tmax = 0.965l = 1313
4290 measured reflections3 standard reflections every 200 reflections
2115 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.073P)2]
where P = (Fo2 + 2Fc2)/3
2115 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C10H7ClF3N3OV = 2294.3 (8) Å3
Mr = 277.64Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.286 (3) ŵ = 0.36 mm1
b = 13.610 (3) ÅT = 293 K
c = 11.231 (2) Å0.30 × 0.20 × 0.10 mm
β = 100.91 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1273 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.036
Tmin = 0.899, Tmax = 0.9653 standard reflections every 200 reflections
4290 measured reflections intensity decay: 1%
2115 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.00Δρmax = 0.23 e Å3
2115 reflectionsΔρmin = 0.34 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.07385 (7)0.56530 (8)0.15418 (11)0.1001 (5)
O0.44175 (13)0.54039 (17)0.12275 (18)0.0621 (6)
F10.26705 (12)0.64405 (16)0.14770 (16)0.0796 (6)
N10.42189 (15)0.65403 (18)0.0253 (2)0.0529 (6)
C10.3335 (2)0.6085 (2)0.1748 (3)0.0637 (9)
H1A0.38460.60940.23480.076*
N20.54325 (16)0.66315 (18)0.0433 (2)0.0541 (6)
F20.62510 (18)0.72262 (17)0.1740 (2)0.1082 (8)
C20.2523 (3)0.5883 (3)0.2052 (3)0.0716 (10)
H2A0.24830.57610.28550.086*
F30.68716 (13)0.62152 (16)0.0370 (2)0.0902 (7)
N30.47231 (18)0.72846 (19)0.0904 (2)0.0598 (7)
C30.1768 (2)0.5862 (2)0.1157 (3)0.0650 (9)
C40.1812 (2)0.6026 (2)0.0036 (3)0.0643 (9)
H4A0.13040.59940.06390.077*
C50.2627 (2)0.6237 (2)0.0314 (3)0.0547 (8)
C60.3396 (2)0.6273 (2)0.0557 (3)0.0519 (7)
C70.4651 (2)0.6095 (2)0.0559 (3)0.0519 (7)
C80.5439 (2)0.7331 (2)0.0472 (3)0.0576 (8)
C90.6171 (3)0.8030 (3)0.0887 (4)0.0860 (11)
H9A0.60340.84180.15410.129*
H9B0.62420.84540.02280.129*
H9C0.67140.76740.11600.129*
C100.6099 (2)0.6433 (3)0.1112 (3)0.0653 (9)
H10A0.59140.58830.16670.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0851 (7)0.0982 (8)0.1308 (10)0.0103 (6)0.0553 (7)0.0134 (7)
O0.0627 (13)0.0687 (14)0.0523 (12)0.0061 (11)0.0041 (10)0.0161 (11)
F10.0680 (12)0.1151 (16)0.0514 (11)0.0087 (11)0.0005 (9)0.0147 (10)
N10.0493 (14)0.0558 (15)0.0515 (14)0.0005 (12)0.0043 (11)0.0083 (12)
C10.072 (2)0.067 (2)0.0484 (19)0.0064 (17)0.0025 (16)0.0009 (15)
N20.0524 (15)0.0542 (15)0.0540 (15)0.0009 (12)0.0059 (12)0.0041 (12)
F20.133 (2)0.0924 (17)0.1152 (18)0.0002 (15)0.0645 (16)0.0242 (14)
C20.090 (3)0.068 (2)0.061 (2)0.006 (2)0.026 (2)0.0009 (17)
F30.0532 (12)0.1008 (17)0.1121 (17)0.0055 (11)0.0040 (11)0.0142 (13)
N30.0555 (16)0.0563 (17)0.0631 (17)0.0009 (13)0.0000 (13)0.0123 (12)
C30.068 (2)0.0554 (19)0.078 (2)0.0011 (16)0.0301 (19)0.0070 (17)
C40.051 (2)0.065 (2)0.074 (2)0.0058 (16)0.0060 (17)0.0029 (17)
C50.0574 (19)0.0596 (19)0.0447 (18)0.0100 (15)0.0033 (14)0.0038 (14)
C60.0565 (19)0.0483 (17)0.0492 (18)0.0060 (14)0.0054 (14)0.0016 (13)
C70.0523 (18)0.0570 (19)0.0428 (17)0.0052 (15)0.0000 (14)0.0011 (15)
C80.0539 (19)0.0500 (18)0.065 (2)0.0000 (15)0.0003 (16)0.0046 (15)
C90.081 (3)0.068 (2)0.105 (3)0.012 (2)0.007 (2)0.020 (2)
C100.062 (2)0.067 (2)0.069 (2)0.0001 (17)0.0165 (18)0.0006 (17)
Geometric parameters (Å, º) top
Cl—C31.733 (3)C2—C31.380 (5)
O—C71.214 (3)C2—H2A0.9300
F1—C51.349 (3)F3—C101.344 (4)
N1—C71.365 (4)N3—C81.280 (4)
N1—N31.393 (3)C3—C41.373 (4)
N1—C61.412 (4)C4—C51.371 (4)
C1—C21.375 (5)C4—H4A0.9300
C1—C61.383 (4)C5—C61.380 (4)
C1—H1A0.9300C8—C91.476 (5)
N2—C71.385 (4)C9—H9A0.9600
N2—C81.391 (4)C9—H9B0.9600
N2—C101.409 (4)C9—H9C0.9600
F2—C101.334 (4)C10—H10A0.9800
C7—N1—N3112.6 (2)C5—C6—C1118.3 (3)
C7—N1—C6127.8 (3)C5—C6—N1121.1 (3)
N3—N1—C6119.4 (2)C1—C6—N1120.5 (3)
C2—C1—C6120.4 (3)O—C7—N1129.4 (3)
C2—C1—H1A119.8O—C7—N2128.2 (3)
C6—C1—H1A119.8N1—C7—N2102.4 (3)
C7—N2—C8108.8 (3)N3—C8—N2110.8 (3)
C7—N2—C10122.8 (3)N3—C8—C9124.3 (3)
C8—N2—C10128.4 (3)N2—C8—C9124.9 (3)
C1—C2—C3119.5 (3)C8—C9—H9A109.5
C1—C2—H2A120.2C8—C9—H9B109.5
C3—C2—H2A120.2H9A—C9—H9B109.5
C8—N3—N1105.3 (2)C8—C9—H9C109.5
C4—C3—C2121.3 (3)H9A—C9—H9C109.5
C4—C3—Cl119.0 (3)H9B—C9—H9C109.5
C2—C3—Cl119.7 (3)F2—C10—F3106.6 (3)
C5—C4—C3118.1 (3)F2—C10—N2110.3 (3)
C5—C4—H4A120.9F3—C10—N2110.3 (3)
C3—C4—H4A120.9F2—C10—H10A109.9
F1—C5—C4118.5 (3)F3—C10—H10A109.9
F1—C5—C6119.2 (3)N2—C10—H10A109.9
C4—C5—C6122.3 (3)
C6—C1—C2—C30.5 (5)N3—N1—C7—O176.9 (3)
C7—N1—N3—C82.6 (3)C6—N1—C7—O3.1 (5)
C6—N1—N3—C8177.0 (2)N3—N1—C7—N23.1 (3)
C1—C2—C3—C40.9 (5)C6—N1—C7—N2177.0 (2)
C1—C2—C3—Cl177.6 (3)C8—N2—C7—O177.6 (3)
C2—C3—C4—C51.7 (5)C10—N2—C7—O0.2 (5)
Cl—C3—C4—C5176.9 (2)C8—N2—C7—N12.5 (3)
C3—C4—C5—F1177.1 (3)C10—N2—C7—N1179.8 (3)
C3—C4—C5—C61.0 (5)N1—N3—C8—N20.8 (3)
F1—C5—C6—C1178.5 (3)N1—N3—C8—C9179.4 (3)
C4—C5—C6—C10.3 (5)C7—N2—C8—N31.1 (3)
F1—C5—C6—N11.4 (4)C10—N2—C8—N3178.7 (3)
C4—C5—C6—N1176.8 (3)C7—N2—C8—C9178.7 (3)
C2—C1—C6—C51.1 (5)C10—N2—C8—C91.1 (5)
C2—C1—C6—N1176.1 (3)C7—N2—C10—F2122.1 (3)
C7—N1—C6—C558.7 (4)C8—N2—C10—F260.6 (4)
N3—N1—C6—C5127.8 (3)C7—N2—C10—F3120.5 (3)
C7—N1—C6—C1124.2 (3)C8—N2—C10—F356.8 (4)
N3—N1—C6—C149.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···Oi0.982.413.259 (4)144
Symmetry code: (i) x+1, y, z1/2.

Experimental details

Crystal data
Chemical formulaC10H7ClF3N3O
Mr277.64
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)15.286 (3), 13.610 (3), 11.231 (2)
β (°) 100.91 (3)
V3)2294.3 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.899, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
4290, 2115, 1273
Rint0.036
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.143, 1.00
No. of reflections2115
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.34

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···Oi0.98002.41003.259 (4)144.00
Symmetry code: (i) x+1, y, z1/2.
 

Acknowledgements

This study was supported financially by the Capital University of Economics and Business (00891162721716) and the Scientific Research Level Project of Beijing Education Commission Foundation. The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

References

First citationAger, J. W. & Polz, C. A. (1996). EP Patent No. 1273232.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJaidev, S. G. & Plainsboro, N. J. (1998). US Patent No. 5756755.  Google Scholar
First citationLi, M. F. & Han, B. Y. (2010). Mod. Agrochem. 9, 28–33.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds