metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m457-m458

Bis­(4-benzoyl-3-methyl-1-phenyl-4,5-di­hydro-1H-pyrazol-5-olato-κ2O,O′)(methanol-κO)dioxidouranium(VI) methanol monosolvate

aLaboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox (LEIMCR), Faculté des Sciences de l'Ingénieur, Université Farhat Abbas, Sétif 19000, Algeria, and bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 1 March 2012; accepted 13 March 2012; online 21 March 2012)

In the title compound, [U(C17H13N2O2)2O2(CH3OH)]·CH3OH, the UVI ion is coordinated by seven O atoms in a distorted pentagonal–bipyramidal geometry with two 3-methyl-1-phenyl-4-benzoyl-4,5-dihydro-1H-pyrazol-5-olate groups with two O atoms in a bidentate chelating coordination mode and by three O atoms, one of which is from a methanol ligand. The crystal packing can be described by alternating layers of complex mol­ecules along the a axis. The structure is stabilized by O—H⋯N and O—H⋯O hydrogen bonding and van der Waals inter­actions.

Related literature

For the synthesis and applications of similar compounds: Okafor (1981[Okafor, E. C. (1981). Z. Naturforsch. Teil B, 36, 213-217.]); Caruso et al. (2000[Caruso, F., Rossi, M., Tanski, J., Sartori, R., Sariego, R., Moya, S., Diez, S., Navarette, S., Cingolani, A., Marchetti, F. & Pettinari, C. (2000). J. Med. Chem. 43, 3665-3670.]); Li et al. (1997[Li, J.-Z., Yu, W.-J. & Du, X.-Y. (1997). Chin. J. Appl. Chem. 14, 98-100.]); Zhou et al. (1999[Zhou, Y.-P., Yang, Zh.-Y., Yu, H.-J. & Yang, R.-D. (1999). Chin. J. Appl. Chem. 16, 37-41.]).

[Scheme 1]

Experimental

Crystal data
  • [U(C17H13N2O2)2O2(CH4O)]·CH4O

  • Mr = 888.7

  • Triclinic, [P \overline 1]

  • a = 10.3353 (18) Å

  • b = 12.988 (2) Å

  • c = 13.955 (3) Å

  • α = 69.938 (3)°

  • β = 81.728 (2)°

  • γ = 70.722 (3)°

  • V = 1659.9 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.95 mm−1

  • T = 173 K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.242, Tmax = 0.318

  • 20251 measured reflections

  • 10125 independent reflections

  • 8127 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.096

  • S = 1.00

  • 10125 reflections

  • 450 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.45 e Å−3

  • Δρmin = −3.52 e Å−3

Table 1
Selected bond lengths (Å)

O1—U1 2.334 (3)
O2—U1 2.388 (3)
O3—U1 2.391 (3)
O4—U1 2.388 (3)
O5—U1 1.768 (3)
O6—U1 1.761 (3)
O7—U1 2.456 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7O⋯O36Si 0.81 (2) 1.84 (5) 2.633 (6) 168 (5)
O36S—H36S⋯N2ii 0.82 2.12 2.878 (6) 153
C6—H6⋯O3 0.93 2.33 2.909 (7) 120
C19—H19⋯O1 0.93 2.54 2.989 (7) 110
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The ligands derived fromβ-diketone compounds such as those of 3-methyl-1-phenyl-4-benzoylpyrazol-5-one (H1MPBP) have been found to have good extractive ability for heavy metals traces and interesting biological activities (Okafor et al., 1981). Their metal complexes MII–(MPBP)2 of copper(II) and zinc(II) are well known in the literature for their diverse therapeutic applications as anticarcinogenic, anti-inflammatory and analgesic activities (Caruso et al., 2000; Li et al., 1997; Zhou et al., 1999). Thus, we report here the synthesis of title compound and its crystal structure. The asymetric unit of structure of (I), and the atomic numbering used, is illustrated in Fig. 1.

The UVI ion is coordinated in a irregular octahedral geometry by two (3-Methyl-1-phenyl-4-benzoylpyrazol-5-one)groups with two O atoms in bidentate chelating coordination and three O atoms, when one O atom is linked to methanol moiety. One molecule of methanol is cocrystalized with the title complexe. The bond lengths for co-ordination U(V) sphere is ranging from 1.760 (3) to 2.391 (3)Å for Cu-O distances (Table 2). The crystal packing in the title structure can be described by alterning layers of complexe along the a axis (Fig. 2). It's stabilized by intermolecular O-H···N, O-H···O hydrogen bonding (Table 1, Fig. 2) and a Van Der Waals interactions. These interactions link the molecules within the layers and also link the layers together and reinforcing the cohesion of the structure.

Related literature top

For the synthesis and applications of similar compounds: Okafor (1981); Caruso et al. (2000); Li et al. (1997); Zhou et al. (1999).

Experimental top

106 mg (0.25 mmol) of dioxouranyl(II) acetate dihydrate (UO2(OAc)2,2H2O) were dissolved in 15 ml of methanol. This solution was drop wisely added, under stirring, to a methanolic solution (10 ml) containing 139 mg of 3-methyl-1-phenyl-4-benzoylpyrazol-5-one (0.5 mmol, H1MPBP). This mixture was refluxed during one night after which is abandoned for several weeks until the formation of suitable crystals. These crystals, recovered by filtration, were then washed several times with methanol and dried to yield 132 mg (60%) of the title compound.

Refinement top

The remaining H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C and O) with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(Caromatic) or Uiso(H) = 1.5Ueq(Cmethyl and Ohydroxy). In exept the H7o atom was located in difference Fourier maps and their coordinates were refined; the O-H7o distance was restrained to 0.82 (2)Å. The maxima and minima in the residual electron density are associated with atom U1.

Structure description top

The ligands derived fromβ-diketone compounds such as those of 3-methyl-1-phenyl-4-benzoylpyrazol-5-one (H1MPBP) have been found to have good extractive ability for heavy metals traces and interesting biological activities (Okafor et al., 1981). Their metal complexes MII–(MPBP)2 of copper(II) and zinc(II) are well known in the literature for their diverse therapeutic applications as anticarcinogenic, anti-inflammatory and analgesic activities (Caruso et al., 2000; Li et al., 1997; Zhou et al., 1999). Thus, we report here the synthesis of title compound and its crystal structure. The asymetric unit of structure of (I), and the atomic numbering used, is illustrated in Fig. 1.

The UVI ion is coordinated in a irregular octahedral geometry by two (3-Methyl-1-phenyl-4-benzoylpyrazol-5-one)groups with two O atoms in bidentate chelating coordination and three O atoms, when one O atom is linked to methanol moiety. One molecule of methanol is cocrystalized with the title complexe. The bond lengths for co-ordination U(V) sphere is ranging from 1.760 (3) to 2.391 (3)Å for Cu-O distances (Table 2). The crystal packing in the title structure can be described by alterning layers of complexe along the a axis (Fig. 2). It's stabilized by intermolecular O-H···N, O-H···O hydrogen bonding (Table 1, Fig. 2) and a Van Der Waals interactions. These interactions link the molecules within the layers and also link the layers together and reinforcing the cohesion of the structure.

For the synthesis and applications of similar compounds: Okafor (1981); Caruso et al. (2000); Li et al. (1997); Zhou et al. (1999).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Altering layers of (I) viewed via b axis showing hydrogen bond interactions(O—H···N), in blue, as dashed lines.
Bis(4-benzoyl-3-methyl-1-phenyl-4,5-dihydro-1H-pyrazol-5-olato- κ2O,O')(methanol-κO)dioxidouranium(VI) methanol monosolvate top
Crystal data top
[U(C17H13N2O2)2O2(CH4O)]·CH4OZ = 2
Mr = 888.7F(000) = 868
Triclinic, P1Dx = 1.778 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3353 (18) ÅCell parameters from 5297 reflections
b = 12.988 (2) Åθ = 2.4–26.8°
c = 13.955 (3) ŵ = 4.95 mm1
α = 69.938 (3)°T = 173 K
β = 81.728 (2)°Block, orange
γ = 70.722 (3)°0.40 × 0.40 × 0.30 mm
V = 1659.9 (5) Å3
Data collection top
Bruker APEXII
diffractometer
10125 independent reflections
Radiation source: fine-focus sealed tube8127 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
phi and ω scansθmax = 30.8°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1414
Tmin = 0.242, Tmax = 0.318k = 1818
20251 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0322P)2]
where P = (Fo2 + 2Fc2)/3
10125 reflections(Δ/σ)max = 0.002
450 parametersΔρmax = 2.45 e Å3
1 restraintΔρmin = 3.52 e Å3
Crystal data top
[U(C17H13N2O2)2O2(CH4O)]·CH4Oγ = 70.722 (3)°
Mr = 888.7V = 1659.9 (5) Å3
Triclinic, P1Z = 2
a = 10.3353 (18) ÅMo Kα radiation
b = 12.988 (2) ŵ = 4.95 mm1
c = 13.955 (3) ÅT = 173 K
α = 69.938 (3)°0.40 × 0.40 × 0.30 mm
β = 81.728 (2)°
Data collection top
Bruker APEXII
diffractometer
10125 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
8127 reflections with I > 2σ(I)
Tmin = 0.242, Tmax = 0.318Rint = 0.064
20251 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 2.45 e Å3
10125 reflectionsΔρmin = 3.52 e Å3
450 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3016 (5)0.0112 (4)1.0673 (3)0.0181 (9)
C20.4041 (5)0.0758 (5)1.1291 (4)0.0269 (11)
H20.48290.06141.13860.032*
C30.3878 (5)0.1836 (4)1.1761 (4)0.0247 (11)
H30.45670.24161.21660.03*
C40.2714 (5)0.2063 (4)1.1640 (4)0.0252 (11)
H40.26080.27871.19710.03*
C50.1707 (5)0.1207 (4)1.1023 (4)0.0254 (11)
H50.09260.13631.0930.03*
C60.1834 (5)0.0119 (4)1.0541 (4)0.0232 (10)
H60.11420.04531.01330.028*
C70.2455 (5)0.2101 (4)0.9434 (3)0.0177 (9)
C80.2818 (5)0.3085 (4)0.9380 (4)0.0194 (10)
C90.3811 (5)0.2681 (4)1.0143 (4)0.0207 (10)
C100.4678 (6)0.3295 (5)1.0350 (4)0.0297 (12)
H10A0.52790.27831.08940.045*
H10B0.410.39461.05420.045*
H10C0.52130.3550.97460.045*
C110.2170 (5)0.4193 (4)0.8721 (4)0.0199 (10)
C120.2119 (5)0.5265 (4)0.8918 (4)0.0210 (10)
C130.1680 (6)0.5421 (5)0.9852 (4)0.0283 (12)
H130.14910.48211.0390.034*
C140.1516 (6)0.6457 (5)1.0000 (4)0.0316 (12)
H140.11970.65641.06270.038*
C150.1831 (5)0.7329 (5)0.9206 (5)0.0319 (13)
H150.17410.80230.93040.038*
C160.2276 (5)0.7186 (4)0.8270 (4)0.0289 (12)
H160.24870.77810.77410.035*
C170.2413 (5)0.6159 (4)0.8112 (4)0.0258 (11)
H170.26970.60670.74750.031*
C180.2910 (5)0.6501 (4)0.4807 (4)0.0220 (10)
C190.1797 (5)0.7099 (4)0.5284 (4)0.0277 (11)
H190.09750.6920.54040.033*
C200.1938 (6)0.7969 (5)0.5578 (5)0.0343 (13)
H200.12090.83730.59110.041*
C210.3159 (6)0.8245 (5)0.5380 (5)0.0343 (13)
H210.32440.8830.55810.041*
C220.4226 (5)0.7662 (5)0.4893 (4)0.0300 (12)
H220.50360.78580.47570.036*
C230.4125 (5)0.6786 (5)0.4600 (4)0.0299 (12)
H230.48620.63880.42680.036*
C240.2139 (5)0.4804 (4)0.4970 (4)0.0207 (10)
C250.2349 (5)0.4098 (4)0.4349 (4)0.0216 (10)
C260.3228 (5)0.4549 (4)0.3511 (4)0.0232 (10)
C270.3865 (6)0.4137 (5)0.2632 (4)0.0369 (14)
H27A0.45860.4470.23220.055*
H27B0.31820.4360.21390.055*
H27C0.42370.33140.28670.055*
C280.1815 (5)0.3184 (4)0.4603 (4)0.0233 (10)
C290.1708 (5)0.2638 (4)0.3842 (4)0.0224 (10)
C300.2010 (5)0.1454 (4)0.4139 (4)0.0274 (11)
H300.23260.1010.4790.033*
C310.1844 (6)0.0924 (5)0.3468 (4)0.0320 (12)
H310.20520.01280.36690.038*
C320.1375 (5)0.1580 (5)0.2513 (4)0.0276 (11)
H320.12790.12280.20610.033*
C330.1043 (5)0.2758 (5)0.2219 (4)0.0276 (11)
H330.07040.31970.15740.033*
C340.1209 (5)0.3296 (4)0.2878 (4)0.0261 (11)
H340.09880.40930.26740.031*
C350.0585 (6)0.0644 (5)0.7008 (4)0.0328 (13)
H35A0.02380.12420.67430.049*
H35B0.0350.00170.75280.049*
H35C0.11070.03770.64670.049*
C36S0.4590 (7)0.9616 (7)0.7067 (5)0.0525 (18)
H36A0.51341.00980.70420.079*
H36B0.40220.99560.64840.079*
H36C0.51830.88710.70630.079*
N10.3146 (4)0.1229 (3)1.0221 (3)0.0199 (8)
N20.4026 (4)0.1577 (3)1.0642 (3)0.0206 (8)
N30.2801 (4)0.5596 (4)0.4498 (3)0.0246 (9)
N40.3513 (4)0.5416 (4)0.3602 (3)0.0263 (9)
O10.1436 (3)0.4773 (3)0.5828 (3)0.0221 (7)
O20.1534 (4)0.4329 (3)0.7957 (3)0.0257 (8)
O30.1624 (3)0.2027 (3)0.8890 (2)0.0225 (7)
O40.1342 (3)0.2794 (3)0.5502 (3)0.0242 (8)
O50.3227 (3)0.2567 (3)0.6995 (3)0.0232 (7)
O60.0384 (3)0.3501 (3)0.7243 (3)0.0223 (7)
O70.1379 (4)0.1080 (3)0.7434 (3)0.0253 (8)
H7O0.207 (4)0.058 (4)0.768 (4)0.038*
O36S0.3752 (4)0.9501 (3)0.7970 (3)0.0358 (9)
H36S0.42160.93490.84580.054*
U10.141702 (17)0.305351 (14)0.710418 (13)0.01446 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.021 (2)0.019 (2)0.014 (2)0.0062 (18)0.0028 (18)0.0060 (18)
C20.024 (2)0.032 (3)0.028 (3)0.011 (2)0.006 (2)0.008 (2)
C30.018 (2)0.019 (2)0.029 (3)0.0030 (19)0.006 (2)0.004 (2)
C40.029 (3)0.018 (2)0.028 (3)0.009 (2)0.001 (2)0.006 (2)
C50.028 (3)0.027 (3)0.028 (3)0.012 (2)0.007 (2)0.011 (2)
C60.021 (2)0.024 (2)0.023 (3)0.006 (2)0.0052 (19)0.004 (2)
C70.021 (2)0.023 (2)0.011 (2)0.0065 (19)0.0016 (17)0.0072 (19)
C80.020 (2)0.018 (2)0.020 (2)0.0045 (18)0.0037 (18)0.0059 (19)
C90.022 (2)0.022 (2)0.019 (2)0.0074 (19)0.0028 (19)0.007 (2)
C100.037 (3)0.028 (3)0.032 (3)0.017 (2)0.011 (2)0.007 (2)
C110.022 (2)0.018 (2)0.021 (2)0.0060 (19)0.0009 (19)0.0061 (19)
C120.019 (2)0.021 (2)0.023 (3)0.0024 (19)0.0031 (19)0.010 (2)
C130.037 (3)0.025 (3)0.026 (3)0.014 (2)0.001 (2)0.007 (2)
C140.038 (3)0.038 (3)0.027 (3)0.013 (3)0.003 (2)0.021 (3)
C150.031 (3)0.025 (3)0.047 (4)0.007 (2)0.007 (3)0.020 (3)
C160.032 (3)0.021 (2)0.035 (3)0.013 (2)0.003 (2)0.005 (2)
C170.027 (3)0.022 (2)0.027 (3)0.007 (2)0.004 (2)0.006 (2)
C180.020 (2)0.016 (2)0.027 (3)0.0031 (18)0.0045 (19)0.002 (2)
C190.027 (3)0.025 (3)0.032 (3)0.012 (2)0.003 (2)0.007 (2)
C200.033 (3)0.026 (3)0.045 (4)0.009 (2)0.007 (3)0.015 (3)
C210.043 (3)0.020 (3)0.042 (4)0.013 (2)0.013 (3)0.005 (2)
C220.022 (2)0.029 (3)0.039 (3)0.011 (2)0.005 (2)0.007 (2)
C230.023 (2)0.027 (3)0.041 (3)0.010 (2)0.002 (2)0.010 (2)
C240.022 (2)0.014 (2)0.021 (2)0.0067 (18)0.0126 (19)0.0060 (19)
C250.017 (2)0.026 (2)0.019 (2)0.0004 (19)0.0069 (18)0.007 (2)
C260.018 (2)0.027 (3)0.022 (3)0.007 (2)0.0014 (19)0.004 (2)
C270.037 (3)0.048 (4)0.031 (3)0.019 (3)0.006 (2)0.015 (3)
C280.022 (2)0.020 (2)0.020 (3)0.0007 (19)0.0089 (19)0.001 (2)
C290.023 (2)0.024 (2)0.020 (3)0.007 (2)0.0035 (19)0.006 (2)
C300.035 (3)0.023 (3)0.023 (3)0.007 (2)0.005 (2)0.006 (2)
C310.039 (3)0.023 (3)0.035 (3)0.009 (2)0.000 (2)0.011 (2)
C320.023 (2)0.040 (3)0.030 (3)0.014 (2)0.004 (2)0.020 (3)
C330.024 (2)0.041 (3)0.019 (3)0.013 (2)0.004 (2)0.007 (2)
C340.023 (2)0.023 (2)0.029 (3)0.006 (2)0.003 (2)0.003 (2)
C350.037 (3)0.035 (3)0.036 (3)0.019 (3)0.002 (2)0.015 (3)
C36S0.039 (4)0.065 (5)0.058 (5)0.001 (3)0.015 (3)0.036 (4)
N10.0207 (19)0.0183 (19)0.021 (2)0.0052 (16)0.0050 (16)0.0057 (17)
N20.0175 (18)0.022 (2)0.023 (2)0.0059 (16)0.0029 (16)0.0081 (18)
N30.022 (2)0.028 (2)0.023 (2)0.0094 (18)0.0007 (17)0.0063 (19)
N40.021 (2)0.030 (2)0.026 (2)0.0088 (18)0.0007 (17)0.0058 (19)
O10.0249 (17)0.0203 (17)0.0211 (18)0.0100 (14)0.0050 (14)0.0061 (14)
O20.035 (2)0.0194 (17)0.0234 (19)0.0055 (15)0.0116 (15)0.0062 (15)
O30.0279 (18)0.0166 (16)0.0206 (18)0.0054 (14)0.0072 (14)0.0019 (14)
O40.0287 (18)0.0280 (19)0.0178 (18)0.0139 (16)0.0002 (14)0.0047 (15)
O50.0158 (15)0.0296 (19)0.0270 (19)0.0092 (14)0.0029 (14)0.0091 (16)
O60.0168 (15)0.0244 (18)0.0248 (19)0.0058 (14)0.0041 (13)0.0057 (15)
O70.0279 (19)0.0160 (17)0.032 (2)0.0026 (14)0.0136 (16)0.0064 (16)
O36S0.032 (2)0.030 (2)0.045 (3)0.0058 (17)0.0157 (18)0.009 (2)
U10.01361 (8)0.01473 (8)0.01518 (9)0.00454 (6)0.00239 (6)0.00391 (6)
Geometric parameters (Å, º) top
C1—C21.395 (7)C22—H220.93
C1—C61.400 (6)C23—H230.93
C1—N11.413 (6)C24—O11.304 (6)
C2—C31.383 (7)C24—N31.353 (6)
C2—H20.93C24—C251.413 (7)
C3—C41.375 (7)C25—C281.388 (7)
C3—H30.93C25—C261.454 (7)
C4—C51.378 (7)C26—N41.302 (7)
C4—H40.93C26—C271.486 (7)
C5—C61.383 (7)C27—H27A0.96
C5—H50.93C27—H27B0.96
C6—H60.93C27—H27C0.96
C7—O31.271 (5)C28—O41.273 (6)
C7—N11.355 (6)C28—C291.498 (7)
C7—C81.422 (6)C29—C301.384 (7)
C8—C111.414 (6)C29—C341.388 (7)
C8—C91.427 (6)C30—C311.396 (8)
C9—N21.319 (6)C30—H300.93
C9—C101.492 (7)C31—C321.368 (7)
C10—H10A0.96C31—H310.93
C10—H10B0.96C32—C331.374 (8)
C10—H10C0.96C32—H320.93
C11—O21.262 (6)C33—C341.389 (7)
C11—C121.493 (7)C33—H330.93
C12—C131.377 (7)C34—H340.93
C12—C171.394 (7)C35—O71.424 (6)
C13—C141.383 (7)C35—H35A0.96
C13—H130.93C35—H35B0.96
C14—C151.376 (8)C35—H35C0.96
C14—H140.93C36S—O36S1.415 (8)
C15—C161.375 (8)C36S—H36A0.96
C15—H150.93C36S—H36B0.96
C16—C171.383 (7)C36S—H36C0.96
C16—H160.93N1—N21.409 (5)
C17—H170.93N3—N41.408 (6)
C18—C191.383 (7)O1—U12.334 (3)
C18—C231.389 (7)O2—U12.388 (3)
C18—N31.426 (6)O3—U12.391 (3)
C19—C201.382 (8)O4—U12.388 (3)
C19—H190.93O5—U11.768 (3)
C20—C211.388 (7)O6—U11.761 (3)
C20—H200.93O7—U12.456 (3)
C21—C221.355 (8)O7—H7O0.811 (19)
C21—H210.93O36S—H36S0.82
C22—C231.371 (7)
C2—C1—C6119.4 (4)N4—C26—C27118.0 (4)
C2—C1—N1120.1 (4)C25—C26—C27129.8 (5)
C6—C1—N1120.4 (4)C26—C27—H27A109.5
C3—C2—C1119.6 (5)C26—C27—H27B109.5
C3—C2—H2120.2H27A—C27—H27B109.5
C1—C2—H2120.2C26—C27—H27C109.5
C4—C3—C2121.1 (5)H27A—C27—H27C109.5
C4—C3—H3119.4H27B—C27—H27C109.5
C2—C3—H3119.4O4—C28—C25120.7 (5)
C3—C4—C5119.2 (5)O4—C28—C29116.6 (4)
C3—C4—H4120.4C25—C28—C29122.7 (4)
C5—C4—H4120.4C30—C29—C34119.4 (5)
C4—C5—C6121.2 (5)C30—C29—C28118.9 (4)
C4—C5—H5119.4C34—C29—C28121.5 (5)
C6—C5—H5119.4C29—C30—C31120.3 (5)
C5—C6—C1119.4 (4)C29—C30—H30119.8
C5—C6—H6120.3C31—C30—H30119.8
C1—C6—H6120.3C32—C31—C30119.7 (5)
O3—C7—N1125.3 (4)C32—C31—H31120.2
O3—C7—C8128.4 (4)C30—C31—H31120.2
N1—C7—C8106.3 (4)C31—C32—C33120.4 (5)
C11—C8—C7122.2 (4)C31—C32—H32119.8
C11—C8—C9132.6 (4)C33—C32—H32119.8
C7—C8—C9105.1 (4)C32—C33—C34120.5 (5)
N2—C9—C8111.4 (4)C32—C33—H33119.7
N2—C9—C10119.2 (4)C34—C33—H33119.7
C8—C9—C10129.1 (4)C29—C34—C33119.6 (5)
C9—C10—H10A109.5C29—C34—H34120.2
C9—C10—H10B109.5C33—C34—H34120.2
H10A—C10—H10B109.5O7—C35—H35A109.5
C9—C10—H10C109.5O7—C35—H35B109.5
H10A—C10—H10C109.5H35A—C35—H35B109.5
H10B—C10—H10C109.5O7—C35—H35C109.5
O2—C11—C8121.4 (4)H35A—C35—H35C109.5
O2—C11—C12116.1 (4)H35B—C35—H35C109.5
C8—C11—C12122.4 (4)O36S—C36S—H36A109.5
C13—C12—C17119.7 (5)O36S—C36S—H36B109.5
C13—C12—C11121.2 (4)H36A—C36S—H36B109.5
C17—C12—C11118.8 (4)O36S—C36S—H36C109.5
C12—C13—C14120.8 (5)H36A—C36S—H36C109.5
C12—C13—H13119.6H36B—C36S—H36C109.5
C14—C13—H13119.6C7—N1—N2111.4 (4)
C15—C14—C13119.2 (5)C7—N1—C1128.8 (4)
C15—C14—H14120.4N2—N1—C1119.7 (4)
C13—C14—H14120.4C9—N2—N1105.8 (4)
C16—C15—C14120.8 (5)C24—N3—N4111.7 (4)
C16—C15—H15119.6C24—N3—C18129.4 (4)
C14—C15—H15119.6N4—N3—C18118.9 (4)
C15—C16—C17120.3 (5)C26—N4—N3105.4 (4)
C15—C16—H16119.8C24—O1—U1122.6 (3)
C17—C16—H16119.8C11—O2—U1133.4 (3)
C16—C17—C12119.2 (5)C7—O3—U1122.7 (3)
C16—C17—H17120.4C28—O4—U1134.8 (3)
C12—C17—H17120.4C35—O7—U1131.0 (3)
C19—C18—C23121.1 (5)C35—O7—H7O111 (4)
C19—C18—N3119.7 (4)U1—O7—H7O115 (4)
C23—C18—N3119.2 (5)C36S—O36S—H36S109.5
C20—C19—C18118.2 (5)O6—U1—O5178.33 (15)
C20—C19—H19120.9O6—U1—O192.53 (13)
C18—C19—H19120.9O5—U1—O189.13 (14)
C19—C20—C21120.6 (5)O6—U1—O492.24 (14)
C19—C20—H20119.7O5—U1—O488.38 (14)
C21—C20—H20119.7O1—U1—O472.52 (12)
C22—C21—C20120.1 (5)O6—U1—O289.92 (14)
C22—C21—H21119.9O5—U1—O290.42 (14)
C20—C21—H21119.9O1—U1—O273.82 (12)
C21—C22—C23120.8 (5)O4—U1—O2146.33 (12)
C21—C22—H22119.6O6—U1—O391.12 (13)
C23—C22—H22119.6O5—U1—O387.43 (14)
C22—C23—C18119.1 (5)O1—U1—O3145.24 (12)
C22—C23—H23120.4O4—U1—O3141.85 (11)
C18—C23—H23120.4O2—U1—O371.63 (11)
O1—C24—N3123.2 (5)O6—U1—O789.51 (14)
O1—C24—C25129.8 (4)O5—U1—O789.21 (14)
N3—C24—C25107.1 (4)O1—U1—O7144.37 (12)
C28—C25—C24122.9 (5)O4—U1—O771.86 (12)
C28—C25—C26133.4 (5)O2—U1—O7141.79 (12)
C24—C25—C26103.7 (4)O3—U1—O770.18 (12)
N4—C26—C25112.1 (5)
C6—C1—C2—C30.2 (8)C32—C33—C34—C290.3 (7)
N1—C1—C2—C3177.5 (5)O3—C7—N1—N2177.7 (4)
C1—C2—C3—C40.7 (8)C8—C7—N1—N24.3 (5)
C2—C3—C4—C51.3 (8)O3—C7—N1—C16.7 (8)
C3—C4—C5—C61.2 (8)C8—C7—N1—C1171.4 (4)
C4—C5—C6—C10.7 (8)C2—C1—N1—C7163.4 (5)
C2—C1—C6—C50.2 (7)C6—C1—N1—C719.4 (7)
N1—C1—C6—C5177.4 (5)C2—C1—N1—N221.3 (7)
O3—C7—C8—C115.4 (8)C6—C1—N1—N2155.9 (4)
N1—C7—C8—C11172.6 (4)C8—C9—N2—N10.9 (5)
O3—C7—C8—C9178.5 (5)C10—C9—N2—N1175.0 (4)
N1—C7—C8—C93.5 (5)C7—N1—N2—C93.3 (5)
C11—C8—C9—N2173.9 (5)C1—N1—N2—C9172.8 (4)
C7—C8—C9—N21.6 (6)O1—C24—N3—N4178.3 (4)
C11—C8—C9—C1012.8 (9)C25—C24—N3—N43.0 (5)
C7—C8—C9—C10171.7 (5)O1—C24—N3—C181.5 (8)
C7—C8—C11—O220.2 (7)C25—C24—N3—C18179.9 (4)
C9—C8—C11—O2164.9 (5)C19—C18—N3—C2437.5 (7)
C7—C8—C11—C12155.9 (5)C23—C18—N3—C24144.1 (5)
C9—C8—C11—C1219.0 (8)C19—C18—N3—N4145.8 (5)
O2—C11—C12—C13125.6 (5)C23—C18—N3—N432.6 (7)
C8—C11—C12—C1350.7 (7)C25—C26—N4—N31.4 (5)
O2—C11—C12—C1748.9 (6)C27—C26—N4—N3178.8 (4)
C8—C11—C12—C17134.8 (5)C24—N3—N4—C262.8 (5)
C17—C12—C13—C140.5 (8)C18—N3—N4—C26180.0 (4)
C11—C12—C13—C14174.0 (5)N3—C24—O1—U1142.0 (4)
C12—C13—C14—C151.6 (8)C25—C24—O1—U139.7 (6)
C13—C14—C15—C161.3 (8)C8—C11—O2—U112.4 (7)
C14—C15—C16—C170.1 (8)C12—C11—O2—U1171.3 (3)
C15—C16—C17—C121.3 (8)N1—C7—O3—U1144.5 (4)
C13—C12—C17—C161.0 (7)C8—C7—O3—U137.9 (6)
C11—C12—C17—C16175.5 (5)C25—C28—O4—U111.9 (7)
C23—C18—C19—C201.8 (8)C29—C28—O4—U1170.5 (3)
N3—C18—C19—C20179.8 (5)C24—O1—U1—O6131.8 (3)
C18—C19—C20—C211.2 (8)C24—O1—U1—O548.3 (3)
C19—C20—C21—C220.1 (9)C24—O1—U1—O440.3 (3)
C20—C21—C22—C230.8 (9)C24—O1—U1—O2139.0 (4)
C21—C22—C23—C180.1 (8)C24—O1—U1—O3132.6 (3)
C19—C18—C23—C221.2 (8)C24—O1—U1—O739.1 (4)
N3—C18—C23—C22179.7 (5)C28—O4—U1—O6123.7 (4)
O1—C24—C25—C281.6 (8)C28—O4—U1—O557.9 (4)
N3—C24—C25—C28179.8 (4)C28—O4—U1—O131.7 (4)
O1—C24—C25—C26179.4 (5)C28—O4—U1—O230.5 (5)
N3—C24—C25—C262.0 (5)C28—O4—U1—O3141.6 (4)
C28—C25—C26—N4177.8 (5)C28—O4—U1—O7147.6 (5)
C24—C25—C26—N40.3 (6)C11—O2—U1—O6126.2 (4)
C28—C25—C26—C270.8 (9)C11—O2—U1—O552.2 (4)
C24—C25—C26—C27176.7 (5)C11—O2—U1—O1141.2 (5)
C24—C25—C28—O414.2 (7)C11—O2—U1—O4139.9 (4)
C26—C25—C28—O4162.8 (5)C11—O2—U1—O335.0 (4)
C24—C25—C28—C29163.3 (4)C11—O2—U1—O737.1 (5)
C26—C25—C28—C2919.7 (8)C7—O3—U1—O6133.2 (4)
O4—C28—C29—C3042.5 (7)C7—O3—U1—O547.7 (4)
C25—C28—C29—C30139.9 (5)C7—O3—U1—O137.1 (4)
O4—C28—C29—C34132.2 (5)C7—O3—U1—O4131.8 (3)
C25—C28—C29—C3445.4 (7)C7—O3—U1—O243.6 (3)
C34—C29—C30—C311.4 (8)C7—O3—U1—O7137.8 (4)
C28—C29—C30—C31176.2 (5)C35—O7—U1—O649.0 (4)
C29—C30—C31—C320.3 (8)C35—O7—U1—O5132.1 (4)
C30—C31—C32—C331.2 (8)C35—O7—U1—O144.6 (5)
C31—C32—C33—C341.5 (8)C35—O7—U1—O443.5 (4)
C30—C29—C34—C331.1 (7)C35—O7—U1—O2138.3 (4)
C28—C29—C34—C33175.8 (4)C35—O7—U1—O3140.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7O···O36Si0.81 (2)1.84 (5)2.633 (6)168 (5)
O36S—H36S···N2ii0.822.122.878 (6)153
C6—H6···O30.932.332.909 (7)120
C19—H19···O10.932.542.989 (7)110
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[U(C17H13N2O2)2O2(CH4O)]·CH4O
Mr888.7
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)10.3353 (18), 12.988 (2), 13.955 (3)
α, β, γ (°)69.938 (3), 81.728 (2), 70.722 (3)
V3)1659.9 (5)
Z2
Radiation typeMo Kα
µ (mm1)4.95
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.242, 0.318
No. of measured, independent and
observed [I > 2σ(I)] reflections
20251, 10125, 8127
Rint0.064
(sin θ/λ)max1)0.721
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.096, 1.00
No. of reflections10125
No. of parameters450
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.45, 3.52

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
O1—U12.334 (3)O5—U11.768 (3)
O2—U12.388 (3)O6—U11.761 (3)
O3—U12.391 (3)O7—U12.456 (3)
O4—U12.388 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7O···O36Si0.811 (19)1.84 (5)2.633 (6)168 (5)
O36S—H36S···N2ii0.82002.12002.878 (6)153.00
C6—H6···O30.93002.33002.909 (7)120.00
C19—H19···O10.93002.54002.989 (7)110.00
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+2.
 

Acknowledgements

The authors thank the Algerian Ministère de l'Enseignement Supérieur et de la Recherche Scientifique for financial support and Professor L. Ouahab (Laboratoire des Sciences Chimiques, Rennes1 France) for helpful discussions.

References

First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCaruso, F., Rossi, M., Tanski, J., Sartori, R., Sariego, R., Moya, S., Diez, S., Navarette, S., Cingolani, A., Marchetti, F. & Pettinari, C. (2000). J. Med. Chem. 43, 3665–3670.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLi, J.-Z., Yu, W.-J. & Du, X.-Y. (1997). Chin. J. Appl. Chem. 14, 98–100.  CAS Google Scholar
First citationOkafor, E. C. (1981). Z. Naturforsch. Teil B, 36, 213–217.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, Y.-P., Yang, Zh.-Y., Yu, H.-J. & Yang, R.-D. (1999). Chin. J. Appl. Chem. 16, 37–41.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m457-m458
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds